JPS63237474A - Integrated circuit - Google Patents
Integrated circuitInfo
- Publication number
- JPS63237474A JPS63237474A JP7287587A JP7287587A JPS63237474A JP S63237474 A JPS63237474 A JP S63237474A JP 7287587 A JP7287587 A JP 7287587A JP 7287587 A JP7287587 A JP 7287587A JP S63237474 A JPS63237474 A JP S63237474A
- Authority
- JP
- Japan
- Prior art keywords
- region
- conductivity type
- epitaxial layer
- layer
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 238000002955 isolation Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
- Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to integrated circuits.
集積回路の高集積化に伴い、内部の抵抗素子及びコンデ
ンサ素子の占有面積が問題となってきた。As integrated circuits become more highly integrated, the area occupied by internal resistance elements and capacitor elements has become a problem.
−mに、100MH2程度に応用される積分回路として
は、バイポーラトランジスタ、抵抗及びコンデンサの3
素子を同一集積回路内に構成している。-m, there are three types of integration circuits that can be applied to about 100MH2: bipolar transistors, resistors, and capacitors.
The elements are configured within the same integrated circuit.
第3図(a)及び(b)は従来の集積回路の一例の模式
的断面図及び酸化膜と各電極を除いた平面図である。FIGS. 3(a) and 3(b) are a schematic cross-sectional view and a plan view excluding the oxide film and each electrode of an example of a conventional integrated circuit.
各素子形成領域は、p形のシリコン基板1の表面に選択
的にn+形の不純物を導入してから、シリコン基板1の
全面にn−形のエピタキシャル層2を成長させ、表面か
らシリコン基板1に達するp+の分離領域4で囲んで形
成されている。Each element formation region is formed by selectively introducing n+ type impurities into the surface of a p-type silicon substrate 1, and then growing an n- type epitaxial layer 2 over the entire surface of the silicon substrate 1. It is surrounded by a p+ isolation region 4 reaching .
この場合に、前記n+形の不純物はシリコン基板1のエ
ピタキシャル層2へも拡散してエピタキシャル層2より
も低い比抵抗を有する埋込N13が形成され、コレクタ
領域7の等価内部抵抗をrOとrlの並列値に下げる。In this case, the n+ type impurity is also diffused into the epitaxial layer 2 of the silicon substrate 1 to form a buried N13 having a resistivity lower than that of the epitaxial layer 2, and the equivalent internal resistance of the collector region 7 is reduced to rO and rl. lower to the parallel value of .
バイポーラトランジスタは、埋込層13の上方のエピタ
キシャル層の上層に選択拡散で形成されたp+のベース
領域5と、さらにその上層の一部に設けられたn+のエ
ミッタ領域6と、残るエピタキシャル層2のコレクタ領
域7とで構成されている。The bipolar transistor includes a p+ base region 5 formed by selective diffusion in the upper layer of the epitaxial layer above the buried layer 13, an n+ emitter region 6 provided in a part of the upper layer, and the remaining epitaxial layer 2. and a collector area 7.
抵抗体11は、バイポーラトランジスタと同一素子形成
領域のエピタキシャル層2の上層にベース領域5の同時
にp+形の拡散層として形成される。The resistor 11 is formed as a p+ type diffusion layer at the same time as the base region 5 in the upper layer of the epitaxial layer 2 in the same element formation region as the bipolar transistor.
コンデンサCは、他の素子形成領域の上層にエミッタ領
域6と同様の選択拡散によりn+領域12nを形成した
後、表面を覆うシリコンの酸化膜9のさらに表面のAe
電極12aとで構成されている。The capacitor C is constructed by forming an n+ region 12n on the upper layer of other element formation regions by selective diffusion similar to the emitter region 6, and then further Ae on the surface of the silicon oxide film 9 covering the surface.
It is composed of an electrode 12a.
第3図(b)に示すように、積分回路を構成する二つの
エピタキシャル層2の長辺りと短辺Wは例えばそれぞれ
780μmと110μmであり、積分回路3素子の占有
面積は約85,800μm2となる。As shown in FIG. 3(b), the long side and short side W of the two epitaxial layers 2 constituting the integrating circuit are, for example, 780 μm and 110 μm, respectively, and the area occupied by the three integrating circuit elements is approximately 85,800 μm2. Become.
第4図は第3図の集積回路の等価回路図である。FIG. 4 is an equivalent circuit diagram of the integrated circuit of FIG. 3.
