JP2752832B2 - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JP2752832B2 JP2752832B2 JP3653892A JP3653892A JP2752832B2 JP 2752832 B2 JP2752832 B2 JP 2752832B2 JP 3653892 A JP3653892 A JP 3653892A JP 3653892 A JP3653892 A JP 3653892A JP 2752832 B2 JP2752832 B2 JP 2752832B2
- Authority
- JP
- Japan
- Prior art keywords
- integrated circuit
- circuit device
- semiconductor integrated
- lower electrode
- capacitance element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体集積回路装置に係
わり、特にスイッチドキャパシタフィルタ(以後、SC
F、という)、C−R型のA/D変換器、C−R型のD
/A変換器、などの容量素子を含む半導体集積回路装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a switched capacitor filter (hereinafter referred to as SC).
F), C / R type A / D converter, C / R type D
The present invention relates to a semiconductor integrated circuit device including a capacitance element such as an / A converter.
【0002】[0002]
【従来の技術】半導体集積回路装置はトランジスタ素子
や容量素子の集合体である。又、それらを含む機能ブロ
ックの集合体でもある。ここで、半導体集積回路装置の
一例としてのSCFを説明する。2. Description of the Related Art A semiconductor integrated circuit device is an aggregate of transistor elements and capacitance elements. It is also an aggregate of functional blocks including them. Here, an SCF as an example of a semiconductor integrated circuit device will be described.
【0003】図4の回路図に示されたSCFで使用され
る帰還容量素子C2と入力容量素子C1とが構成されて
いる、従来の半導体集積回路装置の平面図と断面図を図
3の(A)と(B)に示す。FIG. 3 is a plan view and a sectional view of a conventional semiconductor integrated circuit device in which a feedback capacitance element C2 and an input capacitance element C1 used in the SCF shown in the circuit diagram of FIG. (A) and (B).
【0004】P型半導体基板9にN型ウエル領域8が形
成され、このN型ウエル領域8の上面にシリコン酸化膜
から成る絶縁膜17を介してP型のポリシリコン層2,
12が容量素子の下部電極として形成され、その上にそ
れぞれ誘電体としての絶縁膜7を介して複数の単位上部
電極1が形成されている。入力容量素子C1は取り出し
部6で上部電極配線3によって接続された4個の単位上
部電極1と下部電極2との重なり部分が容量となる。す
なわち、単位上部電極1と下部電極2との重なり部分で
構成される単位容量素子C0 が4個並列に接続された容
量素子である。同様に、帰還容量素子C2は、2個の単
位上部電極1が上部電極配線13によって接続されてい
るから、下部電極12との重なり部分で構成される単位
容量素子C0 が2個並列に接続された容量素子である。An N-type well region 8 is formed on a P-type semiconductor substrate 9, and a P-type polysilicon layer 2 is formed on an upper surface of the N-type well region 8 via an insulating film 17 made of a silicon oxide film.
Numeral 12 is formed as a lower electrode of the capacitive element, and a plurality of unit upper electrodes 1 are formed thereon via an insulating film 7 as a dielectric. In the input capacitance element C1, the overlapping portion of the four unit upper electrodes 1 and the lower electrode 2 connected by the upper electrode wiring 3 in the extraction section 6 becomes a capacitance. That is, the unit capacitance elements C 0 consists of overlapping portions of the unit upper electrode 1 and the lower electrode 2 is a capacitive element connected to the four parallel. Similarly, the feedback capacitor C2 is connected two unit upper electrode 1 from being connected by the upper electrode wiring 13, the unit capacitance element C 0 is the two parallel composed of overlap between the lower electrode 12 This is a capacitive element.
【0005】N型ウエル領域8は取り出し部10で接続
されたウエル電極配線11により接地電位(0V)とな
っている。一方、入力容量素子C1の下部電極としての
ポリシリコン層2は取り出し部5で接続された下部電極
配線4によって入力信号端子に接続され(図4)、帰還
容量素子C2の下部電極としてのポリシリコン層12は
取り出し部5で接続された下部電極配線14によって出
力信号端子に接続されている(図4)。 又、図4に示
す様に、入力容量素子C1および帰還容量素子C2の上
部電極はその配線3,13によってそれぞれスイッチ、
すなわち半導体集積回路装置内に形成されたトランジス
タによる半導体スイッチを通してAMPの一方の入力端
子に接続されている。尚、図4において、白三角印
(▽)は基準電圧端子を示している。The N-type well region 8 has a ground potential (0 V) due to the well electrode wiring 11 connected at the extraction portion 10. On the other hand, the polysilicon layer 2 as the lower electrode of the input capacitance element C1 is connected to the input signal terminal by the lower electrode wiring 4 connected at the extraction portion 5 (FIG. 4), and the polysilicon as the lower electrode of the feedback capacitance element C2 is formed. The layer 12 is connected to the output signal terminal by the lower electrode wiring 14 connected at the extraction part 5 (FIG. 4). As shown in FIG. 4, the upper electrodes of the input capacitance element C1 and the feedback capacitance element C2 are switched by wirings 3 and 13, respectively.
That is, it is connected to one input terminal of the AMP through a semiconductor switch formed by a transistor formed in the semiconductor integrated circuit device. In FIG. 4, a white triangle (▽) indicates a reference voltage terminal.
【0006】[0006]
【発明が解決しようとする課題】上述した従来の半導体
集積回路装置は図3(B)に示す様に、下部電極2およ
び12とN型ウエル領域8との間の絶縁膜17を誘電体
膜としたMOS容量C5およびC6が寄生容量としてそ
れぞれ形成される。したがって従来はこの寄生容量によ
るN型ウエル領域8からのノイズのまわり込みを防ぐた
めに、N型ウエル領域8を低電圧電源(例えば、接地電
位)に接続していた。しかしながら、寄生容量C5と寄
生容量C6(例えば、下部電極の面積が500μm2 の
場合、約0.02pF)とが同一のNウエル領域上に形
成され、ウエル領域には抵抗R1が存在し、この抵抗R
1(例えば、下部電極間の距離が10μmの場合、5k
Ω)を通る系により、出力側からのノイズが入力側にま
わり込んでしまい、ノイズ特性が悪くなるという欠点が
あった。In the above-mentioned conventional semiconductor integrated circuit device, as shown in FIG. 3B, an insulating film 17 between the lower electrodes 2 and 12 and the N-type well region 8 is formed as a dielectric film. MOS capacitors C5 and C6 are formed as parasitic capacitances, respectively. Therefore, conventionally, the N-type well region 8 is connected to a low-voltage power supply (for example, a ground potential) in order to prevent noise from flowing from the N-type well region 8 due to the parasitic capacitance. However, the parasitic capacitance C5 and the parasitic capacitance C6 (for example, about 0.02 pF when the area of the lower electrode is 500 μm 2 ) are formed on the same N well region, and the resistor R1 exists in the well region. Resistance R
1 (for example, when the distance between the lower electrodes is 10 μm, 5 k
Ω), there is a drawback that noise from the output side goes around to the input side and the noise characteristics are deteriorated.
【0007】[0007]
【課題を解決するための手段】本発明の特徴は、複数の
容量素子を含む機能ブロックを有する半導体集積回路装
置において、前記機能ブロック内に共通の接続点をもつ
第1および第2の容量素子が一導電型の半導体基板にた
がいに分離された逆導電型の第1および第2のウエル領
域上にそれぞれ形成されている半導体集積回路装置にあ
る。この第1および第2の容量素子はそれぞれ単位容量
素子を並列接続して構成することができる。A feature of the present invention is that in a semiconductor integrated circuit device having a functional block including a plurality of capacitive elements, first and second capacitive elements having a common connection point in the functional block. Is a semiconductor integrated circuit device formed on the first and second well regions of opposite conductivity type separated from each other by a semiconductor substrate of one conductivity type. The first and second capacitors can be configured by connecting unit capacitors in parallel.
【0008】[0008]
【実施例】次に本発明について図面を参照して説明す
る。半導体集積回路装置の一例である図4の回路図に関
する本発明の一実施例としての図1(A),(B)は、
SCFの入力容量素子C1と帰還容量素子C2とが構成
されている半導体集積回路装置の平面図と断面図であ
る。尚、図1(A),(B)において図3(A),
(B)と同一もしくは類似の箇所は同じ符号で示してい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIGS. 1A and 1B as an embodiment of the present invention relating to the circuit diagram of FIG. 4 which is an example of a semiconductor integrated circuit device,
It is the top view and sectional drawing of the semiconductor integrated circuit device in which the input capacitance element C1 and the feedback capacitance element C2 of SCF are comprised. Note that in FIGS. 1A and 1B, FIGS.
Parts that are the same as or similar to (B) are denoted by the same reference numerals.
【0009】P型半導体基板9に第1および第2のNウ
エル領域18,28がそれぞれ形成され、これらのN型
ウエル領域18,28の上面にシリコン酸化膜から成る
絶縁膜17を介してP型のポリシリコン層2,12が容
量素子の下部電極として形成され、その上にそれぞれ誘
電体としての絶縁膜7を介してポリシリコンからなる複
数の単位上部電極1が形成されている。入力容量素子C
1は取り出し部6で上部電極配線3によって接続された
4個の単位上部電極1と下部電極2との重なり部分が容
量となる。すなわち、単位上部電極1と下部電極2との
重なり部分で構成される単位容量素子C0 が4個並列に
接続された容量素子である。同様に、帰還容量素子C2
は、2個の単位上部電極1が上部電極配線13によって
接続されているから、下部電極12との重なり部分で構
成される単位容量素子C0 が2個並列に接続された容量
素子である。First and second N-well regions 18 and 28 are formed on a P-type semiconductor substrate 9, respectively, and the upper surfaces of these N-type well regions 18 and 28 are formed with an insulating film 17 made of a silicon oxide film interposed therebetween. Formed polysilicon layers 2 and 12 are formed as lower electrodes of the capacitive element, and a plurality of unit upper electrodes 1 made of polysilicon are formed thereon via an insulating film 7 as a dielectric. Input capacitance element C
Reference numeral 1 denotes a take-out portion 6 in which an overlapping portion of the four unit upper electrodes 1 and the lower electrode 2 connected by the upper electrode wiring 3 serves as a capacitor. That is, the unit capacitance elements C 0 consists of overlapping portions of the unit upper electrode 1 and the lower electrode 2 is a capacitive element connected to the four parallel. Similarly, the feedback capacitance element C2
Since the two unit upper electrodes 1 are connected by the upper electrode wiring 13, this is a capacitance element in which two unit capacitance elements C 0, which are configured to overlap the lower electrode 12, are connected in parallel.
【0010】それぞれのN型ウエル領域18,28は、
取り出し部10で接続されたウエル電極配線11により
接地電位(0V)となっている。一方、入力容量素子C
1の下部電極としてのポリシリコン層2は取り出し部5
で接続された下部電極配線4によって入力信号端子に接
続され(図4)、帰還容量素子C2の下部電極としての
ポリシリコン層12は取り出し部5で接続された下部電
極配線14によって出力信号端子に接続されている(図
4)。 又、図4に示す様に、入力容量素子C1および
帰還容量素子C2の上部電極はその配線3,13によっ
てそれぞれスイッチ、すなわち半導体集積回路装置内に
形成されたトランジスタによる半導体スイッチを通して
AMPの一方の入力端子に接続されている。図3と同様
に、入力容量素子C1の下部電極2とN型ウエル領域1
8との間には寄生容量C5(例えば、下部電極の面積が
500μm2 の場合、約0.02pF)が形成され、帰
還容量素子C2の下部電極12とN型ウエル領域28と
の間には寄生容量C6(例えば、下部電極の面積が50
0μm2 の場合、約0.02pF)が形成される。Each of the N-type well regions 18 and 28 has
The ground potential (0 V) is attained by the well electrode wiring 11 connected by the extraction unit 10. On the other hand, the input capacitance element C
The polysilicon layer 2 serving as a lower electrode of
The lower electrode wiring 4 connected to the input signal terminal (FIG. 4) and the polysilicon layer 12 as the lower electrode of the feedback capacitor C2 is connected to the output signal terminal by the lower electrode wiring 14 connected at the extraction portion 5. Connected (FIG. 4). As shown in FIG. 4, the upper electrodes of the input capacitance element C1 and the feedback capacitance element C2 are switched by their wirings 3 and 13, respectively, that is, one of the AMPs through a semiconductor switch formed by a transistor formed in the semiconductor integrated circuit device. Connected to input terminal. Similarly to FIG. 3, the lower electrode 2 of the input capacitor C1 and the N-type well region 1
8, a parasitic capacitance C5 (for example, about 0.02 pF when the area of the lower electrode is 500 μm 2 ) is formed between the lower electrode 12 and the N-type well region 28 of the feedback capacitance element C2. The parasitic capacitance C6 (for example, when the area of the lower electrode is 50
In the case of 0 μm 2 , about 0.02 pF) is formed.
【0011】しかしながら本発明では、入力容量素子C
1の下部電極2をP型半導体基板(サブ基板)9からシ
ールドするためのN型ウエル領域18と帰還容量素子C
2の下部電極12をP型半導体基板(サブ基板)9から
シールドするためのN型ウエル領域28とは分離されて
いる。このようにシールド用のN型ウエル領域をたがい
に分離すことにより、寄生容量C5と寄生容量C6は同
一のウエル領域上に存在しなくなり、これにより直接の
寄生抵抗で接続されることがなく、出力側のノイズが入
力側へまわり込まなくなり、ノイズ特性が良くなる。However, in the present invention, the input capacitance element C
N-type well region 18 for shielding lower electrode 2 from P-type semiconductor substrate (sub-substrate) 9 and feedback capacitor C
The second lower electrode 12 is separated from the N-type well region 28 for shielding the lower electrode 12 from the P-type semiconductor substrate (sub-substrate) 9. By separating the N-type well region for shielding in this manner, the parasitic capacitance C5 and the parasitic capacitance C6 do not exist on the same well region, so that they are not directly connected by the parasitic resistance. The noise on the output side does not enter the input side, and the noise characteristics are improved.
【0012】以上は例としてSCFについて説明した
が、これに限られることはなく、C−R型のA/D変換
器、C−R型のD/A変換器などでも、同様の効果が得
られる。Although the SCF has been described above as an example, the present invention is not limited to this, and similar effects can be obtained with a C / R A / D converter, a C / R D / A converter, and the like. Can be
【0013】図2(A),(B)は、SCFの入力容量
素子C1と帰還容量素子C2とが構成されている半導体
集積回路装置の本発明の他の実施例を示す平面図と断面
図である。尚、図2(A),(B)において図1
(A),(B)と同一もしくは類似の箇所は同じ符号で
示している。入力容量素子C1下のNウエル領域18と
帰還容量素子C2下のNウエル領域28との間のP型半
導体基板(サブ基板)9の部分に基板(サブ基板)電極
取り出し部15を設け、ここに接続する基板電極配線1
6を接地端子に接続する。この場合、図2(B)に示す
様に、寄生容量C7,C8が生じてもウエル領域間の基
板部分を電極取り出し部15により低インピーダンスの
電源に接続しているため、寄生容量C7,C8を通じて
出力のノイズが入力へまわり込まなくなり、図1の実施
例よりさらにノイズ特性が改善できる。FIGS. 2A and 2B are a plan view and a sectional view showing another embodiment of the present invention of a semiconductor integrated circuit device in which an input capacitance element C1 and a feedback capacitance element C2 of an SCF are formed. It is. 2A and 2B, FIG.
Parts that are the same as or similar to (A) and (B) are denoted by the same reference numerals. A substrate (sub-substrate) electrode lead-out portion 15 is provided in a portion of the P-type semiconductor substrate (sub-substrate) 9 between the N-well region 18 below the input capacitance element C1 and the N-well region 28 below the feedback capacitance element C2. Board electrode wiring 1 connected to
6 to the ground terminal. In this case, as shown in FIG. 2B, even if the parasitic capacitances C7 and C8 occur, the substrate portion between the well regions is connected to a low-impedance power supply by the electrode extraction portion 15, so that the parasitic capacitances C7 and C8 The output noise does not sneak to the input through this, and the noise characteristics can be further improved as compared with the embodiment of FIG.
【0014】[0014]
【発明の効果】以上説明したように本発明は、入力容量
素子C1の下部電極2をP型半導体基板9からシールド
するためのN型ウエル領域18と帰還容量素子C2の下
部電極12をP型半導体基板9からシールドするための
N型ウエル領域28とを分離することにより、図4の回
路図に示す寄生容量C5,C6および寄生抵抗R1を通
る系をなくすことが出来る。従って、出力ノイズが入力
にまわり込まなくなり、ノイズ特性が改善される。As described above, according to the present invention, the N-type well region 18 for shielding the lower electrode 2 of the input capacitance element C1 from the P-type semiconductor substrate 9 and the P-type lower electrode 12 of the feedback capacitance element C2 are formed. By separating the semiconductor substrate 9 from the N-type well region 28 for shielding, the system that passes through the parasitic capacitances C5 and C6 and the parasitic resistance R1 shown in the circuit diagram of FIG. 4 can be eliminated. Therefore, the output noise does not reach the input, and the noise characteristics are improved.
【図1】本発明の一実施例を示す図であり、(A)は平
面図、(B)は(A)のA−A部の断面図である。FIGS. 1A and 1B are diagrams showing one embodiment of the present invention, wherein FIG. 1A is a plan view, and FIG.
【図2】本発明の他の実施例を示す図であり、(A)は
平面図、(B)は(A)のA−A部の断面図である。FIGS. 2A and 2B are diagrams showing another embodiment of the present invention, in which FIG. 2A is a plan view, and FIG.
【図3】従来技術を示す図であり、(A)は平面図、
(B)は(A)のA−A部の断面図である。FIG. 3 is a diagram showing a conventional technique, wherein (A) is a plan view,
(B) is a sectional view of the AA part of (A).
【図4】SCFの回路図である。FIG. 4 is a circuit diagram of an SCF.
1 上部電極 2,12 下部電極 3,13 上部電極の配線 4,14 下部電極の配線 5 下部電極取り出し部 6 上部電極取り出し部 7 容量素子の誘電体膜としての絶縁膜 8,18,28 N型ウエル領域 9 P型半導体基板(サブ基板) 10 ウエル電極取り出し部 11 ウエル電極配線 15 基板電極取り出し部 16 基板電極配線 17 絶縁膜 DESCRIPTION OF SYMBOLS 1 Upper electrode 2, 12 Lower electrode 3, 13 Wiring of upper electrode 4, 14 Wiring of lower electrode 5 Lower electrode take-out part 6 Upper electrode take-out part 7 Insulating film as dielectric film of capacitive element 8, 18, 28 N type Well region 9 P-type semiconductor substrate (sub-substrate) 10 Well electrode lead-out part 11 Well electrode wiring 15 Substrate electrode lead-out part 16 Substrate electrode wiring 17 Insulating film
Claims (2)
する半導体集積回路装置において、前記機能ブロック内
に共通の接続点をもつ第1および第2の容量素子が一導
電型の半導体基板にたがいに分離された逆導電型の第1
および第2のウエル領域上にそれぞれ形成されているこ
とを特徴とする半導体集積回路装置。In a semiconductor integrated circuit device having a functional block including a plurality of capacitive elements, first and second capacitive elements having a common connection point in the functional block are disposed on a semiconductor substrate of one conductivity type. The first of the separated reverse conductivity type
And a semiconductor integrated circuit device formed on the second well region.
れ単位容量素子を並列接続して構成されていることを特
徴とする請求項1に記載の半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein each of said first and second capacitance elements is configured by connecting unit capacitance elements in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3653892A JP2752832B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3653892A JP2752832B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05235266A JPH05235266A (en) | 1993-09-10 |
JP2752832B2 true JP2752832B2 (en) | 1998-05-18 |
Family
ID=12472564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3653892A Expired - Lifetime JP2752832B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2752832B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07106524A (en) * | 1993-10-07 | 1995-04-21 | Nec Corp | Semiconductor integrated circuit device |
WO1996006460A1 (en) * | 1994-08-19 | 1996-02-29 | Hitachi, Ltd. | Semiconductor device |
JP2798020B2 (en) * | 1995-10-25 | 1998-09-17 | 日本電気株式会社 | Semiconductor integrated circuit |
JP3182079B2 (en) * | 1996-05-30 | 2001-07-03 | 住友金属工業株式会社 | Wiring structure of capacitive element of semiconductor device |
WO1998012750A1 (en) * | 1996-09-20 | 1998-03-26 | Hitachi, Ltd. | Semiconductor integrated circuit device |
JP3549499B2 (en) | 2001-07-04 | 2004-08-04 | 松下電器産業株式会社 | Semiconductor integrated circuit device, D / A converter, and A / D converter |
TW200403872A (en) | 2002-08-30 | 2004-03-01 | Matsushita Electric Ind Co Ltd | MIM capacitor |
WO2017159283A1 (en) * | 2016-03-18 | 2017-09-21 | 株式会社村田製作所 | Capacitive element |
-
1992
- 1992-02-24 JP JP3653892A patent/JP2752832B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05235266A (en) | 1993-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0570302B2 (en) | ||
US6646860B2 (en) | Capacitor and method for fabricating the same | |
JP2752832B2 (en) | Semiconductor integrated circuit device | |
KR880001592B1 (en) | Semiconductor chip circuit | |
JP2006506801A (en) | Frequency independent voltage divider | |
JP2665223B2 (en) | Semiconductor integrated circuit device | |
US5796148A (en) | Integrated circuits | |
US6373118B1 (en) | High-value integrated circuit resistor | |
JPS6329962A (en) | Semiconductor device | |
KR100364486B1 (en) | Semiconductor device | |
JPH02304963A (en) | Semiconductor integrated circuit | |
JP2508301B2 (en) | Semiconductor integrated circuit | |
JPH0728004B2 (en) | Semiconductor integrated circuit device | |
JPH07312415A (en) | Semiconductor integrated circuit | |
US7292455B2 (en) | Multilayered power supply line for semiconductor integrated circuit and layout method thereof | |
JP2636794B2 (en) | Semiconductor device | |
JP2778060B2 (en) | Semiconductor integrated circuit device | |
JPH06103735B2 (en) | Semiconductor integrated circuit | |
US6977805B2 (en) | Capacitor element, semiconductor integrated circuit and method of manufacturing those | |
JPH0453103B2 (en) | ||
JPH07135296A (en) | Semiconductor integrated circuit device | |
JPH0453104B2 (en) | ||
JPS6348186B2 (en) | ||
JPH06177325A (en) | Semiconductor capacitance element and circuit using the same | |
JPS63184358A (en) | Semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980203 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |