JPS63237204A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPS63237204A
JPS63237204A JP7205487A JP7205487A JPS63237204A JP S63237204 A JPS63237204 A JP S63237204A JP 7205487 A JP7205487 A JP 7205487A JP 7205487 A JP7205487 A JP 7205487A JP S63237204 A JPS63237204 A JP S63237204A
Authority
JP
Japan
Prior art keywords
soft magnetic
amorphous soft
layer
head
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7205487A
Other languages
Japanese (ja)
Other versions
JPH065573B2 (en
Inventor
Kazuhiko Yamada
一彦 山田
Takao Maruyama
丸山 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62072054A priority Critical patent/JPH065573B2/en
Publication of JPS63237204A publication Critical patent/JPS63237204A/en
Publication of JPH065573B2 publication Critical patent/JPH065573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films

Abstract

PURPOSE:To improve linear responsiveness and reproduction efficiency by laminating a ferromagnetic magneto-resistance effect element and amorphous soft magnetic material layer via a nonmagnetic conductor layer and specifying the anisotropic magnetic field of the amorphous soft magnetic material layer to a specific value or below. CONSTITUTION:This head is made into the constitution in which the ferromagnetic magneto-resistance effect element (hereunder abbreviated as MR element) 1 and the amorphous soft magnetic material layer 7 are laminated via the nonmagnetic conductor layer 2; in addition, the anisotropic magnetic field HK of the layer 7 is specified to <80Oe. CoZrMo, CoZrTa or CoTa which is an amorphous soft magnetic material is used as the amorphous soft magnetic surface layer 5. High bias level is obtd. even with small bias current with the MR head having such constitution and the linear responsiveness and reproduction efficiency are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記憶媒体に書込まれた磁気的情報を、磁気
抵抗効果を利用して情報の読み出しを行う強磁性磁気抵
抗効果素子(以下、MR素子と略す)を具備した磁気抵
抗効果ヘッド(以下、MRヘッドと略す)に関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferromagnetic magnetoresistive element (hereinafter referred to as "ferromagnetic magnetoresistive element") that reads magnetic information written on a magnetic storage medium using the magnetoresistive effect. The present invention relates to a magnetoresistive head (hereinafter abbreviated as MR head) equipped with a magnetoresistive head (hereinafter abbreviated as MR head).

(従来の技術) 周知の如く、MR素子を磁気記憶媒体に書き込まれた磁
気的情報に対して、線形応答性を呈する高効率の再生用
ヘッドとして使用する場合には、MR素子に流すセンス
電流工とMR素子の磁化Mの成す角度O(以下、バイア
ス角度と呼ぶ)を所定の値(望ましくは45度)に設定
するバイアス手段を具備しなければならない。
(Prior Art) As is well known, when an MR element is used as a highly efficient reproducing head exhibiting linear response to magnetic information written on a magnetic storage medium, a sense current flowing through the MR element is used. A bias means must be provided for setting the angle O formed by the magnetization M and the magnetization M of the MR element (hereinafter referred to as the bias angle) to a predetermined value (preferably 45 degrees).

上述のバイアス手段としては、種々の方法が開示されて
いるが、この中で実願昭59−048201に開示され
たMRヘッドにおいては、MR素子上に非磁性導体層と
非晶質軟磁性体層とを順次積層した構造により、良好な
バイアス角度θが得られ、線形応答性に優れたMRヘッ
ドが実現できることが示されている。即ち第4図に示し
たように、ガラス、フェライト等から成る表面の滑らか
な絶縁性基板(図示せず)上に、スパッタ法あるいは蒸
着法により、強磁性体から成るMR素子1(例えば膜厚
200〜500人のNi−Fe合金)を形成し、前記M
R素子1上にTi、Mo、Cr、Ta等の非磁性導体層
2を同様の方法で形成し、更に前記非磁性導体層2上に
非晶質軟磁性体層5を同様な方法で形成した構造を有す
るMRヘッドを開示している。ここで、6はMR素子1
、非磁性導体層2及び非晶質軟磁性体層5の積層体に通
電する為の端子である。
Various methods have been disclosed as the above-mentioned bias means, but among these, in the MR head disclosed in Utility Model Application No. 59-048201, a non-magnetic conductor layer and an amorphous soft magnetic material are provided on the MR element. It has been shown that a structure in which layers are sequentially laminated can provide a good bias angle θ and realize an MR head with excellent linear response. That is, as shown in FIG. 4, an MR element 1 made of a ferromagnetic material (for example, a film with a thickness of 200-500 Ni-Fe alloy) and the M
A non-magnetic conductor layer 2 of Ti, Mo, Cr, Ta, etc. is formed on the R element 1 in the same manner, and an amorphous soft magnetic layer 5 is further formed on the non-magnetic conductor layer 2 in the same manner. An MR head having a structure is disclosed. Here, 6 is MR element 1
, is a terminal for supplying current to the laminated body of the nonmagnetic conductor layer 2 and the amorphous soft magnetic layer 5.

この様なMRヘッドにおいては、端子6から供給される
センス電流工は、MR素子1のみならず非磁性導体層2
及び非晶質軟磁性体層5にも分流する。
In such an MR head, the sense current supplied from the terminal 6 is applied not only to the MR element 1 but also to the nonmagnetic conductor layer 2.
The current is also shunted to the amorphous soft magnetic material layer 5.

従って、この様な構造においては、MR素子1及び非磁
性導体層2に分流したセンス電流■により、非晶質軟磁
性体層5の面内を通り且つセンス電流■の方向と垂直方
向の磁界が発生し、この磁界により非晶質軟磁性体層5
の磁化方向が回転する。この為、非晶質軟磁性体層5に
おける磁化は、非晶質軟磁性体層5の周囲に前記磁化の
方向とは逆方向の磁界を生じ、その一部はMR素子1に
印加される。一方、非晶質軟磁性体層5及び非磁性導体
層2に分流したセンス電流Iにより1、MR1素子1の
面内を通り、センス電流Iの方向と垂直方向の磁界が生
じ、この磁界の方向は前述の非晶質軟磁性体層5の磁化
によって発生する磁界の方向と一致する。つまり、非晶
質軟磁性体層5の磁化によって発生する磁界とセンス電
流■によって生じる磁界が、MR素子1にバイアス磁界
として印加される。このバイアス磁界は、MR素子1の
磁化をセンス電流Iに対して回転させ、MR素子のバイ
アス角度θを所定の値(理想的には45度)とし、線形
応答性に優れたMRヘッドを実現する。
Therefore, in such a structure, the sense current (2) shunted to the MR element 1 and the non-magnetic conductor layer 2 generates a magnetic field that passes within the plane of the amorphous soft magnetic layer 5 and in a direction perpendicular to the direction of the sense current (3). is generated, and this magnetic field causes the amorphous soft magnetic layer 5 to
The magnetization direction of is rotated. Therefore, the magnetization in the amorphous soft magnetic layer 5 generates a magnetic field around the amorphous soft magnetic layer 5 in a direction opposite to the direction of the magnetization, a part of which is applied to the MR element 1. . On the other hand, the sense current I divided into the amorphous soft magnetic layer 5 and the nonmagnetic conductor layer 2 generates a magnetic field that passes within the plane of the MR1 element 1 and is perpendicular to the direction of the sense current I. The direction coincides with the direction of the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 described above. In other words, a magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 and a magnetic field generated by the sense current (2) are applied to the MR element 1 as a bias magnetic field. This bias magnetic field rotates the magnetization of the MR element 1 with respect to the sense current I, sets the bias angle θ of the MR element to a predetermined value (ideally 45 degrees), and realizes an MR head with excellent linear response. do.

(発明が解決しようとする問題点) ところで、前述の構造、即ちMR素子1、非磁性導体層
2及び非晶質軟磁性体層5を積層した構造を有するMR
ヘッドにおいては、非晶質軟磁性体層5としてCoZr
、CoZrNb等を用いた場合、これらの異方性磁界H
kが大きいため通常のセンス電流Iの範囲(5〜20m
A)では、非晶質軟磁性体層5の磁化の方向が十分に回
転せず、良好なバイアスレベルを実現できなかった。こ
の為、MRヘッドの線形応答性が損なわれ再生効率が低
・下するという問題点があった。
(Problems to be Solved by the Invention) By the way, an MR having the above-described structure, that is, a structure in which the MR element 1, the nonmagnetic conductor layer 2, and the amorphous soft magnetic layer 5 are laminated.
In the head, CoZr is used as the amorphous soft magnetic layer 5.
, CoZrNb, etc., these anisotropic magnetic fields H
Since k is large, the range of normal sense current I (5 to 20 m
In A), the direction of magnetization of the amorphous soft magnetic layer 5 did not rotate sufficiently, and a good bias level could not be achieved. For this reason, there is a problem that the linear response of the MR head is impaired and the reproduction efficiency is lowered.

一方、異方性磁界Hkの大きな非晶質軟磁性材料を非晶
質軟磁性体層5として用い、しかも良好なバイアスレベ
ルを実現する一つσ2手段として、センス電流の値を大
きくすることが考えられるが、このことはセンス電流に
よる発熱の増加をもたらし、MR素子の電気抵抗の熱的
なドリフトや熱雑音を生じMRヘッドの特性を損なうも
のであった。
On the other hand, one way to achieve a good bias level by using an amorphous soft magnetic material with a large anisotropic magnetic field Hk as the amorphous soft magnetic layer 5 is to increase the value of the sense current. Although conceivable, this resulted in an increase in heat generation due to the sense current, causing thermal drift in the electrical resistance of the MR element and thermal noise, impairing the characteristics of the MR head.

又、発熱による断線も時として生じデバイスの信頼性を
損ねていた。
In addition, disconnection due to heat generation sometimes occurs, impairing the reliability of the device.

更に、非晶質軟磁性体層5となる非晶質軟磁性材料を成
膜後、困難軸方向に磁界を印加しながら熱処理し、異方
性磁界Hkを弱めるという手段も考えられるが、磁界中
の熱処理の為、MR素子となるNiFe膜に磁気的な分
散性が生じ、バルクハウゼンノイズが増加すると言う問
題があった。又、熱処理中にMR素子1、非磁性導体層
2あるいは非晶質軟磁性体層5の各層間で相互拡散を起
こし、MR素子1あるいは非晶質軟磁性体層5の磁気特
性が劣化すると言う問題点もあった。
Furthermore, after forming the amorphous soft magnetic material that will become the amorphous soft magnetic layer 5, heat treatment may be performed while applying a magnetic field in the hard axis direction to weaken the anisotropic magnetic field Hk. Due to the heat treatment inside, magnetic dispersion occurs in the NiFe film that becomes the MR element, resulting in an increase in Barkhausen noise. Also, if mutual diffusion occurs between the MR element 1, the non-magnetic conductor layer 2, or the amorphous soft magnetic layer 5 during heat treatment, and the magnetic properties of the MR element 1 or the amorphous soft magnetic layer 5 deteriorate. There were some problems as well.

従って、通常のセンス電流■の範囲(5〜20mA)で
磁化が回転し、MR素子1に十分なバイアスレベルを付
与するため、異方性磁界Hkが小さな軟磁性材料を非晶
質軟磁性体層5として用いることが問題の本質的な解決
を図るために重要である。
Therefore, in order to rotate the magnetization in the normal sense current range (5 to 20 mA) and provide a sufficient bias level to the MR element 1, the soft magnetic material with a small anisotropic magnetic field Hk is replaced with an amorphous soft magnetic material. It is important to use it as layer 5 in order to essentially solve the problem.

(問題点を解決するための手段) 本発明によれば、強磁性磁気抵抗効果素子と非晶質軟磁
性体層とが非磁性導体層を介して積層された構造を有し
、しかも前記非晶質軟磁性体層の異方性磁界Hkが、8
Oe未満であることを特徴とする磁気抵抗効果ヘッドが
得られる。
(Means for Solving the Problems) According to the present invention, the ferromagnetic magnetoresistive element and the amorphous soft magnetic material layer are laminated with a nonmagnetic conductive layer interposed therebetween, and the non-magnetic The anisotropic magnetic field Hk of the crystalline soft magnetic layer is 8
A magnetoresistive head characterized by less than Oe can be obtained.

(作用) 第2図は本発明の係わるMRヘッドのバイアスレベルと
非晶質軟磁性体層との関係を示す計算機シミュレーショ
ン結果である。ここで、センス電流の値は10mAとし
、MR素子の膜厚は400人、飽和磁化Msは800e
mu/cc、異方性磁界Hkは40e、比抵抗pは20
PΩ・am、抵抗変化率Δp/pは2%であり、非磁性
導体層の膜厚は200人、pは5011Ω・cmとした
。又、非晶質軟磁性体層の膜厚は300人、飽和磁化M
sは800emu/cc、比抵抗pは100PΩ−am
とした。又、バイアスレへルの定義は、第3図に示した
様に、MR素子が十分飽和するのに足る±H0の外部磁
界Hを印加した時の最大抵抗変化ΔRmaxと、外部磁
界が0の時と±H0の外部磁界を与えた時の抵抗の差Δ
Rとの比とした。即ち、 バイアスレベル=Δ&ΔRmaxである。
(Function) FIG. 2 is a computer simulation result showing the relationship between the bias level and the amorphous soft magnetic layer of the MR head according to the present invention. Here, the value of the sense current is 10 mA, the film thickness of the MR element is 400 mm, and the saturation magnetization Ms is 800 e.
mu/cc, anisotropic magnetic field Hk is 40e, resistivity p is 20
PΩ·am and resistance change rate Δp/p were 2%, the thickness of the nonmagnetic conductor layer was 200, and p was 5011Ω·cm. In addition, the thickness of the amorphous soft magnetic layer is 300 mm, and the saturation magnetization M
s is 800 emu/cc, specific resistance p is 100 PΩ-am
And so. Also, as shown in Figure 3, the definition of bias level is the maximum resistance change ΔRmax when an external magnetic field H of ±H0, which is sufficient to saturate the MR element, is applied, and the maximum resistance change ΔRmax when the external magnetic field is 0. The difference in resistance Δ when an external magnetic field of ±H0 is applied
It was taken as the ratio to R. That is, bias level=Δ&ΔRmax.

第2図より明らかなとおり、異方性磁界Hkの値にして
約8Oe以上では、バイアスレベルにして約0.6以上
となりMR素子に不十分なバイアスしか印加されないこ
とがわかる。従って、非晶質軟磁性体層をなす非晶質軟
磁性材料の異方性磁界Hkを8Oe未満とすることで、
優れた線形応答性と再生効率を有するMRヘッドが得ら
れる。
As is clear from FIG. 2, when the anisotropic magnetic field Hk is about 8 Oe or more, the bias level becomes about 0.6 or more, and an insufficient bias is applied to the MR element. Therefore, by setting the anisotropic magnetic field Hk of the amorphous soft magnetic material forming the amorphous soft magnetic layer to less than 8 Oe,
An MR head with excellent linear response and reproduction efficiency can be obtained.

本発明者らは、上述のシミュレーション結果を参考にし
て、種々のCo金属系非晶質軟磁性材料を蒸着法あるい
はスパッタ法を用いて薄膜化し、その異方性磁界Hkを
VSM(振動試料磁力計)あるいはB−Hカーブトレー
サを用いて測定した結果、表1に示したような結果を得
た。
Referring to the above simulation results, the present inventors thinned various Co metal-based amorphous soft magnetic materials using vapor deposition or sputtering methods, and applied the anisotropic magnetic field Hk to VSM (vibrating sample magnetic force). As a result of measurement using a B-H curve tracer or a B-H curve tracer, the results shown in Table 1 were obtained.

表に示したように、非晶質軟磁性材料としてCoZrM
o 、 CoZrTa、あるいはCoTaにおいて50
e〜60eの異方性磁界Hkが得られており、第2図に
示したシミュレーション結果を満足している。
As shown in the table, CoZrM is used as an amorphous soft magnetic material.
o, CoZrTa, or 50 in CoTa
An anisotropic magnetic field Hk of e to 60e was obtained, satisfying the simulation results shown in FIG.

従って、これらの非晶質軟磁性材料を非晶質軟磁性体層
5として用いることにより、バイアス角度θが略45度
の良好なバイアスレベルが得られ、高い再生効率を持つ
MRヘッドが実現される。
Therefore, by using these amorphous soft magnetic materials as the amorphous soft magnetic layer 5, a good bias level with a bias angle θ of approximately 45 degrees can be obtained, and an MR head with high reproduction efficiency can be realized. Ru.

(実施例1) 第1図は、本発明の一実施例を示す図である。第1図に
おいて、ガラス基板(図示せず)上に蒸着法を用いて、
MR素子1となる、膜厚400人のパーマロイ(Ni8
2%−Fe18%、重量%)膜を成膜した。尚、蒸着時
には1000eの磁界を永久磁石で印加しパーマロイ膜
に一軸異方性を付与した。ついで、同じく蒸着法を用い
て、非磁性導体層2となる膜厚200人のTi膜を前記
パーマロイ膜上に成膜した。更に、非晶質軟磁性体層と
して膜厚300人、異方性磁界Hk50eのCoZrM
o層7を、前述のTi膜上に蒸着法を用いて成膜した。
(Example 1) FIG. 1 is a diagram showing an example of the present invention. In FIG. 1, using a vapor deposition method on a glass substrate (not shown),
MR element 1 is made of permalloy (Ni8) with a film thickness of 400.
2%-Fe18%, weight %) film was formed. During the deposition, a magnetic field of 1000 e was applied using a permanent magnet to impart uniaxial anisotropy to the permalloy film. Then, using the same vapor deposition method, a Ti film having a thickness of 200 mm and serving as the nonmagnetic conductor layer 2 was formed on the permalloy film. Furthermore, CoZrM with a film thickness of 300 mm and an anisotropic magnetic field of Hk50e was used as an amorphous soft magnetic layer.
The o layer 7 was formed on the Ti film described above using a vapor deposition method.

その後、この積体上に所定のフォトレジストパターンを
形成し、Arガス雰囲気中でイオンエツチングを行い、
長さ50pm、幅511mの矩形状のパターンに加工し
た。ここで、エツチング条件は、加速電圧:500VS
Arガス圧カニI X 10−’Torrである。
After that, a predetermined photoresist pattern is formed on this stack, and ion etching is performed in an Ar gas atmosphere.
It was processed into a rectangular pattern with a length of 50 pm and a width of 511 m. Here, the etching conditions are acceleration voltage: 500VS
The Ar gas pressure is I x 10-' Torr.

ついで、前述の積層体にセンス電流■を供給する端子6
を集積化薄膜技術を用いて形成し、MRヘッドを作製し
た。尚、端子6は、TiとAuの積層膜を使用し、膜厚
は各々50人、0.5¥1mである。
Next, a terminal 6 for supplying the sense current ■ to the above-mentioned multilayer body
was formed using integrated thin film technology to produce an MR head. Note that the terminal 6 uses a laminated film of Ti and Au, and the film thickness is 50 people and 0.5 yen 1 m each.

以上のような構成を持つ本実施例によるMRヘッドにお
いては、センス電流Iが5〜15mAでMRヘッド1の
バイアス角度θが略45度で設定出来ることが確認され
、良好な線形応答性と高い再生効率を有するMRヘッド
が実現された。
In the MR head according to this embodiment having the above configuration, it was confirmed that the bias angle θ of the MR head 1 could be set at approximately 45 degrees when the sense current I was 5 to 15 mA, and the result showed good linear response and high An MR head with high reproduction efficiency has been realized.

(実施例2) 非晶質軟磁性体層を膜厚300人、異方性磁界Hk60
eのCoZrTa層とした以外は実施例1と全く同様に
して、MRヘッドを作製した。
(Example 2) The thickness of the amorphous soft magnetic layer was 300, and the anisotropic magnetic field was Hk60.
An MR head was manufactured in the same manner as in Example 1 except that the CoZrTa layer of e was used.

本実施例のMRヘッドにおいては、10〜15mAのセ
ンス電流IでMR素子のバイアス角度θが、40〜45
度の範囲で設定できることが確認され実施例1の場合と
同様に、良好な線形応答性と高い再生効率を有するMR
ヘッドが実現された。
In the MR head of this embodiment, the bias angle θ of the MR element is 40 to 45 mA with a sense current I of 10 to 15 mA.
It has been confirmed that the setting can be made within the range of
The head was realized.

(実施例3)・ 非晶質軟磁性体層を膜厚300人、異方性磁界Hk60
eのCoTa層とした以外は実施例1ないしは2と全く
同様にして、MRヘッドを作製した。
(Example 3) The thickness of the amorphous soft magnetic layer was 300, and the anisotropic magnetic field was Hk60.
An MR head was produced in exactly the same manner as in Example 1 or 2, except that the CoTa layer of e was used.

本実施例のMRヘッドにおいては、10〜15mAのセ
ンス電流■でMR素子のバイアス角度0が、40〜45
度の範囲で設定できることが確認され実施例工ないし2
の場合と同様に、良好な線形応答性と高い再生効率を有
するMRヘッドが実現された。
In the MR head of this example, the bias angle 0 of the MR element is 40 to 45 mA with a sense current of 10 to 15 mA.
It has been confirmed that it can be set within the range of
As in the case of , an MR head with good linear response and high reproduction efficiency was realized.

(比較例) 非晶質軟磁性体層を膜厚300人、異方性磁界Hk16
0eのCoZr層とした以外は実施例1,2あるいは3
と全く同様にして、MRヘッドを作製した。この様なM
Rヘッドにおいては、センス電流35mA程度流しても
十分なバイアスがMR素子に印加されず、本発明による
MRヘッドに比較して、再生効率が30〜50%程度小
さく、実用に供しないことが明らかとなった。
(Comparative example) The thickness of the amorphous soft magnetic layer is 300, and the anisotropic magnetic field is Hk16.
Example 1, 2 or 3 except that the CoZr layer of 0e was used.
An MR head was produced in exactly the same manner. M like this
In the R head, even if a sense current of about 35 mA is applied, a sufficient bias is not applied to the MR element, and the reproduction efficiency is about 30 to 50% lower than that of the MR head according to the present invention, so it is clear that it cannot be put to practical use. It became.

又、CoTi、 CoHf1CoZrNb、 CoZr
Hf、 CoZrTiを非晶質軟磁性体層として用いた
場合も、十分なバイアスがMR素子に印加されず、本発
明によるMRヘッドに較べて再生効率が小さかった。
Also, CoTi, CoHf1CoZrNb, CoZr
Even when Hf or CoZrTi was used as the amorphous soft magnetic layer, sufficient bias was not applied to the MR element, and the reproduction efficiency was lower than that of the MR head according to the present invention.

(発明の効果) 以上述べてきたように、本発明によればMR素子と非晶
質軟磁性体層を非磁性導体層を介して積層し、しかも異
方性磁界HkがMR素子をなすNiFe膜と同程度に小
さなCoZrMo、 CoZrTaあるいはCoTa膜
を、非晶質軟磁性体層として用いることにより、15m
A程度の小さなバイアス電流でも良好なバイアスレベル
が得られ、優れた線形応答性と高い再生効率を持つMR
ヘッドが実現される。
(Effects of the Invention) As described above, according to the present invention, an MR element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductor layer interposed therebetween, and the anisotropic magnetic field Hk is applied to the NiFe layer forming the MR element. By using a CoZrMo, CoZrTa or CoTa film as small as the film as an amorphous soft magnetic layer,
MR that can obtain a good bias level even with a small bias current of about A, and has excellent linear response and high reproduction efficiency.
The head is realized.

尚、以上の実施例ではMR素子、非磁性導体層、非晶質
軟磁性体層の順序で積層する例のみについて述べたが、
非晶質軟磁性体層、非磁性導体層、MR素子の順序で積
層したMRヘッドにおいても優れた線形応答性と高い再
生効率が得られた。又、非磁性導体層をなす材料はTi
に限定されるものではなく、例えばTa、 W、 Mo
あるいはこれらの合金等を使用しても、本発明の意図す
るところは損なわれない。更に、CoZrMo、 Co
ZrTaあるいはCoTa層中に、これらの磁気特性、
特に異方性磁界Hkを劣化させない範囲で他の元素を添
加したものを非晶質軟磁性体層−として使用しても差し
支えない。
Incidentally, in the above embodiment, only the example in which the MR element, the nonmagnetic conductor layer, and the amorphous soft magnetic material layer are laminated in this order has been described;
Excellent linear response and high reproduction efficiency were also obtained in an MR head in which an amorphous soft magnetic layer, a nonmagnetic conductive layer, and an MR element were laminated in this order. Furthermore, the material forming the nonmagnetic conductor layer is Ti.
For example, Ta, W, Mo
Alternatively, even if these alloys are used, the purpose of the present invention will not be impaired. Furthermore, CoZrMo, Co
In the ZrTa or CoTa layer, these magnetic properties,
In particular, the amorphous soft magnetic material layer may be used to which other elements are added within a range that does not deteriorate the anisotropic magnetic field Hk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるMRヘッドの一実施例を示す図、
第2図、第3図及び第4図は本発明を説明するための図
である。 図に於て、 1・・・MR素子、     2・・・非磁性導体層、
半  1  図 t、MR噂トで( 半  21図 異方と狐胃’HK (Oe)
FIG. 1 is a diagram showing an embodiment of an MR head according to the present invention;
FIG. 2, FIG. 3, and FIG. 4 are diagrams for explaining the present invention. In the figure, 1...MR element, 2...Nonmagnetic conductor layer,
Half 1 figure t, MR rumors (half 21 figure anisotropic and fox stomach'HK (Oe)

Claims (2)

【特許請求の範囲】[Claims] (1)強磁性磁気抵抗効果素子と非晶質軟磁性体層とが
非磁性導体層を介して積層された構造を有し、しかも前
記非晶質軟磁性体層の異方性磁界H_kが、8Oe未満
であることを特徴とする磁気抵抗効果ヘッド。
(1) It has a structure in which a ferromagnetic magnetoresistive element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductive layer interposed therebetween, and the anisotropic magnetic field H_k of the amorphous soft magnetic layer is , less than 8 Oe.
(2)前記非晶質軟磁性体層が、CoZrMo、CoZ
rTa、またはCoTaを主成分とする非晶質軟磁性材
料からなることを特徴とする特許請求の範囲第1項記載
の磁気抵抗効果ヘッド。
(2) The amorphous soft magnetic layer is made of CoZrMo, CoZ
2. The magnetoresistive head according to claim 1, wherein the magnetoresistive head is made of an amorphous soft magnetic material containing rTa or CoTa as a main component.
JP62072054A 1987-03-25 1987-03-25 Magnetoresistive effect head Expired - Lifetime JPH065573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072054A JPH065573B2 (en) 1987-03-25 1987-03-25 Magnetoresistive effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072054A JPH065573B2 (en) 1987-03-25 1987-03-25 Magnetoresistive effect head

Publications (2)

Publication Number Publication Date
JPS63237204A true JPS63237204A (en) 1988-10-03
JPH065573B2 JPH065573B2 (en) 1994-01-19

Family

ID=13478287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072054A Expired - Lifetime JPH065573B2 (en) 1987-03-25 1987-03-25 Magnetoresistive effect head

Country Status (1)

Country Link
JP (1) JPH065573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266580A (en) * 1989-04-07 1990-10-31 Nec Corp Magnetoresistance effect element
JPH0366012A (en) * 1989-08-04 1991-03-20 Nec Corp Magneto-resistance effect type head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242314A (en) * 1985-04-19 1986-10-28 Hitachi Ltd Magneto-resistance effect type reproducing head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242314A (en) * 1985-04-19 1986-10-28 Hitachi Ltd Magneto-resistance effect type reproducing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266580A (en) * 1989-04-07 1990-10-31 Nec Corp Magnetoresistance effect element
JPH0366012A (en) * 1989-08-04 1991-03-20 Nec Corp Magneto-resistance effect type head

Also Published As

Publication number Publication date
JPH065573B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
JPH0845029A (en) Thin-film magnetic head
JP2001118217A (en) Spin valve type thin-film magnetic device, thin-film magnetic head, and manufacturing method of spin valve thin-film magnetic device
JP3212569B2 (en) Dual spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing dual spin valve thin film magnetic element
JPS63237204A (en) Magneto-resistance effect head
JP2000306218A (en) Magnetoresistance effect type head and magnetic recording and reproducing device
JP3378549B2 (en) Magnetic head
JPH06325329A (en) Thin film magnetic head
JP3243092B2 (en) Thin film magnetic head
JP2000340857A (en) Magnetoresistive effect film and magnetoresistive effect element
JP3260735B2 (en) Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JP2001196657A (en) Magnetoresistive effect element and magnetic memory using it
JPH08279116A (en) Film of gigantic magnetoresistive material and method for adjustive magnetization of magnetoresistive material film
JP3764361B2 (en) Method for manufacturing magnetoresistive element
JPH0354713A (en) Magneto-resistance effect head
JP2867416B2 (en) Magnetoresistive head
JP2569897B2 (en) Magnetoresistive head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH02304708A (en) Magneto-resistance effect type head
JP2751700B2 (en) Magnetoresistive head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH10294504A (en) Magneto-resistance sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14