点線に示すように、エミッタ電極T6とAe電極T12
.を、コレクタ電極T7と抵抗電極T11a及び、抵抗
電極Tl1bとコンデンサ電lfi T 12とをそれ
ぞれ配線層で接続してエミック接地回路を構成する。As shown by the dotted line, the emitter electrode T6 and the Ae electrode T12
.. An emic ground circuit is constructed by connecting the collector electrode T7 and the resistor electrode T11a, and the resistor electrode Tl1b and the capacitor electrode T12 through wiring layers, respectively.
コレクタ電極T7に負荷抵抗RLを介して電源電圧V。The power supply voltage V is applied to the collector electrode T7 via the load resistor RL.
を与えると、ベース入力信号Vtは、点線に示す等価抵
抗Rの値とコンデンサCの値の積とを特定数とする積分
波形となり、端子TIHに出力信号Voが得られる。When given, the base input signal Vt becomes an integral waveform whose specific number is the product of the value of the equivalent resistance R and the value of the capacitor C shown by the dotted line, and an output signal Vo is obtained at the terminal TIH.
一例として、使用周波数が50〜100 M Hzの場
合に抵抗Rの値は100〜500Ω、コンデンサCの値
は10pF程度である。As an example, when the operating frequency is 50 to 100 MHz, the value of the resistor R is 100 to 500Ω, and the value of the capacitor C is about 10 pF.
上述した従来の集積回路は、積分回路としてパイポーラ
トンジスタ、抵抗及びコンデンサの3素子分の平面の領
域を必要とするので、高集積化ができないという問題が
あった。The above-described conventional integrated circuit requires a planar area for three elements, a bipolar transistor, a resistor, and a capacitor, as an integrating circuit, and therefore has a problem in that it cannot be highly integrated.
本発明の目的は高集積化された集積回路を提供すること
にある。An object of the present invention is to provide a highly integrated circuit.
本発明の集積回路装置は、
(A) 一導電形のシリコン基板の一主面に、表面か
ら該シリコン基板に達する一導電形の分離領域で複数の
素子形成領域に区画して形成された逆導電形のエピタキ
シャル層、
(B) 前記エピタキシャル層の上層に選択的に形成
された一導電形のベース領域と、該ベース領域の上層に
形成された逆導電形のエミッタ領域と、前記エピタキシ
ャル層よりなるコレクタ領域とを有するバイポーラトラ
ンジスタ、
(C) 前記シリコン基板と前記コレクタ領域にまた
がって選択的に形成された逆導電形の埋込抵抗体、
(D) 前記エピタキシャル層の上層に選択的に形成
されな一導電形領域を一方の電極層とし、前記エピタキ
シャル層から前記一方の二導電形領域内にまたがって設
けた前記エピタキシャル層より高濃度である逆導電形領
域を他方の電極層とし前記高濃度の逆導電形領域と前記
一方の一導電形領域との接合部を容量部とする接合コン
デンサ、を含んで構成されている。The integrated circuit device of the present invention includes: (A) an inverse structure formed on one principal surface of a silicon substrate of one conductivity type, divided into a plurality of element formation regions by a separation region of one conductivity type reaching from the surface to the silicon substrate; an epitaxial layer of a conductivity type, (B) a base region of one conductivity type selectively formed in the upper layer of the epitaxial layer, an emitter region of the opposite conductivity type formed in the upper layer of the base region, and a bipolar transistor having a collector region; (C) a buried resistor of an opposite conductivity type selectively formed across the silicon substrate and the collector region; (D) selectively formed in an upper layer of the epitaxial layer; A region of one conductivity type with a higher concentration than the epitaxial layer provided from the epitaxial layer to the one of the two conductivity regions is used as the other electrode layer. It is configured to include a junction capacitor whose capacitance is a junction between the opposite conductivity type region and the one conductivity type region.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図(a>及び(b)は本発明の一実施例の模式的断
面図及び酸化膜と各電極を除いた平面図である。FIGS. 1(a) and 1(b) are a schematic cross-sectional view and a plan view excluding the oxide film and each electrode of an embodiment of the present invention.
分離領域4に囲れな単一のエピタキシャル層2の中に、
トランジスタと、p形のシリ・コン基板1とエピタキシ
ャル層2にまたがって設けられたn−膨拡散層による埋
込抵抗体3と、エピタキシャル層2の上層のn+領域8
nと共に接合部を作るp+領域82による接合コンデン
サCアとを設けている。In a single epitaxial layer 2 surrounded by an isolation region 4,
A transistor, a buried resistor 3 made of an n-swelled diffusion layer provided across the p-type silicon substrate 1 and the epitaxial layer 2, and an n+ region 8 on the upper layer of the epitaxial layer 2.
A junction capacitor CA is provided with a p+ region 82 forming a junction with n.
ここで、バイポーラトランジスタのベース領域5及びエ
ミッタ領域6は第3図の従来と同一である。Here, the base region 5 and emitter region 6 of the bipolar transistor are the same as the conventional one shown in FIG.
第1図(b)に示すように、エピタキシャル層2の長辺
lと短辺Wは、例えばそれぞれ440/i mと85μ
mであり、占有面積は前述の第3図の従来の面積の約4
0%の35,400ノ1m 2に減少する。As shown in FIG. 1(b), the long side l and short side W of the epitaxial layer 2 are, for example, 440/i m and 85 μm, respectively.
m, and the occupied area is about 4 times the conventional area shown in Figure 3 above.
0% reduction to 35,400 m2.
埋込抵抗体3の不純物濃度はn−で、第3図の埋込M1
3の不純物濃度n+よりも薄く、かつコレクタ領域7の
不純物濃度よりも大きい。従って埋込抵抗体3の抵抗値
r2は並列のコレクタ抵抗r、よりも小さい値となる。The impurity concentration of the buried resistor 3 is n-, and the buried resistor 3 has an impurity concentration of n-.
It is thinner than the impurity concentration n+ of collector region 7 and higher than the impurity concentration of collector region 7. Therefore, the resistance value r2 of the embedded resistor 3 is smaller than the parallel collector resistance r.
コレクタの等側内部抵抗は従来よりも増大するが、高周
波の小電力の応用には支障はない。Although the equal-side internal resistance of the collector is increased compared to the conventional one, there is no problem in high-frequency, low-power applications.
第2図は第1図の集積回路の等価回路である。FIG. 2 is an equivalent circuit of the integrated circuit of FIG.
点線に示すように配線層でエミッタ端子T6とn+領域
8nの端子T8nを接続してエミッタ接地回路を構成し
、コレクタ端子T7に負荷抵抗RLを介して電源電圧V
Cを与えると、入力信号Viは点線の等価抵抗RTの値
とコンデンサCTの値を特定数とする積分波形となり、
端子T1oから出力信号VOが得られる。As shown by the dotted line, the emitter terminal T6 and the terminal T8n of the n+ region 8n are connected in the wiring layer to form an emitter grounded circuit, and the power supply voltage V is connected to the collector terminal T7 via the load resistor RL.
When C is given, the input signal Vi becomes an integral waveform with the value of the equivalent resistance RT shown by the dotted line and the value of the capacitor CT as specific numbers,
Output signal VO is obtained from terminal T1o.
以上説明したように本発明は、単一のエピタキシャル層
の内部に埋込抵抗体と、表面にバイポーラトランジスタ
及び接合容量とを形成することにより、高集積度の集積
回路が得られるという効果かある。As explained above, the present invention has the effect that a highly integrated circuit can be obtained by forming an embedded resistor inside a single epitaxial layer and a bipolar transistor and a junction capacitance on the surface. .
第1図(a)及び(b)は本発明の一実施例の模式的断
面図及び酸化膜と各電極を除いた断面図、第2図は第1
図の集積回路の等価回路図、第3図(a)及び(b)は
従来の集積回路の一例の模式的断面図及び酸(ヒ膜と各
電極を除いた平面図、第4図は第3図の集積回路の等価
回路図である。
1・・・シリコン基板、2・・・エピタキシャル層、3
・・・埋込抵抗体、4・・・分離領域、5・・・ベース
領域、6・・・エミッタ領域、7・・・コレクタ領域、
8n・・・n“領域、8p・・・p1領域、11・・・
抵抗体、CT・・・接合コンデンサ。1(a) and 1(b) are schematic cross-sectional views of one embodiment of the present invention and a cross-sectional view excluding the oxide film and each electrode, and FIG. 2 is a schematic sectional view of one embodiment of the present invention.
3(a) and 3(b) are a schematic cross-sectional view and a plan view of an example of a conventional integrated circuit and a plan view excluding the arsenic film and each electrode. 3 is an equivalent circuit diagram of the integrated circuit of FIG. 3. 1... Silicon substrate, 2... Epitaxial layer, 3
. . . Embedded resistor, 4. Isolation region, 5. Base region, 6. Emitter region, 7. Collector region.
8n...n'' region, 8p...p1 region, 11...
Resistor, CT...junction capacitor.
Claims (1)
シリコン基板に達する一導電形の分離領域で複数の素子
形成領域に区画して形成された逆導電形のエピタキシャ
ル層、 (B)前記エピタキシャル層の上層に選択的に形成され
た一導電形のベース領域と、該ベース領域の上層に形成
された逆導電形のエミッタ領域と、前記エピタキシャル
層よりなるコレクタ領域とを有するバイポーラトランジ
スタ、 (C)前記シリコン基板と前記コレクタ領域にまたがっ
て選択的に形成された逆導電形の埋込抵抗体、 (D)前記エピタキシャル層の上層に選択的に形成され
た一導電形領域を一方の電極層とし、前記エピタキシャ
ル層から前記一方の一導電形領域内にまたがって設けた
前記エピタキシャル層より高濃度である逆導電形領域を
他方の電極層とし前記高濃度の逆導電形領域と前記一方
の一導電形領域との接合部を容量部とする接合コンデン
サ、 を含むことを特徴とする集積回路。[Scope of Claims] (A) An opposite conductivity type formed on one main surface of a silicon substrate of one conductivity type, divided into a plurality of element formation regions by a separation region of one conductivity type reaching from the surface to the silicon substrate. (B) a base region of one conductivity type selectively formed in the upper layer of the epitaxial layer, an emitter region of the opposite conductivity type formed in the upper layer of the base region, and a collector composed of the epitaxial layer; (C) a buried resistor of an opposite conductivity type selectively formed across the silicon substrate and the collector region; (D) a bipolar transistor selectively formed in an upper layer of the epitaxial layer; A region of one conductivity type is used as one electrode layer, and a region of the opposite conductivity type, which is provided from the epitaxial layer to the one conductivity type region and has a higher concentration than the epitaxial layer, is used as the other electrode layer. An integrated circuit comprising: a junction capacitor whose capacitance is a junction between the opposite conductivity type region and the one conductivity type region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7287587A JPS63237474A (en) | 1987-03-25 | 1987-03-25 | Integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7287587A JPS63237474A (en) | 1987-03-25 | 1987-03-25 | Integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63237474A true JPS63237474A (en) | 1988-10-03 |
Family
ID=13501943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7287587A Pending JPS63237474A (en) | 1987-03-25 | 1987-03-25 | Integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63237474A (en) |
-
1987
- 1987-03-25 JP JP7287587A patent/JPS63237474A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63228659A (en) | Integrated construction of signal transfer circuit network | |
JP2686500B2 (en) | An integrated structure that contains active and passive devices in an insulating pocket and operates at a voltage higher than the breakdown voltage between each device and the pocket containing it. | |
JPS63237474A (en) | Integrated circuit | |
ES340110A1 (en) | Integrated circuit | |
JPH02304963A (en) | Semiconductor integrated circuit | |
JPH03276757A (en) | Semiconductor device | |
JPH01214055A (en) | Electrostatic breakdown protective device | |
JPH069208B2 (en) | Semiconductor device | |
JPH11150234A (en) | Semiconductor device | |
JPS58197760A (en) | Semiconductor device | |
JPH036858A (en) | Master-slice type semiconductor integrated circuit device | |
JP2597309Y2 (en) | Semiconductor device | |
CN206908586U (en) | Difference channel and chip | |
JPH0453104B2 (en) | ||
JPH0453103B2 (en) | ||
JPH0411751A (en) | Dielectric material isolation type semiconductor device | |
JPH0349206B2 (en) | ||
JPS61135159A (en) | Semiconductor integrated circuit | |
JPS58143565A (en) | Semiconductor circuit wiring body | |
JPS61184862A (en) | Integrated circuit | |
JPS6224659A (en) | Complex junction capacitor | |
JPH04155957A (en) | Semiconductor device | |
JPH1050854A (en) | Semiconductor integrated circuit | |
JPH04147664A (en) | Large scale integrated circuit device | |
JPS61274352A (en) | Semiconductor device |