JPS63237476A - Manufacture of insulated gate type semiconductor device - Google Patents

Manufacture of insulated gate type semiconductor device

Info

Publication number
JPS63237476A
JPS63237476A JP7101887A JP7101887A JPS63237476A JP S63237476 A JPS63237476 A JP S63237476A JP 7101887 A JP7101887 A JP 7101887A JP 7101887 A JP7101887 A JP 7101887A JP S63237476 A JPS63237476 A JP S63237476A
Authority
JP
Japan
Prior art keywords
film
semiconductor
active region
insulating film
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7101887A
Other languages
Japanese (ja)
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP7101887A priority Critical patent/JPS63237476A/en
Priority to US07/172,029 priority patent/US4939154A/en
Publication of JPS63237476A publication Critical patent/JPS63237476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a fine MOS including a gate electrode in the manner of self-algnment, by forming, in an active layer, inverse conductivity type source and drain regions by impurity diffusion from a second semiconductor film, and forming a part of source and drain wiring with a first semiconductor film being in contact with the second semiconductor film. CONSTITUTION:On the exposed surface of an active region 11, a gate oxide film 80 is formed by a thermal oxidation and the like. In this thermal processing, N-type source.drain regions 12 and 13 are formed by impurity diffusion from a second semiconductor film 61 into the active region 11. After this process, a selective etching is performed using a mask process in order to left a first and a second semiconductor films 40 and 61 inside the lines 120 is figure, and a conducting film 91. Therefore, a source wiring 42 and a drain wiring 43 are formed by a first semiconductor film 40, source.drain electrodes 62 and 63 are formed by a second semiconductor film 61 at the end-portion of an aperture, and a gate electrode 91 is formed by the conducting film 91. Then, an insulating film 110 of SiO2 and the like is deposited if necessary, and contact holes 142, 143, 149, etc., are made to arrange wirings 102, 103, etc., of Al and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型半導体装置、特にMO3集積回路
の自己整合的製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a self-aligned manufacturing method for insulated gate semiconductor devices, particularly MO3 integrated circuits.

〔発明のm要〕[Essentials of invention]

本発明の絶縁ゲート型半導体装置製造方法は、a、P型
半導体基板表面のフィールド絶縁膜に活性領域を露出す
る工程と、 b、第1酸化膜・N型第1多結晶膜・第2酸化膜からな
る3層多層膜を順次堆積する工程と、C6活性領域の一
方の幅より狭く、他方の幅より広く活性領域上の前記多
層膜に開孔を設け、開孔端部はほぼ垂直もしくはオーバ
ー/’tング状にする工程と、 d、N型不純物を含む第2多結晶膜を堆積する工程と、 e、第2多結晶膜を異方性エッチして前記活性領域及び
第2酸化膜を露出すると共に、前記多層膜の開孔端部に
沿って第2多結晶膜を残す工程と、f、第3酸化膜を堆
積後再び異方性工・ノチによって前記活性領域を露出し
、前記多層膜の開孔端部に沿った第2多結晶膜の側面に
第3酸化膜を残す工程と、 g、露出した活性領域表面にゲート絶縁膜を設ける工程
と、 h、第3多結晶膜を堆積する工程と、 i、レジストを塗布して表面をほぼ平坦にして、第2酸
化膜が霧出するまでエッチバンクを行い、前記多層膜の
開孔内に第3多結晶膜を残しゲート電極とする工程と、 j、第1.第2及び第3多結晶膜の不要部を選択的に除
去する工程とから成り、活性領域内に前記第2多結晶膜
からの不純物拡散でN型ソース及びドレイン領域を、ま
た第2多結晶膜に接する第1多結晶膜でソース及びドレ
イン配線の一部を形成するものである。微細なソース及
びドレイン領域とゲート電極が自己整合的に形成できる
The method for manufacturing an insulated gate semiconductor device of the present invention includes the following steps: a. exposing an active region to a field insulating film on the surface of a P-type semiconductor substrate; and b. a first oxide film, an N-type first polycrystalline film, and a second oxide film. a step of sequentially depositing a three-layer multilayer film consisting of a C6 active region, and forming an aperture in the multilayer film on the active region that is narrower than one width of the C6 active region and wider than the other, and the end of the aperture is substantially vertical or d. Depositing a second polycrystalline film containing N-type impurities; e. Anisotropically etching the second polycrystalline film to remove the active region and the second oxide. exposing the film and leaving a second polycrystalline film along the opening edges of the multilayer film; f) exposing the active region again by an anisotropic etching/notch after depositing a third oxide film; , leaving a third oxide film on the side surface of the second polycrystalline film along the edge of the opening of the multilayer film; g. providing a gate insulating film on the exposed active region surface; h. A step of depositing a crystalline film; i. Applying a resist to make the surface almost flat, performing an etch bank until the second oxide film is blown out, and depositing a third polycrystalline film in the openings of the multilayer film. a step of forming a remaining gate electrode; j. 1st. selectively removing unnecessary portions of the second and third polycrystalline films; The first polycrystalline film in contact with the film forms part of the source and drain wiring. Fine source and drain regions and gate electrodes can be formed in a self-aligned manner.

〔従来の技術〕[Conventional technology]

トランジスタの微細化は高速性、高集積性の要求のもと
に年々進められている。その中で自己整合技術は微細加
工技術と相まって素子の微細化に必要とされる。例えば
Electronics Letters、第19巻、
283頁(1983年)または特開昭54−82175
.特開昭55−15230に記載されたバイポーラの製
造方法いわゆるSSTによる自己整合技術で30pse
cの遅延時間を得ている。一方、電子通信学会技術研究
1告S S D 84−101(1984年12月18
日)にはMUSA−MO3Tと名付けられたMO3自己
整合方法が記載されている。上記の2方法では一方の電
極(ベース又はソース・ドレイン)と他方の電極(エミ
ッ汐)のコンタクトホール又はゲート絶縁膜形成領域と
は自己整合されるが、他方の電極(エミッタ又はゲート
電極)は自己整合できない。
The miniaturization of transistors is progressing year by year in response to demands for high speed and high integration. Among these, self-alignment technology is required in combination with microfabrication technology to miniaturize elements. For example, Electronics Letters, Volume 19,
283 pages (1983) or JP-A-54-82175
.. The bipolar manufacturing method described in Japanese Patent Application Laid-Open No. 15230/1983 uses self-alignment technology using so-called SST to produce 30 pse.
A delay time of c is obtained. On the other hand, the Institute of Electronics and Communication Engineers Technical Research 1 Notice SSD 84-101 (December 18, 1984)
An MO3 self-alignment method named MUSA-MO3T is described in Japan). In the above two methods, one electrode (base or source/drain) and the contact hole or gate insulating film formation region of the other electrode (emitter) are self-aligned, but the other electrode (emitter or gate electrode) is Unable to self-align.

即ち、一方の電極と他方の電極には平面的重畳部分が生
じ寄生容量が大きく、高速化を妨げていた。
That is, a planar overlapping portion occurs between one electrode and the other electrode, resulting in a large parasitic capacitance, which hinders speeding up.

又、微細MO3には熱電子対策上必要なL D D (
Lightly doped drain)構造には上
記の方法は適用しにくい点があった。
In addition, for fine MO3, LDD (
The above method is difficult to apply to a lightly doped drain structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は微細MO5をゲート電極も含めて自己整合的に
形成できる製造方法を提供するものであ又、LDD構造
も容易に実現できる自己整合的製造方法も提供する。
The present invention provides a manufacturing method that can form a fine MO5 including a gate electrode in a self-aligned manner, and also provides a self-aligned manufacturing method that can easily realize an LDD structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMO3半導体装置の製造方法は、a、フィール
ド絶縁膜で被われた一導電型半導体基板表面に活性領域
を露出する工程、 b、第1絶縁膜・逆導電型第1半導体膜・第2絶縁膜か
らなる少なくとも3層多層膜を順次堆積する工程、 C9活性領域の一方の幅より狭く、他方の幅より広く活
性領域上の前記多層膜に開孔を設けると共に、開孔端部
はほぼ垂直もしくはオーバーハング状にする工程、 d、逆導電型第1半導体膜を堆積する工程、e、第2半
導体膜を異方性エッチして多層膜の開孔端部に沿って第
2半導体膜を残す工程、f、第3絶縁膜を堆積後異方性
エッチによって多層膜の開孔端部に沿った第2半導体膜
の側面に第3絶縁膜を残す工程、 ご、露出した活性領域表面にゲート絶縁膜を設ける工程
、 h、導電膜を堆積する工程、 10表面がほぼ平坦になる平坦化膜を堆積後、平坦化膜
と導電膜に対し、はぼ等しいエッチ速度でエッチバンク
して多層膜の開孔内に導電膜を残しゲート電極とする工
程、 j、第1及び第2半導体膜さらに前記導電膜の不嬰部を
選択的に除去する工程とから少なくとも成り、活性頭域
内に第2半導体膜からの不純物拡散で逆導電型ソース及
びドレイン領域を、又第2半導体膜に接する第1半導体
■りでソース及びドレイン配線の一部を形成するもので
ある。
The method for manufacturing an MO3 semiconductor device of the present invention includes: a. exposing an active region on the surface of a semiconductor substrate of one conductivity type covered with a field insulating film; b) a first insulating film, a first semiconductor film of an opposite conductivity type, and a second a step of sequentially depositing at least a three-layer multilayer film consisting of two insulating films; providing an opening in the multilayer film above the active region narrower than one width of the C9 active region and wider than the other width; d. Depositing a first semiconductor film of opposite conductivity type; e. Anisotropically etching the second semiconductor film to form a second semiconductor film along the edge of the opening in the multilayer film. f. leaving the third insulating film on the side surface of the second semiconductor film along the opening edge of the multilayer film by anisotropic etching after depositing the third insulating film; d) exposing the active region; Step of providing a gate insulating film on the surface; h. Step of depositing a conductive film; the conductive film is left in the opening of the multilayer film to serve as a gate electrode; j) the step of selectively removing the first and second semiconductor films as well as the unwanted portions of the conductive film; Then, source and drain regions of opposite conductivity type are formed by diffusion of impurities from the second semiconductor film, and part of the source and drain wirings are formed by the first semiconductor film in contact with the second semiconductor film.

1、工程の後、第3絶縁膜を除去又は薄くして低密度に
逆導電型不純物を添加して逆導電型ソース及びドレイン
領域に隣接する低密度ソース及びドレイン領域を設け、
いわゆるLDD構造を実現することもできる。
1. After the process, remove or thin the third insulating film and add opposite conductivity type impurities at low density to provide low density source and drain regions adjacent to the opposite conductivity type source and drain regions;
A so-called LDD structure can also be realized.

〔作用〕[Effect]

本発明で、は段差のある表面に薄膜をほぼ等方性堆積し
てこの薄膜を異方性エッチすると、薄膜の実効的厚みが
厚いために段差側面に薄膜が残ることを利用して、第2
半導体膜や第3絶縁膜を多層膜開孔側面に選択的に残し
ている。そのため、多層膜開孔の側面は垂直または負傾
斜(オーバーハング状)になっていることが望ましい。
In the present invention, when a thin film is almost isotropically deposited on a stepped surface and this thin film is anisotropically etched, the effective thickness of the thin film is large, so the thin film remains on the stepped side surface. 2
The semiconductor film and the third insulating film are selectively left on the side surfaces of the multilayer film opening. Therefore, it is desirable that the side surfaces of the multilayer film openings be vertical or negatively sloped (overhanging).

又、ゲート電極の形成は、この電極部分が多層膜開孔の
ために他の部分に比して凹部になることを利用し、レジ
スト等を用いた表面平坦化後のエッチバックにより行っ
ている。そのため、微細なソース・ドレイン領域やゲー
ト電極が自己整合的に形成できる。
In addition, the gate electrode is formed by etching back after flattening the surface using a resist, etc., taking advantage of the fact that this electrode part is recessed compared to other parts due to the openings in the multilayer film. . Therefore, fine source/drain regions and gate electrodes can be formed in a self-aligned manner.

〔実施例〕 以下に図面を用いて本発明を詳述していく。〔Example〕 The present invention will be explained in detail below using the drawings.

(a)実施例1 (第1図、第2図) 第1図Fal〜(11には本発明の一実施例に基づく工
程断面図を、第2図は説明のための平面図を示す。
(a) Example 1 (FIGS. 1 and 2) FIG. 1 Fal-(11 shows a process sectional view based on an embodiment of the present invention, and FIG. 2 shows a plan view for explanation.

第1図(alは選択酸化等を利用してフィールド酸化膜
20を形成し、将来トランジスタが設けられる活性領域
11を露出したP型Si基板10上に第1絶縁膜30・
第1半導体膜40・第2絶縁IIW50からなる3層多
層膜を順次堆積した断面である。活性領域11は第2図
の線11内部に設けられる。第1絶縁膜3゜・第1半導
体膜40・第2絶縁膜50はそれぞれCVD−3i 0
2(0,2μm) 、  ポリS i(0,4μrn)
 。
In FIG. 1, a field oxide film 20 is formed using selective oxidation or the like, and a first insulating film 30 is formed on a P-type Si substrate 10 exposing an active region 11 where a transistor will be provided in the future.
This is a cross section in which a three-layer multilayer film consisting of a first semiconductor film 40 and a second insulating IIW 50 is sequentially deposited. Active region 11 is provided within line 11 in FIG. The first insulating film 3°, the first semiconductor film 40, and the second insulating film 50 are each CVD-3i 0
2 (0,2 μm), poly Si (0,4 μrn)
.

SiO□(0,2μm)が例えば用いられ、ポリSiに
はP型不純物が含まれている。勿論各層の厚みは工程設
計上杆される任意の値を選べる。第1図(blは多層膜
に活性領域11が露出するよう開孔を設けた断面で、第
2図の線1の如く開孔の相対する一方の端部1は活性領
域11の内側に、他方の端部はフィールド酸化膜20上
に位置する。
For example, SiO□ (0.2 μm) is used, and poly-Si contains P-type impurities. Of course, the thickness of each layer can be selected at any value determined by process design. FIG. 1 (bl is a cross-section of a multilayer film with an opening so that the active region 11 is exposed; as shown by line 1 in FIG. The other end is located on field oxide film 20.

開孔の端部1はほぼ垂直もしくは負傾斜にエッチされる
必要があり、反応性イオンエッチ(RIE)やイオンビ
ームエッチ等でなされる。第1図tc+はP型筒2半導
体膜60例えばポリSiを残圧CVD等で等方的に例え
ば0.5μm堆積した断面である。第1図(d+では、
第2半導体膜60をRfE等で異方性エッチして活性領
域11、第2絶縁膜50を露出させると共に、開孔側面
1に沿って第2半導体膜61を残した状態を示す。
The end portion 1 of the opening needs to be etched substantially vertically or with a negative slope, and this can be done by reactive ion etching (RIE), ion beam etching, or the like. FIG. 1 tc+ shows a cross section of a P-type cylinder 2 semiconductor film 60, for example, poly-Si, which is isotropically deposited to a thickness of, for example, 0.5 μm by residual pressure CVD or the like. Figure 1 (in d+,
The second semiconductor film 60 is anisotropically etched using RfE or the like to expose the active region 11 and the second insulating film 50, while leaving the second semiconductor film 61 along the side surface 1 of the opening.

さらにCVD−3iOz等の第3絶縁膜7oを堆積後、
再び異方性エッチによって第3絶縁膜71を第2半導体
膜61の側面2に沿って残した断面が第1図+11であ
る。第3絶縁膜71の幅は厚みとエッチ条件によって制
御できるが例えば0.3 μmである。
After further depositing a third insulating film 7o such as CVD-3iOz,
The cross section in which the third insulating film 71 is left along the side surface 2 of the second semiconductor film 61 by anisotropic etching again is shown in FIG. 1+11. The width of the third insulating film 71 can be controlled depending on the thickness and etching conditions, and is, for example, 0.3 μm.

第1図(flは第1図(e)の工程で露出した活性nM
域11表面に熱酸化等でゲート酸化膜80を設けた断面
である。この熱処理工程で第2半導体膜61から活性f
II域1域内1内純物拡散でN型ソース・ドレイン領域
12.13が形成される。その後、導電膜90例えばN
型ポリSkを堆積した後(第1図fg)))、全面にレ
ジスト等表面平坦化膜を堆積し平坦化膜及び導電膜90
に対しほぼ等しい速度でエッチするいわゆるエッチバン
クによって多層膜開孔内にのみ導電膜91を残した状態
が第1図(hlである。エッチバンクは第2絶縁膜50
が露出する以上、第1半導体膜40がなくならない以下
の範囲に行う。さらにこの工程の後、第2図の線120
の内部の第1・第2半導体膜40.61及び導電膜91
を残すべくマスク工程で選択エッチをする。その結果、
第1半導体膜40によりソース配線42.  ドレイン
配線43が、開孔端部の第2半導体膜61によりソース
・ドレイン電極62.63が導電膜91によりゲート電
極91が形成される。その後、必要に応じSin、等の
絶縁膜110を堆積し、第2図の如きコンタクトホール
142゜143、149等を開孔しAL等の配線102
.103等を設けて第1図+11のように完成する。
Figure 1 (fl is the active nM exposed in the step of Figure 1(e))
This is a cross section in which a gate oxide film 80 is provided on the surface of the region 11 by thermal oxidation or the like. In this heat treatment step, the active f is removed from the second semiconductor film 61.
N-type source/drain regions 12 and 13 are formed by intra-region II region 1 intra-region 1 dopant diffusion. After that, the conductive film 90, for example, N
After depositing the type poly Sk (FIG. 1fg)), a surface flattening film such as a resist is deposited on the entire surface, and a flattening film and a conductive film 90 are formed.
FIG. 1 (hl) shows a state in which the conductive film 91 is left only in the multilayer film opening by a so-called etch bank that is etched at a rate substantially equal to that of the second insulating film 50.
The first semiconductor film 40 is exposed to the extent that the first semiconductor film 40 does not disappear. Furthermore, after this step, line 120 in FIG.
The first and second semiconductor films 40.61 and the conductive film 91 inside the
Selective etching is performed in the mask process to leave a trace. the result,
The source wiring 42 . The drain wiring 43 is formed by the second semiconductor film 61 at the end of the opening, and the source/drain electrodes 62 and 63 are formed by the conductive film 91, and the gate electrode 91 is formed by the conductive film 91. Thereafter, an insulating film 110 such as Sin is deposited as necessary, and contact holes 142, 143, 149, etc. as shown in FIG.
.. 103, etc., and complete it as shown in Figure 1+11.

第1.第2.第3絶縁11g30,50.70として5
iftを用いる例を述べたが、SiN、5iON、PS
G、BPSG等他のものも適宜組み合わせることが可能
である。又、第1.第2半導体膜、導電膜30、60.
90として高融点金属とポリSIとの多Nsも使用でき
る。
1st. Second. 5 as 3rd insulation 11g30,50.70
An example using ift was described, but SiN, 5iON, PS
G, BPSG, etc. can also be combined as appropriate. Also, 1st. Second semiconductor film, conductive film 30, 60.
As 90, a multi-Ns material consisting of a high melting point metal and polySI can also be used.

(b)実施例2  LDD工程断面図(第3図)第1図
+11〜fc)には本発明をLDD構造MO5に適用す
る場合の工程断面図を示した。第3図(alは実施例1
の工程例と同様に第1図(hlまで行った断面であり、
第1・第2半導体膜40.61および導電膜91のマス
ク工程・選択エッチの前の状態までである。但し、N型
ソース・ドレイン領域12.13の拡散は実施例1の場
合よりも少なくし、両頭域12゜13がゲート電極91
と重畳させていない。第3図[blでは表面に露出する
第3絶縁膜71を導電膜91及び第1.第2半導体17
940.61マスクに除去し、同様なマスク及びフィー
ルド酸化膜20で規定される領域にN型不純物をイオン
注入して低密度ソース・ドレイン領域14.15を形成
する。しかる後、第1・第2半導体膜40.61及び導
電膜91の不要部を選択エッチし、絶縁膜110を堆積
、コンタクト開孔、金属配線を行って第3図fc)のよ
うに完成させる。第3図fblの工程で第3絶縁膜71
は完全に除去する必要はなく、N型不純物を選択イオン
注入できる程度に薄くしてもよい。
(b) Example 2 LDD process sectional view (FIG. 3) FIG. 1 +11 to fc) shows a process sectional view when the present invention is applied to the LDD structure MO5. Figure 3 (al is Example 1
Similarly to the process example in Figure 1 (this is a cross section taken up to hl,
This is the state before the mask process and selective etching of the first and second semiconductor films 40.61 and the conductive film 91. However, the diffusion of the N-type source/drain regions 12 and 13 is made smaller than in the first embodiment, so that the double-headed region 12.13 becomes the gate electrode 91.
It is not superimposed with In FIG. 3 [bl], the third insulating film 71 exposed on the surface is connected to the conductive film 91 and the first insulating film 71. Second semiconductor 17
A 940.61 mask is removed, and N-type impurity ions are implanted into regions defined by the similar mask and field oxide film 20 to form low density source/drain regions 14 and 15. After that, unnecessary parts of the first and second semiconductor films 40.61 and the conductive film 91 are selectively etched, an insulating film 110 is deposited, contact holes are formed, and metal wiring is formed to complete the process as shown in FIG. 3 fc). . In the step of FIG. 3 fbl, the third insulating film 71 is
It is not necessary to completely remove it, but it may be made thin enough to allow selective ion implantation of N-type impurities.

(C)実施例3 工程断面図(第4図)第4図(al〜
(elには本発明の他の実施例の工程断面図を示した。
(C) Example 3 Process sectional view (Fig. 4) Fig. 4 (al~
(El shows a process sectional view of another embodiment of the present invention.

第4図(alはフィールド絶縁膜20と活性領域11上
に第1酸化膜30・第1ポリ5i40・第2絶縁F15
0の3層多1!膜を堆積後、活性9■域11上に開孔を
設けた断面である。第2絶縁膜50として例えばSiN
を用いる。この例では、開孔端部は負傾斜の断面例を示
した。第4図山)は開孔側壁に第2ポリ5i61.第3
酸化膜71を形成した断面、第4図fc)ではゲート酸
化膜80形成後ポリ5i90を堆積した断面を示す。し
かる後、表面平坦化膜(レジスト、SOG、バイアスス
パッター膜等)をつけてエッチバックする。エッチバッ
クは第4図fdlに示すように第3酸化膜71に対して
は充分な選択比を持つよう、かつ第1ポリ40まで達す
るまで行う、その後、第3酸化膜71をマスクに第1゜
第2.第3ポリS i 40.61.91上に選択的に
W、 AI等の金属膜190を堆積した状態が第4図t
e+である。以後は実施例1又は2と同様にMOSトラ
ンジスタが製作できる。上記の工程によって、配線抵抗
の低い半導体装置が実現できる。
FIG. 4 (Al is a first oxide film 30, a first poly 5i 40, a second insulating film F15 on the field insulating film 20 and the active region 11.
3 layers of 0 and 1! This is a cross section in which openings are provided on the active region 11 after the film has been deposited. For example, SiN is used as the second insulating film 50.
Use. In this example, the end of the opening has a negative slope cross section. Figure 4) has a second polygon 5i61. on the side wall of the opening. Third
The cross section in which the oxide film 71 is formed (FIG. 4 fc) shows the cross section in which poly 5i90 is deposited after the gate oxide film 80 is formed. Thereafter, a surface flattening film (resist, SOG, bias sputter film, etc.) is applied and etched back. As shown in FIG.゜Second. Figure 4 t shows a state in which a metal film 190 such as W or AI is selectively deposited on the third poly Si 40.61.91.
It is e+. Thereafter, a MOS transistor can be manufactured in the same manner as in Example 1 or 2. Through the above steps, a semiconductor device with low wiring resistance can be realized.

〔発明の効果〕 以上述べたように、本発明によれば微細なソース・ドレ
イン領域に対してポリSt等の配線を直接コンタクトで
き、かつゲート電極も自己整合的に他電極に重畳するこ
となく設けられる。そのため、寄生容量の極めて小さい
MOSトランジスタが実現でき、高速・高集積半導体装
置が得られる。
[Effects of the Invention] As described above, according to the present invention, it is possible to directly contact wiring such as polySt to minute source/drain regions, and gate electrodes can also be formed in a self-aligned manner without overlapping other electrodes. provided. Therefore, a MOS transistor with extremely small parasitic capacitance can be realized, and a high-speed, highly integrated semiconductor device can be obtained.

又、LDD構造も容易に製作できることがら微細MO3
の製造に本発明は非常に有効である。実施例としてNチ
ャンネルMOSを説明したが、Pチャンネルも同様であ
り、ゲート絶縁膜が酸化膜以外のものでも本発明は適用
できる。
In addition, since the LDD structure can be easily manufactured, fine MO3
The present invention is very effective in the production of. Although an N-channel MOS has been described as an example, the same applies to a P-channel MOS, and the present invention can be applied even if the gate insulating film is other than an oxide film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図fal〜F11は本発明によるMOS)ランジス
タの製造工程順断面図、第2図は第1図+al〜(ll
を説明するための平面図、第3図(al〜fC1はLD
D−MOSの本発明による製造工程順断面図、第4図f
al〜telは本発明による他の実施例の工程順断面図
である。 10・・・・・P型Si基板 11・・・・・活性領域 12、13  ・・・N型ソース・ドレイン領域14.
15  ・・・N型低密度ソース・ドレイン領域20・
・・・・フィールド絶縁膜 30・・・・・第1絶縁膜 40.42.43・・第1半導体膜 50・・・・・第2絶縁膜 60.61,62.63  ・・第2半導体膜70.7
1  ・・・第3絶縁膜 80・・・・・ゲート絶縁膜 90.91  ・・・導電膜 以上 46+)ll=よ6LDD−MOS)うンシ′スタの製
邊工遅碩叶面ロ下 31辺
Fig. 1 fal to F11 are cross-sectional views in the order of the manufacturing process of a MOS transistor according to the present invention, and Fig. 2 is a sectional view of Fig. 1 + al to (ll
FIG. 3 is a plan view for explaining (al to fC1 are LD
Cross-sectional views of D-MOS in the manufacturing process according to the present invention, FIG. 4f
al to tel are step-by-step sectional views of other embodiments of the present invention. 10...P-type Si substrate 11...Active regions 12, 13...N-type source/drain regions 14.
15... N-type low density source/drain region 20.
...Field insulating film 30...First insulating film 40.42.43...First semiconductor film 50...Second insulating film 60.61, 62.63...Second semiconductor Membrane 70.7
1...Third insulating film 80...Gate insulating film 90.91...Conducting film or more 46+)ll=Y6LDD-MOS) Lower side of sidewall of the sensor 31 side

Claims (4)

【特許請求の範囲】[Claims] (1)一導電型半導体基板表面の将来トランジスタを形
成すべき活性領域を露出し他の領域をフィールド絶縁膜
で被う第1工程と、 第1絶縁膜・逆導電型第1半導体膜・第2絶縁膜からな
る少なくとも3層多層膜を順次堆積する第2工程と、 前記活性領域の一方の幅より狭く、他方の幅より広く活
性領域上の前記多層膜に開孔を設け、開孔の一方の相対
する端部は活性領域内にあり他方の相対する端部はフィ
ールド絶縁膜上にあるように配置すると共に、開孔端部
はほぼ垂直もしくはオーバーハング状にする第3工程と
、 逆導電型不純物を含む第2半導体膜を堆積する第4工程
と、 第2半導体膜を異方性エッチして前記活性領域および第
2絶縁膜を露出すると共に、前記多層膜の開孔端部に沿
って第2半導体膜を残す第5工程と、第3絶縁膜を堆積
後異方性エッチによって前記活性領域を露出すると共に
、前記多層膜の開孔端部に沿った第2半導体膜の側面に
第3絶縁膜を残す第6工程と、 露出した活性領域表面にゲート絶縁膜を設ける第7工程
と、 導電膜を堆積する第8工程と、 表面がほぼ平坦になる平坦化膜を堆積後、平坦化膜と導
電膜に対しほぼ等しいエッチ速度をもつエッチ手段で平
坦化膜と導電膜を少なくとも第2絶縁膜が露出するまで
除去すると共に、前記多層膜の開孔内に前記導電膜を残
しゲート電極とする第9工程と、 前記第1及び第2半導体膜さらに前記導電膜の不要部を
選択的に除去する第10工程 とから少なくとも成り、前記活性領域内に前記第2半導
体膜からの不純物拡散で逆導電型ソース及びドレイン領
域を、また第2半導体膜に接する第1半導体膜でソース
及びドレイン配線の一部を形成することを特徴とする絶
縁ゲート型半導体装置の製造方法。
(1) A first step of exposing an active region on the surface of a semiconductor substrate of one conductivity type where a transistor will be formed in the future and covering other regions with a field insulating film; a second step of sequentially depositing at least a three-layer multilayer film consisting of two insulating films, and forming an opening in the multilayer film above the active region, narrower than one width of the active region and wider than the other width; A third step in which one opposing end is located within the active region and the other opposing end is located on the field insulating film, and the opening end is substantially vertical or overhanging; a fourth step of depositing a second semiconductor film containing conductivity-type impurities; and anisotropically etching the second semiconductor film to expose the active region and the second insulating film, and depositing the active region and the second insulating film at the ends of the openings of the multilayer film. a fifth step of leaving a second semiconductor film along the side surfaces of the second semiconductor film along the opening edges of the multilayer film, and exposing the active region by anisotropic etching after depositing a third insulating film; A sixth step in which a third insulating film is left on the surface of the active region, a seventh step in which a gate insulating film is provided on the surface of the exposed active region, an eighth step in which a conductive film is deposited, and a planarization film that makes the surface almost flat is deposited. The planarizing film and the conductive film are removed by an etching means having substantially the same etch rate for the planarizing film and the conductive film until at least the second insulating film is exposed, and the conductive film is placed in the opening of the multilayer film. The method comprises at least a ninth step of forming a remaining gate electrode, and a tenth step of selectively removing unnecessary parts of the first and second semiconductor films and the conductive film, and forming a gate electrode from the second semiconductor film in the active region. A method for manufacturing an insulated gate type semiconductor device, characterized in that source and drain regions of opposite conductivity type are formed by impurity diffusion, and part of source and drain wirings are formed by a first semiconductor film in contact with a second semiconductor film.
(2)前記第9工程の後、前記第3絶縁膜を除去もしく
は薄くして前記導電膜と前記第2半導体膜の間の活性領
域に逆導電型不純物を低密度で選択的に添加する工程を
行うことを特徴とする特許請求の範囲第1項記載の絶縁
ゲート型半導体装置の製造方法。
(2) After the ninth step, removing or thinning the third insulating film and selectively adding impurities of opposite conductivity type to the active region between the conductive film and the second semiconductor film at a low density. 2. A method of manufacturing an insulated gate semiconductor device according to claim 1, wherein:
(3)前記導電膜が第3半導体膜であり、前記第9工程
におけるエッチを第1半導体膜が露出するまで行うこと
を特徴とする特許請求の範囲第1項または第2項記載の
絶縁ゲート型半導体装置の製造方法。
(3) The insulated gate according to claim 1 or 2, wherein the conductive film is a third semiconductor film, and the etching in the ninth step is performed until the first semiconductor film is exposed. A method for manufacturing a type semiconductor device.
(4)前記第9工程の後、露出した第1及び第3半導体
膜に選択的に金属膜を堆積する工程を施すことを特徴と
する特許請求の範囲第3項記載の絶縁ゲート型半導体装
置の製造方法。
(4) After the ninth step, a step of selectively depositing a metal film on the exposed first and third semiconductor films is performed. manufacturing method.
JP7101887A 1987-03-25 1987-03-25 Manufacture of insulated gate type semiconductor device Pending JPS63237476A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7101887A JPS63237476A (en) 1987-03-25 1987-03-25 Manufacture of insulated gate type semiconductor device
US07/172,029 US4939154A (en) 1987-03-25 1988-03-23 Method of fabricating an insulated gate semiconductor device having a self-aligned gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101887A JPS63237476A (en) 1987-03-25 1987-03-25 Manufacture of insulated gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPS63237476A true JPS63237476A (en) 1988-10-03

Family

ID=13448355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101887A Pending JPS63237476A (en) 1987-03-25 1987-03-25 Manufacture of insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS63237476A (en)

Similar Documents

Publication Publication Date Title
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
US5309023A (en) Contact structure for interconnection in semiconductor devices and manufacturing method thereof
JPH05206451A (en) Mosfet and its manufacture
JPH10223858A (en) Semiconductor memory device and manufacture thereof
JPH09153610A (en) Semiconductor device and manufacture thereof
KR100790267B1 (en) Transistor of semiconductor device and method for fabricating the same
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
JPS60113460A (en) Dynamic memory element
KR100386452B1 (en) Method for manufacturing semiconductor device
JPS63237476A (en) Manufacture of insulated gate type semiconductor device
JP2000077678A (en) Semiconductor element and its manufacture
JPH03173175A (en) Semiconductor device
KR100934828B1 (en) MOSFET forming method of semiconductor device
US6521517B1 (en) Method of fabricating a gate electrode using a second conductive layer as a mask in the formation of an insulating layer by oxidation of a first conductive layer
KR100495664B1 (en) Method of forming field effec transistor having double fin structure
JPH08288407A (en) Semiconductor memory device and manufacture thereof
KR100477786B1 (en) Method for forming contact in semiconductor device
JP2002009015A (en) Semiconductor device and its manufacturing method
JPS63246863A (en) Manufacture of complementary insulated-gate semiconductor device
JPH07335893A (en) Semiconductor device
JPS63246871A (en) Manufacture of junction type semiconductor device
EP0528290B1 (en) Semiconductor device and manufacturing method thereof
JPH0342842A (en) Manufacture of semiconductor device
JPS5951152B2 (en) Manufacturing method of semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof