JP2867416B2 - Magnetoresistive head - Google Patents

Magnetoresistive head

Info

Publication number
JP2867416B2
JP2867416B2 JP9292089A JP9292089A JP2867416B2 JP 2867416 B2 JP2867416 B2 JP 2867416B2 JP 9292089 A JP9292089 A JP 9292089A JP 9292089 A JP9292089 A JP 9292089A JP 2867416 B2 JP2867416 B2 JP 2867416B2
Authority
JP
Japan
Prior art keywords
soft magnetic
head
auxiliary layer
bias
fesi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9292089A
Other languages
Japanese (ja)
Other versions
JPH02273310A (en
Inventor
嘉啓 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9292089A priority Critical patent/JP2867416B2/en
Publication of JPH02273310A publication Critical patent/JPH02273310A/en
Application granted granted Critical
Publication of JP2867416B2 publication Critical patent/JP2867416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記憶媒体に書き込まれた磁気的情報を、
強磁性磁気抵抗効果を利用して読み出す強磁性磁気抵抗
効果素子(以下、MR素子と略す)を具備した磁気抵抗効
果ヘッド(以下、MRヘッドと略す)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to magnetic information written on a magnetic storage medium.
The present invention relates to a magnetoresistive head (hereinafter, abbreviated as an MR head) including a ferromagnetic magnetoresistive element (hereinafter, abbreviated as an MR element) that reads out using the ferromagnetic magnetoresistance effect.

[従来の技術] 周知のごとく、MR素子を磁気記憶媒体に書き込まれた
磁気的情報に対して線形応答性を呈する高効率の再生用
ヘッドとして使用する場合には、MR素子に流すセンス電
流IとMR素子の磁化Mのなす角度θ(以下、バイアス角
度と称す)を所定の値(望ましくは45度)に設定するバ
イアス手段を具備しなければならない。
[Prior Art] As is well known, when an MR element is used as a high-efficiency reproducing head exhibiting linear response to magnetic information written in a magnetic storage medium, a sense current I flowing through the MR element is used. And a bias means for setting an angle θ (hereinafter, referred to as a bias angle) between the magnetic field M and the magnetization M of the MR element to a predetermined value (preferably 45 degrees).

上述のバイアス手段としては種々の方法が開示されて
いる。例えば、米国特許第3864751号には、軟磁性バイ
アス補助層とMR素子が絶縁層を挟んで積層された構造が
開示されている。引例においては、MR素子にセンス電流
を供給して軟磁性バイアス補助層を磁化するとともに、
軟磁性バイアス補助層が発生する磁界でMR素子にバイア
ス磁界を印加する方法が示されている。
Various methods have been disclosed as the bias means described above. For example, US Pat. No. 3,864,751 discloses a structure in which a soft magnetic bias auxiliary layer and an MR element are stacked with an insulating layer interposed therebetween. In the reference, while supplying a sense current to the MR element to magnetize the soft magnetic bias auxiliary layer,
A method of applying a bias magnetic field to an MR element with a magnetic field generated by a soft magnetic bias auxiliary layer is shown.

また、他のバイアス手段として、実開昭60−159518号
公報には、非晶質軟磁性バイアス補助層とMR素子が非磁
性導体層を挟んで積層された構造が開示されている。こ
の構成では、非晶質軟磁性バイアス補助層の比抵抗がMR
素子の比抵抗に比較して著しく高いので、センス電流の
大部分がMR素子を流れ、実効的に非晶質軟磁性バイアス
補助層とMR素子が絶縁されている構成と同等のバイアス
効果が得られる。更に、このバイアス方法では、非晶質
軟磁性バイアス補助層とMR素子の絶縁を保つ必要がない
ため、非磁性導体層の膜厚を薄くした、コンパクトな磁
気抵抗効果ヘッドが形成される。
As another bias means, Japanese Utility Model Laid-Open No. 60-159518 discloses a structure in which an amorphous soft magnetic bias auxiliary layer and an MR element are laminated with a nonmagnetic conductor layer interposed therebetween. In this configuration, the specific resistance of the amorphous soft magnetic bias auxiliary layer is MR
Since the specific resistance is significantly higher than the specific resistance of the element, most of the sense current flows through the MR element, and a bias effect equivalent to the configuration in which the amorphous soft magnetic bias auxiliary layer and the MR element are effectively isolated is obtained. Can be Further, in this bias method, it is not necessary to maintain the insulation between the amorphous soft magnetic bias auxiliary layer and the MR element, so that a compact magnetoresistive head with a thin nonmagnetic conductor layer is formed.

[発明が解決しようとする課題] ところで、前述の構造、即ちNR素子、非磁性導体層お
よびバイアス補助層を積層した構造を有するMRヘッドに
おいては、バイアス補助層の特性として、MR素子に比べ
て磁気抵抗変化率が小さく、比抵抗が大きく、さらに軟
磁気特性に優れていることが要求される(ザ・ジャーナ
ル・オブ・アプライド・フィジックス(The Journal of
Applied Physics),1988年,第63巻,4023ページ)。こ
のため、従来バイアス補助層としては、CoZr,CoZrNb,Co
ZrMo,CoZrTa,CoTa等の非晶質軟磁性材料が用いられてい
た。
[Problems to be Solved by the Invention] By the way, in the MR head having the above-mentioned structure, that is, the structure in which the NR element, the nonmagnetic conductor layer and the bias auxiliary layer are stacked, the characteristic of the bias auxiliary layer is larger than that of the MR element. It is required that the rate of change in magnetoresistance, the specific resistance, and the soft magnetic properties be excellent (The Journal of Applied Physics)
Applied Physics), 1988, Vol. 63, p. 4023). For this reason, CoZr, CoZrNb, CoZ
Amorphous soft magnetic materials such as ZrMo, CoZrTa, and CoTa have been used.

しかし、この場合には非晶質材料の熱的不安定性に起
因する磁気特性の劣化が生じた。即ち、磁気ヘッドとし
ての動作時にはMRヘッドには常時センス電流が流れてい
るため、電気抵抗によってMRヘッド部の温度が上昇す
る。このような状態で長期間使用していると、非晶質軟
磁性材料の磁気特性が次第に劣化して異方性磁界が増加
し、非晶質軟磁性体層の磁化が充分に回転せず、良好な
バイアスレベルを実現できなかった。このため、MRヘッ
ドの線形応答性が損なわれ、再生効率が低下するという
問題点があった。
However, in this case, the magnetic properties deteriorated due to the thermal instability of the amorphous material. That is, during operation as a magnetic head, a sense current always flows through the MR head, so that the temperature of the MR head increases due to electric resistance. If the amorphous soft magnetic material is used for a long time in such a state, the magnetic properties of the amorphous soft magnetic material gradually deteriorate, the anisotropic magnetic field increases, and the magnetization of the amorphous soft magnetic material layer does not rotate sufficiently. , A good bias level could not be realized. For this reason, there is a problem that the linear response of the MR head is impaired and the reproduction efficiency is reduced.

本発明の目的は上記従来技術の欠点をなくし、長期信
頼性に優れ、再生効率の高い磁気抵抗効果ヘッドを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive head which eliminates the above-mentioned disadvantages of the prior art, has excellent long-term reliability, and has a high reproduction efficiency.

[課題を解決するための手段] 本発明は、強磁性磁気抵抗効果素子と軟磁性バイアス
補助層とが非磁性導体層を介して積層され、かつ前記軟
磁性バイアス補助層がFeSiを主成分とする合金からなる
ことを特徴とする磁気抵抗効果ヘッドである。
Means for Solving the Problems According to the present invention, a ferromagnetic magnetoresistive element and a soft magnetic bias auxiliary layer are laminated via a non-magnetic conductor layer, and the soft magnetic bias auxiliary layer contains FeSi as a main component. This is a magnetoresistive effect head characterized by being made of an alloy having a characteristic as follows.

本発明において、FeSi中のSi含有量は、5〜15重量%
とすると、特に優れた特性が得られる。
In the present invention, the content of Si in FeSi is 5 to 15% by weight.
Then, particularly excellent characteristics can be obtained.

[作用] 軟磁性バイアス補助層として、非晶質材料の代わりに
結晶性の合金材料を用いれば熱的不安定性は改善される
が、通常の合金材料は比抵抗がMR素子部に用いられてい
るNiFe合金、NiCo合金等と同程度であるため、センス電
流がバイアス補助層にも分流してしまい、ヘッドの再生
効率を低下させてしまう。また、Co,Ni等の元素を含む
材料は比較的大きな磁気抵抗変化を示すため、ノイズの
原因となる。
[Operation] The thermal instability can be improved by using a crystalline alloy material instead of an amorphous material as the soft magnetic bias auxiliary layer, but the specific resistance of the normal alloy material is used in the MR element part. Since the current is about the same as that of a NiFe alloy, a NiCo alloy, or the like, the sense current is also diverted to the bias auxiliary layer, and the read efficiency of the head is reduced. In addition, materials containing elements such as Co and Ni show a relatively large change in magnetoresistance, which causes noise.

本発明では、軟磁性バイアス補助層として比抵抗が大
きく、かつ磁気抵抗変化率の小さなFeSiを主成分とする
合金を用いる。
In the present invention, an alloy mainly composed of FeSi having a large specific resistance and a small magnetoresistance change rate is used as the soft magnetic bias auxiliary layer.

FeにSiを添加すると軟磁気特性が改善され、比抵抗が
増加することはよく知られているが(近角聰信著、強磁
性体の物理、裳華房、昭和59年発行、下巻369ペー
ジ)、Siの増加とともに機械的強度が低下するので、通
常の軟磁性材料としては、Si含有量が1〜5重量%の組
成のものしか使われていない。しかし、本発明の磁気抵
抗効果ヘッドのバイアス補助層として用いる場合には、
薄膜として形成され、他の薄膜と積層した構造になって
いるため、機械的強度の低下は問題とならず、広い組成
範囲が使用可能である。
It is well known that the addition of Si to Fe improves the soft magnetic properties and increases the specific resistance. (Toshinobu Chikaku, Physics of Ferromagnetics, Shokabo, published in 1984, lower volume p. 369) ), Since the mechanical strength decreases with an increase in Si, only a soft magnetic material having a composition having a Si content of 1 to 5% by weight is used. However, when used as a bias auxiliary layer of the magnetoresistive head of the present invention,
Since it is formed as a thin film and has a structure laminated with another thin film, a decrease in mechanical strength is not a problem, and a wide composition range can be used.

[実施例] 以下に、本発明の実施例について、図面を参照して詳
細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の磁気抵抗効果ヘッドの一例の斜視図
である。第1図に示したように、ガラス、フェライト等
からなる表面の滑らかな絶縁性の非磁性基板1上にスパ
ッタ法あるいは蒸着法により、NiFe、NiCo等の強磁性体
からなるMR素子2を形成する。次いで、MR素子2上にT
i、Mo、Cr、Ta等の非磁性導体層3を上記と同様の方法
で形成し、更に非磁性導体層3上にFeSiを主成分とする
合金からなる軟磁性バイアス補助層4を上記と同様の方
法で形成する。なお、図中5はMR素子2、非磁性導体層
3および軟磁性バイアス補助層4に通電するための端子
である。
FIG. 1 is a perspective view of an example of the magnetoresistive head according to the present invention. As shown in FIG. 1, an MR element 2 made of a ferromagnetic material such as NiFe or NiCo is formed on a non-magnetic substrate 1 having a smooth surface made of glass, ferrite, or the like by sputtering or vapor deposition. I do. Next, T
A nonmagnetic conductor layer 3 of i, Mo, Cr, Ta, etc. is formed in the same manner as described above, and a soft magnetic bias auxiliary layer 4 made of an alloy containing FeSi as a main component is formed on the nonmagnetic conductor layer 3 as described above. It is formed by a similar method. In the figure, reference numeral 5 denotes a terminal for supplying a current to the MR element 2, the nonmagnetic conductor layer 3, and the soft magnetic bias auxiliary layer 4.

第2図は、種々の組成のFeSi薄膜をバイアス補助層と
したMRヘッドを試作し、その磁気抵抗変化率を非晶質軟
磁性薄膜であるCoZrTaをバイアス補助層として用いた場
合と比較した結果である。図中、aはFeSiをバイアス補
助層として用いた場合、bはCoZrTaをバイアス補助層と
して用いた場合を示す。この実験に用いたMRヘッドは以
下のようにして作製した。
Fig. 2 shows the results of a trial production of MR heads using FeSi thin films of various compositions as bias assist layers, and comparing the magnetoresistance ratio with the case where CoZrTa, an amorphous soft magnetic thin film, was used as the bias assist layer. It is. In the figure, a shows the case where FeSi is used as a bias auxiliary layer, and b shows the case where CoZrTa is used as a bias auxiliary layer. The MR head used in this experiment was manufactured as follows.

ガラス基板上に蒸着法を用いて、MR素子となる膜厚40
0Åのパーマロイ(Ni82重量%−Fe18重量%)膜を成膜
した。なお、蒸着中には100 Oeの磁界を永久磁石で印加
し、パーマロイ膜上に一軸異方性を付与した。次いで、
同じく蒸着法を用いて、非磁性導体となる膜厚200ÅのT
i膜を前記パーマロイ膜上に成膜した。さらに膜厚300Å
のバイアス補助層を、前述のTi層上にスパッタ法を用い
て成膜した。この時、FeSiはFeターゲット上にSi小片を
置き、Si小片の数でSi組成を変化させた。その後、この
積層体上に所定のフォトレジストパターンを形成し、Ar
ガス雰囲気でイオンエッチングを行い、長さ50μm、幅
5μmの矩形状のパターンに加工した。次いで、前述の
積層体にセンス電流を供給する端子をTiとAuの積層膜を
用いて形成した。以上のようなMRヘッドにセンス電流10
mAを流して外部磁界を印加し、磁気抵抗変化率を測定し
た。
Using a vapor deposition method on a glass substrate, a film thickness of 40
A 0 ° permalloy (Ni 82 wt% -Fe 18 wt%) film was formed. During the vapor deposition, a magnetic field of 100 Oe was applied by a permanent magnet to impart uniaxial anisotropy on the permalloy film. Then
Similarly, using a vapor deposition method, a T
An i film was formed on the permalloy film. Further film thickness 300 mm
Was formed on the above-mentioned Ti layer by a sputtering method. At this time, for the FeSi, a Si piece was placed on the Fe target, and the Si composition was changed by the number of the Si pieces. Thereafter, a predetermined photoresist pattern is formed on this laminate, and Ar
Ion etching was performed in a gas atmosphere to form a rectangular pattern having a length of 50 μm and a width of 5 μm. Next, terminals for supplying a sense current to the above-described laminate were formed using a laminate film of Ti and Au. A sense current of 10
mA was applied to apply an external magnetic field, and the magnetoresistance ratio was measured.

第2図から明らかなように、Si組成5〜15重量%の範
囲ではFeSi膜を用いたMRヘッドは、非晶質膜を用いたも
のと同等もしくはそれ以上の磁気抵抗変化率を示してい
る。これは、FeSiの比抵抗がCoZnMoよりも大きいことに
基づくものである。一方、Si含有量が15重量%を越える
ヘッドで磁気抵抗変化率が低下しているのはFeSi膜の軟
磁気特性が低下することに起因している。
As is clear from FIG. 2, in the range of 5 to 15% by weight of the Si composition, the MR head using the FeSi film has a magnetoresistance change equivalent to or higher than that using the amorphous film. . This is based on the fact that the specific resistance of FeSi is larger than that of CoZnMo. On the other hand, the decrease in the magnetoresistance ratio in the head in which the Si content exceeds 15% by weight is due to the decrease in the soft magnetic characteristics of the FeSi film.

次に上記の方法により作製したFeSi膜の組成がSi8重
量%のMRヘッドと、CoZrMo膜を用いたMRヘッドとを用い
て、時間による感度の低下を下記の如くして測定した。
Next, a decrease in sensitivity with time was measured as follows using an MR head using the FeSi film manufactured by the above method and having a composition of 8% by weight of Si and an MR head using a CoZrMo film.

上記2つのMRヘッドに10mAのセンス電流を流して外部
磁場に対する規格化感度を測定した。測定開始直後の感
度は、2つのヘッドとも0.03/Oeとほぼ同じ値であった
が、そのままセンス電流を流し続け、時間による感度の
低下を測定した。その結果を第3図に示す。図中、Aは
バイアス補助層としてFeSi膜を用いた場合、BはCoZrMo
膜を用いた場合をそれぞれ示す。
A sense current of 10 mA was passed through the two MR heads to measure the normalized sensitivity to an external magnetic field. The sensitivity immediately after the start of the measurement was almost the same as 0.03 / Oe for both heads, but the sense current was kept flowing as it was, and the decrease in sensitivity with time was measured. FIG. 3 shows the results. In the figure, A is a case where an FeSi film is used as a bias auxiliary layer, and B is CoZrMo.
The case where a film is used is shown.

第3図から明らかなように、本発明のMRヘッドは長期
間使用しても感度の低下から見られず、安定した性能を
有している。
As is clear from FIG. 3, the MR head of the present invention has stable performance without any decrease in sensitivity even after long-term use.

[発明の効果] 以上説明したように、本発明によれば、長期信頼性に
優れ、再生効率の高い磁気抵抗効果ヘッドが提供される
という効果を有する。
[Effects of the Invention] As described above, according to the present invention, there is an effect that a magnetoresistive head having excellent long-term reliability and high reproduction efficiency is provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の磁気抵抗効果ヘッドの一例の斜視図、
第2図はFeSi薄膜をバイアス補助層として用いたMRヘッ
ドの磁気抵抗変化率のSi組成依存性を示す図、第3図は
MRヘッドの再生感度の時間変化を示す図である。 1……非磁性基板 2……磁気抵抗効果素子 3……非磁性導体層 4……軟磁性バイアス補助層 5……端子
FIG. 1 is a perspective view of an example of a magnetoresistive head according to the present invention,
FIG. 2 is a diagram showing the Si composition dependence of the magnetoresistance ratio of an MR head using a FeSi thin film as a bias auxiliary layer, and FIG.
FIG. 6 is a diagram showing a change over time in the reproduction sensitivity of the MR head. DESCRIPTION OF SYMBOLS 1 ... Nonmagnetic substrate 2 ... Magnetoresistance effect element 3 ... Nonmagnetic conductor layer 4 ... Soft magnetic bias auxiliary layer 5 ... Terminal

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強磁性磁気抵抗効果素子と軟磁性バイアス
補助層とが非磁性導体層を介して積層され、かつ前記軟
磁性バイアス補助層がFeSiからなり、FeSi中のSi含有量
を5〜15重量%とすることを特徴とする磁気抵抗効果ヘ
ッド。
1. A ferromagnetic magnetoresistive element and a soft magnetic bias auxiliary layer are laminated via a non-magnetic conductor layer, and the soft magnetic bias auxiliary layer is made of FeSi. A magnetoresistive head characterized by 15% by weight.
JP9292089A 1989-04-14 1989-04-14 Magnetoresistive head Expired - Fee Related JP2867416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292089A JP2867416B2 (en) 1989-04-14 1989-04-14 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292089A JP2867416B2 (en) 1989-04-14 1989-04-14 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH02273310A JPH02273310A (en) 1990-11-07
JP2867416B2 true JP2867416B2 (en) 1999-03-08

Family

ID=14067923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292089A Expired - Fee Related JP2867416B2 (en) 1989-04-14 1989-04-14 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JP2867416B2 (en)

Also Published As

Publication number Publication date
JPH02273310A (en) 1990-11-07

Similar Documents

Publication Publication Date Title
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
JP2004281023A (en) Thin film perpendicular magnetic recording head, its fabrication process, and magnetic disk drive using same
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP3177184B2 (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
US6055135A (en) Exchange coupling thin film and magnetoresistive element comprising the same
KR100266518B1 (en) Megnetoresistive Effect Film and Manufacturing Method Therefor
JP2000500292A (en) Magnetic field sensor and method of manufacturing magnetic field sensor
JP3247535B2 (en) Magnetoresistance effect element
JP2867416B2 (en) Magnetoresistive head
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JP3164736B2 (en) Thin film magnetic head
JPH07118061B2 (en) Magnetoresistive head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JP2000276714A (en) Spin valve sensor fixing magnetization with current
JP2751700B2 (en) Magnetoresistive head
JP2569897B2 (en) Magnetoresistive head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPS63237204A (en) Magneto-resistance effect head
JPH08129718A (en) Magneto-resistance effect type magnetic sensor
JP3384494B2 (en) Magnetoresistive material and magnetic field sensor using the same
JP2621601B2 (en) Magnetoresistive head
JP3048571B2 (en) Exchange coupling film, magnetoresistive element using this exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP2699959B2 (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees