JPH0453104B2 - - Google Patents

Info

Publication number
JPH0453104B2
JPH0453104B2 JP60233826A JP23382685A JPH0453104B2 JP H0453104 B2 JPH0453104 B2 JP H0453104B2 JP 60233826 A JP60233826 A JP 60233826A JP 23382685 A JP23382685 A JP 23382685A JP H0453104 B2 JPH0453104 B2 JP H0453104B2
Authority
JP
Japan
Prior art keywords
region
island
electrode
capacitance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60233826A
Other languages
Japanese (ja)
Other versions
JPS6292459A (en
Inventor
Fumio Santo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23382685A priority Critical patent/JPS6292459A/en
Publication of JPS6292459A publication Critical patent/JPS6292459A/en
Publication of JPH0453104B2 publication Critical patent/JPH0453104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は集積回路において増幅器間等の結合に
用いられる半導体容量結合素子に関し、特にその
寄生容量を低減した半導体容量結合素子。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a semiconductor capacitive coupling element used for coupling between amplifiers in an integrated circuit, and particularly to a semiconductor capacitive coupling element whose parasitic capacitance is reduced.

(ロ) 従来の技術 従来増幅器の段間のように2つの回路を結合さ
せる場合、バイアス差等の問題のため2つの回路
を直結するのが困難な場合には、容量を用いて結
合させることが多い。そして集積回路内において
これを行う場合には、例えば特開昭59−28368号
公報に記載されているMOS容量を用いることが
多い。
(b) Conventional technology When coupling two circuits, such as between stages of a conventional amplifier, if it is difficult to directly connect the two circuits due to problems such as bias differences, coupling is done using capacitance. There are many. When this is done in an integrated circuit, the MOS capacitor described in, for example, Japanese Unexamined Patent Publication No. 59-28368 is often used.

第4図はこのようなMOS容量を示し、1はP
型半導体基板、2はN-型エピタキシヤル層、3
は基板1上に埋込まれたN+型埋込層、4はエピ
タキシヤル層2を貫通したP+型分離領域、5は
分離領域4により島状に分離された島領域、6は
島領域5表面に形成したN+型第1領域、7は島
領域5表面を被覆する絶縁膜、8は第1領域6と
オーミツクコンタクトする第1電極、9は絶縁膜
7をはさんで第1領域6の上に設けた第2電極で
ある。そして第1電極8を入力端子Aに、第2電
極9を出力端子Bに夫々接続し、第1領域6を一
方の電極、第2電極9を他方の電極として形成し
たMOS容量を結合容量として使用するものであ
る。
Figure 4 shows such MOS capacitance, where 1 is P
type semiconductor substrate, 2 is an N - type epitaxial layer, 3
4 is an N + type buried layer buried on the substrate 1, 4 is a P + type isolation region that penetrates the epitaxial layer 2, 5 is an island region separated into islands by the isolation region 4, and 6 is an island region. 5 is an N + type first region formed on the surface of island region 5; 7 is an insulating film covering the surface of island region 5; 8 is a first electrode in ohmic contact with first region 6; This is a second electrode provided on region 6. Then, the first electrode 8 is connected to the input terminal A, the second electrode 9 is connected to the output terminal B, and the MOS capacitor formed with the first region 6 as one electrode and the second electrode 9 as the other electrode is used as a coupling capacitance. It is what you use.

第5図は斯る装置の等価回路を示し、入力端子
Aと、出力端子Bと、入力端子Aと出力端子Bと
の間に接続した前記結合容量CCから成る。とこ
ろがこのように集積回路内に形成した場合、第1
領域6と基板1との間に寄生容量CS0が形成され、
この寄生容量CS0が等価的に入力端子Aと接地端
子GNDとの間に介在してしまう。
FIG. 5 shows an equivalent circuit of such a device, consisting of an input terminal A, an output terminal B, and the coupling capacitor C C connected between the input terminal A and the output terminal B. However, when formed in an integrated circuit in this way, the first
A parasitic capacitance C S0 is formed between the region 6 and the substrate 1,
This parasitic capacitance C S0 is equivalently interposed between the input terminal A and the ground terminal GND.

(ハ) 発明が解決しようとする問題点 しかしながら、従来の装置ではこの寄生容量
CS0が大であるために、入力端子Aに印加した信
号電流(交流成分)が基板1に流れてしまい、出
力端子Bへの信号のレベルが入力レベルより大き
く減衰してしまうという欠点があつた。
(c) Problems to be solved by the invention However, in conventional devices, this parasitic capacitance
Since C S0 is large, the signal current (AC component) applied to input terminal A flows to board 1, which has the disadvantage that the level of the signal to output terminal B is attenuated more than the input level. Ta.

(ニ) 問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、島領域
15表面に形成したP型の第1領域16と、第1
領域16表面に形成したMOS容量の一方の電極
となるN+型の第2領域17とを設け、第1領域
16には抵抗Rを介して接地電位を印加し、島領
域15にはシヨツトキーダイオードDiを介して
電源電位を印加したことを特徴とする。
(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks, and includes a P-type first region 16 formed on the surface of the island region 15 and a first
A second region 17 of N + type, which serves as one electrode of the MOS capacitor formed on the surface of the region 16, is provided, a ground potential is applied to the first region 16 via a resistor R, and a shot is applied to the island region 15. A feature is that a power supply potential is applied via a key diode Di.

(ホ) 作用 本発明によれば、入力端子Aと接地端子GND
との間に、第2領域17と第1領域16との接合
容量CS1、第1領域16と島領域15との接合容
量CS2及び島領域15と基板11との接合容量CS3
とが接続され且つ接続点C,D共に交流的に接地
とはならないので、入力信号(交流成分)に対す
る全体としての寄生容量CS0は極端に小さくなる。
(E) Effect According to the present invention, the input terminal A and the ground terminal GND
, a junction capacitance C S1 between the second region 17 and the first region 16 , a junction capacitance C S2 between the first region 16 and the island region 15 , and a junction capacitance C S3 between the island region 15 and the substrate 11 .
, and both connection points C and D are not grounded in an AC manner, so that the overall parasitic capacitance C S0 with respect to the input signal (AC component) becomes extremely small.

(ヘ) 実施例 以下本発明を図面を参照しながら詳細に説明す
る。
(f) Examples The present invention will be described in detail below with reference to the drawings.

第1図は本発明による第1の実施例を示し、1
1はP型半導体基板、12はN-型エピタキシヤ
ル層、13は基板11表面に形成したN+型埋込
層、14はエピタキシヤル層12を貫通したP+
型分離領域、15は分離領域14により電気的に
分離された島領域、16は島領域15表面に形成
したP型の第1領域、17は第1領域16表面に
形成した第2領域、18は島領域15を被覆する
絶縁膜、19,20は夫々第1領域16、第2領
域17とオーミツクコンタクトする第1、第2電
極、21は第2領域17の上に絶縁膜18をはさ
んで設けた第3電極、22は島領域15とシヨツ
トキー接合する第4電極である。そして第1電極
19は抵抗Rを介して接地端子GNDに、第2電
極20は入力端子Aに、第3電極21は出力端子
Bに、第4電極22は電源端子VCCに夫々接続
し、第2領域17を一方の電極、第3電極21を
他方の電極として形成したMOS容量を結合容量
として使用するものである。第1領域16には抵
抗Rを介して接地電位が印加され、島領域15に
はそれ自身をアノード、第4電極22をカソード
とするシヨツトキーダイオードDiを介して電源
電位が印加されている。
FIG. 1 shows a first embodiment according to the present invention, 1
1 is a P-type semiconductor substrate, 12 is an N - type epitaxial layer, 13 is an N + type buried layer formed on the surface of the substrate 11, and 14 is a P + layer that penetrates the epitaxial layer 12.
A type isolation region, 15 is an island region electrically isolated by the isolation region 14, 16 is a P-type first region formed on the surface of the island region 15, 17 is a second region formed on the surface of the first region 16, 18 19 and 20 are first and second electrodes in ohmic contact with the first region 16 and second region 17, respectively; 21 is an insulating film 18 covering the second region 17; The third electrode 22 provided in the sandwich is a fourth electrode that makes a shot key contact with the island region 15. The first electrode 19 is connected to the ground terminal GND via the resistor R, the second electrode 20 is connected to the input terminal A, the third electrode 21 is connected to the output terminal B, and the fourth electrode 22 is connected to the power supply terminal V CC , respectively. A MOS capacitor formed with the second region 17 as one electrode and the third electrode 21 as the other electrode is used as a coupling capacitor. A ground potential is applied to the first region 16 via a resistor R, and a power supply potential is applied to the island region 15 via a Schottky diode Di which uses itself as an anode and the fourth electrode 22 as a cathode. .

第2図は斯る装置の等価回路図であり、入力端
子Aと、出力端子Bと、入力端子Aと出力端子B
との間に接続した前記結合容量CCから成る。而
して第2領域17と基板11との間には、第2領
域17と第1領域16との接合容量CS1、第1領
域16と島領域15との接合容量CS2、島領域1
5と基板11との接合容量CS3が形成され、それ
らが入力端子Aと接地端子GNDとの間に直列に
接続されている。そして接合容量CS1とCS2との接
合点Cは抵抗R1を介して接地端子GNDに接続し
たので直流的には接地電位と等しくなるが交流的
に接地ではない。また接合容量CS2とCC3との接続
点Dにおいては、回路網を等価的に大きな容量と
して考えると電源端子VCC自体は交流的に接地で
あるもののシヨツトキーダイオードDiが逆バイ
アスとなるように接続したので交流的に接地では
ない。
FIG. 2 is an equivalent circuit diagram of such a device, showing input terminal A, output terminal B, and input terminal A and output terminal B.
It consists of the coupling capacitance C C connected between. Between the second region 17 and the substrate 11, there are a junction capacitance C S1 between the second region 17 and the first region 16, a junction capacitance C S2 between the first region 16 and the island region 15, and a junction capacitance C S2 between the first region 16 and the island region 15.
A junction capacitance C S3 is formed between the input terminal A and the substrate 11, and these are connected in series between the input terminal A and the ground terminal GND. Since the junction point C between the junction capacitances C S1 and C S2 is connected to the ground terminal GND via the resistor R 1 , it is equal to the ground potential in terms of direct current, but is not grounded in terms of alternating current. Furthermore, at the connection point D between the junction capacitances C S2 and C C3 , if the circuit network is considered as an equivalently large capacitance, the power supply terminal V CC itself is grounded in terms of AC, but the Schottky diode Di becomes reverse biased. Since it is connected like this, it is not grounded in terms of AC.

第3図は本発明による第2の実施例の平面図を
示し、第1領域16を延在させて抵抗部16aを
形成し、その一端を分離領域14に接続した構造
を有する。通常、分離領域14には接地電位が印
加されているので、抵抗部16aの抵抗RAを抵
抗Rとして第2図の等価回路が構成される。
FIG. 3 shows a plan view of a second embodiment according to the present invention, which has a structure in which the first region 16 is extended to form a resistor portion 16a, and one end of the resistor portion 16a is connected to the isolation region 14. Since a ground potential is normally applied to the isolation region 14, the equivalent circuit shown in FIG. 2 is constructed by setting the resistance R A of the resistance section 16a to a resistance R.

本発明の最も特徴とする点は、第1領域16表
面にMOS容量の一方の電極となる第2領域17
を形成し、第2領域17と基板11との間に接合
容量CS1、CS2、CS3が直列接続されるように構成
した点にある。そして第1領域16と第2領域1
7とのPN接合、第1領域16と島領域15との
PN接合、島領域15と基板11とのPN接合が
それぞれ接合容量CS1、CS2、CS3を形成する手段
として第1流域16には接地電位を、島領域15
には電源電位をそれぞれ印加し、且つ接続点C,
Dが共に交流的に接地とならないよう、つまり入
力信号(交流成分)が接合容量CS1またはCS2を介
して接地端子GNDまたは電源端子VCCへ流れてし
まわないようにする手段として抵抗Rおよびシヨ
ツトキーダイオードDiを設けたものである。こ
の構造によれば、入力信号(交流成分)に対する
全体の寄生容量CS0としての容量は、接合容量
CS1、CS2、CS3を直列接続した全容量であり、し
かも接合容量CS2、CS3に関してはその両端に集積
回路内で最も大きい電位差、つまり電源電位と接
地電位とが印加されて最小の容量値になるので、
非常に小さい値になる。従つて入力信号(交流成
分)が劣化することのない回路結合を行うことが
できる。
The most characteristic feature of the present invention is that a second region 17 is formed on the surface of the first region 16 and serves as one electrode of the MOS capacitor.
, and junction capacitances C S1 , C S2 , and C S3 are connected in series between the second region 17 and the substrate 11 . and the first area 16 and the second area 1
PN junction with 7, first region 16 and island region 15
A ground potential is applied to the first region 16 as a means for the PN junction between the island region 15 and the substrate 11 to form junction capacitances C S1 , C S2 , and C S3 , respectively.
A power supply potential is applied to each of the connection points C,
Resistors R and D are used as a means to prevent both D from being grounded in an AC manner, that is, to prevent the input signal (AC component) from flowing to the ground terminal GND or power supply terminal V CC via the junction capacitance C S1 or C S2 . A Schottky diode Di is provided. According to this structure, the total parasitic capacitance C S0 for the input signal (AC component) is the junction capacitance
This is the total capacitance of C S1 , C S2 , and C S3 connected in series, and the junction capacitance C S2 and C S3 have the largest potential difference in the integrated circuit, that is, the power supply potential and the ground potential, applied across them. Since the capacitance value is
becomes a very small value. Therefore, circuit coupling can be performed without deteriorating the input signal (AC component).

またシヨツトキーダイオードDiの代りに抵抗
を用いることも可能であるが、この抵抗を別途に
形成したのではチツプ面積が増加し、島領域15
の寄生抵抗を用いたとしてもその値を大とするた
めに第1領域16と第4電極22とを相当な距離
だけ離間しなければならず、やはりチツプ面積の
増加を招いてしまう。これに対して本発明ではシ
ヨツトキー接合をする第4電極22を設けるだけ
で済むので、従来のMOS容量のパターン面積と
略等しい面積で形成できる。
It is also possible to use a resistor instead of the Schottky diode Di, but if this resistor is formed separately, the chip area increases and the island area 15
Even if such a parasitic resistance is used, in order to increase its value, the first region 16 and the fourth electrode 22 must be separated by a considerable distance, which also results in an increase in the chip area. In contrast, in the present invention, since it is sufficient to provide only the fourth electrode 22 for Schottky junction, the pattern area can be approximately equal to that of a conventional MOS capacitor.

(ト) 発明の効果 以上説明した如く、本発明によれば寄生容量
CS0を非常に小さな値にすることができるので、
入力信号(交流成分)が劣化することのない良好
な回路結合が行えるという利点を有する。また第
2の実施例によれば、抵抗Rを別途に形成する必
要が無いので高集積化が図れるという利点を有す
る。さらにまた、シヨツトキーダイオードDiの
代りに抵抗を用いる手法と比較して、パターン面
積を縮小できるという利点をも有する。さらに同
一島領域内に他の用途の抵抗等の素子を形成でき
るという利点をも有する。
(g) Effects of the invention As explained above, according to the present invention, parasitic capacitance
Since C S0 can be made to a very small value,
This has the advantage that good circuit coupling can be achieved without deteriorating the input signal (AC component). Further, according to the second embodiment, there is no need to separately form the resistor R, so there is an advantage that high integration can be achieved. Furthermore, compared to the method of using a resistor instead of the Schottky diode Di, this method has the advantage that the pattern area can be reduced. Furthermore, it has the advantage that elements such as resistors for other purposes can be formed within the same island region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す断面図、
第2図は本発明の等価回路図、第3図は本発明の
第2の実施例を示す平面図、第4図及び第5図は
それぞれ従来例を説明するための断面図、等価回
路図である。 主な図番の説明、1,11はP型半導体基板、
5,15は島領域、16は第1領域、17は第2
領域、19,20,21,22はそれぞれ第1、
第2、第3、第4の電極である。
FIG. 1 is a sectional view showing a first embodiment of the present invention;
FIG. 2 is an equivalent circuit diagram of the present invention, FIG. 3 is a plan view showing a second embodiment of the present invention, and FIGS. 4 and 5 are a sectional view and an equivalent circuit diagram for explaining the conventional example, respectively. It is. Explanation of main figure numbers, 1 and 11 are P-type semiconductor substrates,
5 and 15 are island areas, 16 is the first area, and 17 is the second area.
Areas 19, 20, 21, and 22 are the first,
These are the second, third, and fourth electrodes.

Claims (1)

【特許請求の範囲】 1 一導電型の分離領域によつて電気的に分離し
た1つの島領域と該島領域表面に形成した一導電
型の第1領域と該第1領域表面に形成した逆導電
型の第2領域と前記島領域表面を被覆する絶縁膜
と前記第2領域の上に前記絶縁膜をはさんで設け
た電極と前記第2領域とコンタクトした電極と前
記第1領域に抵抗を介して接地電位を印加する手
段と前記島領域にシヨツトキーダイオードを介し
て電源電位を印加する手段とを具備し、各PN接
合に寄生容量を発生させることを特徴とする半導
体容量結合素子。 2 前記抵抗は前記第1領域を用いて構成したこ
とを特徴とする特許請求の範囲第1項に記載の半
導体容量結合素子。
[Claims] 1. One island region electrically isolated by a separation region of one conductivity type, a first region of one conductivity type formed on the surface of the island region, and an opposite region formed on the surface of the first region. a conductive type second region, an insulating film covering the surface of the island region, an electrode provided on the second region with the insulating film sandwiched therebetween, an electrode in contact with the second region, and a resistor in the first region. A semiconductor capacitive coupling element comprising means for applying a ground potential through the island region and means for applying a power supply potential to the island region through a Schottky diode, and generating parasitic capacitance in each PN junction. . 2. The semiconductor capacitive coupling element according to claim 1, wherein the resistor is constructed using the first region.
JP23382685A 1985-10-18 1985-10-18 Semiconductor capacity coupler element Granted JPS6292459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23382685A JPS6292459A (en) 1985-10-18 1985-10-18 Semiconductor capacity coupler element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23382685A JPS6292459A (en) 1985-10-18 1985-10-18 Semiconductor capacity coupler element

Publications (2)

Publication Number Publication Date
JPS6292459A JPS6292459A (en) 1987-04-27
JPH0453104B2 true JPH0453104B2 (en) 1992-08-25

Family

ID=16961167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23382685A Granted JPS6292459A (en) 1985-10-18 1985-10-18 Semiconductor capacity coupler element

Country Status (1)

Country Link
JP (1) JPS6292459A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623692B2 (en) * 1988-01-22 1997-06-25 ソニー株式会社 Semiconductor circuit device
JP2740038B2 (en) * 1990-06-18 1998-04-15 株式会社東芝 MOS (MIS) type condenser
US5355014A (en) * 1993-03-03 1994-10-11 Bhasker Rao Semiconductor device with integrated RC network and Schottky diode
JPH10163421A (en) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd Semiconductor integrated circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565453A (en) * 1978-11-10 1980-05-16 Nec Corp Semiconductor device
JPS60170964A (en) * 1984-02-15 1985-09-04 Rohm Co Ltd Capacitor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565453A (en) * 1978-11-10 1980-05-16 Nec Corp Semiconductor device
JPS60170964A (en) * 1984-02-15 1985-09-04 Rohm Co Ltd Capacitor element

Also Published As

Publication number Publication date
JPS6292459A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
EP1500143B1 (en) Low input capacitance electrostatic discharge protection circuit utilizing feedback
JP2850801B2 (en) Semiconductor element
JPH0821632B2 (en) Semiconductor integrated circuit
US4758873A (en) Balanced MOS capacitor with low stray capacitance and high ESD survival
JPH06500668A (en) Monolithic integrated sensor circuit in CMOS technology
JPH0453104B2 (en)
JP2752832B2 (en) Semiconductor integrated circuit device
JPH0453103B2 (en)
US4316202A (en) Semiconductor integrated circuit device having a Schottky barrier diode
US5578862A (en) Semiconductor integrated circuit with layer for isolating elements in substrate
JPH05291507A (en) Diffused resistor
JP2830092B2 (en) Electrostatic protection element for semiconductor device
JP2553600B2 (en) BiMOS semiconductor integrated circuit
JPS6328500B2 (en)
JPH0620170B2 (en) Monolithically integrated differential input attenuator circuit
JPH01268050A (en) Diffused resistor element
JP2597309Y2 (en) Semiconductor device
JPH04186763A (en) Semiconductor device
JP2585633B2 (en) Semiconductor device
JPS5812343A (en) Semiconductor device
JPH027553A (en) Semiconductor integrated circuit device
JPS58197760A (en) Semiconductor device
JPS59229856A (en) Resistor circuit
JP3157377B2 (en) Semiconductor device
JPH0436575B2 (en)