JP2001196657A - Magnetoresistive effect element and magnetic memory using it - Google Patents

Magnetoresistive effect element and magnetic memory using it

Info

Publication number
JP2001196657A
JP2001196657A JP2000001189A JP2000001189A JP2001196657A JP 2001196657 A JP2001196657 A JP 2001196657A JP 2000001189 A JP2000001189 A JP 2000001189A JP 2000001189 A JP2000001189 A JP 2000001189A JP 2001196657 A JP2001196657 A JP 2001196657A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
anisotropy
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000001189A
Other languages
Japanese (ja)
Other versions
JP3574773B2 (en
Inventor
Hidekazu Hayashi
秀和 林
Masashi Michijima
正司 道嶋
Ryoji Namikata
量二 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000001189A priority Critical patent/JP3574773B2/en
Priority to EP01100253A priority patent/EP1115164B1/en
Priority to DE60110944T priority patent/DE60110944T2/en
Priority to US09/755,905 priority patent/US6628542B2/en
Priority to CNB011113790A priority patent/CN1254870C/en
Publication of JP2001196657A publication Critical patent/JP2001196657A/en
Application granted granted Critical
Publication of JP3574773B2 publication Critical patent/JP3574773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain parpendicular magnetization by eliminating the influence of magnetic layer developing in a boundery between a magnetic layer and a thin nonmagnetic layer in a giant magnetoresistive effect element and a tunnel magnetoresistive effect element which use parpendicular magnetization. SOLUTION: This magnetoresistive effect element is constituted of at least a first magnetic layer, nonmagnetic layer, and second magnetic layer: the first magnetic layer is a ferromagnetic material having a low coercive force and parpendicular magnetic anisotropy, and the second magnetic layer is a ferromagnetic material having a high coercive force and parpendicular magnetic anisotropy and constituted of an amorphous alloy film made of rare-earth- transition metal having small saturation magnetism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は垂直磁気異方性を有
する磁性層を用いた磁気抵抗効果素子および該素子を用
いた磁気メモリに関するものである。
The present invention relates to a magnetoresistive element using a magnetic layer having perpendicular magnetic anisotropy and a magnetic memory using the element.

【0002】[0002]

【従来の技術】磁気磁性層と非磁性層を積層して得られ
る巨大磁気抵抗効果(GMR)素子やトンネル磁気抵抗
効果(TMR)素子は従来の異方性磁気抵抗効果(AM
R)素子と比較して大きな磁気抵抗変化率を有すること
から、磁気センサーとして高い性能が期待できる。GM
R素子については既にハードディスクドライブ(HD
D)の再生用磁気ヘッドとして実用化されている。一
方、TMR素子はGMR素子よりも更に高い磁気抵抗変
化率を有することから、磁気ヘッドのみならず、磁気メ
モリへの応用も考えられている。
2. Description of the Related Art A giant magnetoresistive (GMR) element or a tunnel magnetoresistive (TMR) element obtained by laminating a magnetic magnetic layer and a nonmagnetic layer is a conventional anisotropic magnetoresistive (AM) element.
R) High performance can be expected as a magnetic sensor because it has a larger magnetoresistance change rate than the element. GM
For the R element, a hard disk drive (HD
D) has been put to practical use as a reproducing magnetic head. On the other hand, since the TMR element has a higher magnetoresistance ratio than the GMR element, application to not only a magnetic head but also a magnetic memory is considered.

【0003】従来のTMR素子の基本的な構成例として
特開平9―106514号公報に示されている例を図3
に示す。図3に示すように、TMR素子は、第1の磁性
層31、絶縁層32、第2の磁性層33、反強磁性層3
4を積層したものである。ここで、第1の磁性層31お
よび第2の磁性層33は、Fe、Co、Ni、或はこれ
らの合金からなる強磁性体であり、反強磁性層34は、
FeMn,NiMn等であり、絶縁層32はAl23
ある。
FIG. 3 shows an example of a basic structure of a conventional TMR element disclosed in Japanese Patent Application Laid-Open No. 9-106514.
Shown in As shown in FIG. 3, the TMR element includes a first magnetic layer 31, an insulating layer 32, a second magnetic layer 33, and an antiferromagnetic layer 3.
4 are laminated. Here, the first magnetic layer 31 and the second magnetic layer 33 are ferromagnetic bodies made of Fe, Co, Ni, or an alloy thereof, and the antiferromagnetic layer 34 is
FeMn, NiMn, etc., and the insulating layer 32 is Al 2 O 3 .

【0004】また、図3の絶縁層32をCu等の導電性
を有する非磁性層に置き換えるとGMR素子となる。
When the insulating layer 32 shown in FIG. 3 is replaced with a nonmagnetic layer having conductivity such as Cu, a GMR element is obtained.

【0005】従来のGMR素子およびTMR素子では、
磁性層部分の磁化が面内方向であるため、狭トラック幅
の磁気ヘッドや高集積化磁気メモリのように素子寸法が
微細化すると、端部磁極で生じる反磁界の影響を強く受
けるようになる。このため磁性層の磁化方向が不安定と
なり、均一な磁化を維持することが困難になり、磁気ヘ
ッドおよび磁気メモリの動作不良を発生させることにな
る。
In the conventional GMR element and TMR element,
Since the magnetization of the magnetic layer portion is in the in-plane direction, when the element size is reduced as in a magnetic head having a narrow track width or a highly integrated magnetic memory, the magnetic field is strongly affected by a demagnetizing field generated at an end magnetic pole. . For this reason, the magnetization direction of the magnetic layer becomes unstable, and it becomes difficult to maintain uniform magnetization, which causes a malfunction of the magnetic head and the magnetic memory.

【0006】この欠点の解決方法として、垂直磁気異方
性を有する磁性層を用いた磁気抵抗効果素子が特開平1
1―213650号公報に開示されている。該特許の素
子構造を図4に示す。磁気抵抗効果素子は、低い保磁力
を有する垂直磁化膜からなる第1の磁性層41と、高い
保磁力を有する垂直磁化膜からなる第2の磁性層43の
間に非磁性層42が挟まれた構造をしている。なお、第
1の磁性層および第2の磁性層には希土類−遷移元素合
金のフェリ磁性膜、ガーネット膜、PtCo、PdCo
などが用いられている。
As a method of solving this drawback, a magnetoresistive element using a magnetic layer having perpendicular magnetic anisotropy is disclosed in Japanese Patent Application Laid-Open No. Hei.
It is disclosed in Japanese Patent Application Laid-Open No. 1-213650. FIG. 4 shows the device structure of this patent. In the magnetoresistive element, a nonmagnetic layer 42 is sandwiched between a first magnetic layer 41 made of a perpendicular magnetic film having a low coercive force and a second magnetic layer 43 made of a perpendicular magnetic film having a high coercive force. It has a structure. The first magnetic layer and the second magnetic layer have a ferrimagnetic film of a rare earth-transition element alloy, a garnet film, PtCo, PdCo.
Are used.

【0007】この場合、端部磁極は磁性膜表面に生じる
ことから、素子の微細化に伴う反磁界の増加は抑えられ
る。従って、磁性膜の垂直磁気異方性エネルギーが端部
磁極による反磁界エネルギーよりも十分大きければ、素
子の寸法に関係なく磁化を垂直方向に安定化させること
ができる。
In this case, since the end magnetic pole is formed on the surface of the magnetic film, an increase in the demagnetizing field due to miniaturization of the element can be suppressed. Therefore, if the perpendicular magnetic anisotropy energy of the magnetic film is sufficiently larger than the demagnetizing field energy by the end pole, the magnetization can be stabilized in the vertical direction regardless of the dimensions of the element.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
垂直磁気異方性を有する磁性層を用いた磁気抵抗効果素
子では磁性膜表面に端部磁極が発生する。GMR素子や
TMR素子に使用される非磁性層は非常に薄いため、一
方の磁性層と非磁性層の界面に発生する磁極が他方の磁
性層の磁化に及ぼす影響は非常に大きくなり、磁化を反
転することができなくなる可能性もある。従って、例え
ば磁気メモリに応用した場合には記憶情報を書き込めな
い或いは書き込んだ情報が消失すると言った問題が生じ
る。
However, in the magnetoresistive element using the magnetic layer having the perpendicular magnetic anisotropy, an end pole is generated on the surface of the magnetic film. Since the nonmagnetic layer used in the GMR element and the TMR element is very thin, the magnetic pole generated at the interface between one magnetic layer and the nonmagnetic layer has a very large effect on the magnetization of the other magnetic layer. There is also a possibility that it cannot be reversed. Therefore, for example, when applied to a magnetic memory, there arises a problem that stored information cannot be written or written information is lost.

【0009】そこで、本発明は上記課題を考慮し、磁性
層の磁化状態が絶縁層を介してもう一方の磁性層から受
ける漏れ磁界の影響を受けることなく安定に存在するこ
とのできる磁気抵抗効果素子およびそれを用いた磁気メ
モリを提供することを目的とする。
In view of the foregoing, the present invention has been made in consideration of the above problem, and has a magnetoresistance effect in which the magnetization state of a magnetic layer can exist stably without being affected by a leakage magnetic field received from another magnetic layer via an insulating layer. An object is to provide an element and a magnetic memory using the element.

【0010】[0010]

【課題を解決するための手段】本発明は、少なくとも第
1の磁性層、非磁性層、第2の磁性層から構成され、前
記第1および第2の磁性層が垂直磁気異方性を有する磁
気抵抗効果素子において、前記第1または第2の磁性層
のどちらか一方が室温付近に補償点を有するフェリ磁性
体で構成されることを特徴とする。
The present invention comprises at least a first magnetic layer, a non-magnetic layer, and a second magnetic layer, wherein the first and second magnetic layers have perpendicular magnetic anisotropy. In the magnetoresistive element, one of the first and second magnetic layers is made of a ferrimagnetic material having a compensation point near room temperature.

【0011】さらに、本発明は、前記磁気抵抗効果素子
において、前記非磁性層が絶縁体で構成されることを特
徴とする。
Further, the present invention is characterized in that in the magnetoresistance effect element, the nonmagnetic layer is made of an insulator.

【0012】また、本発明は、少なくとも第1の磁性
層、非磁性層、第2の磁性層から構成され、前記第1の
磁性層は低い保磁力および垂直磁気異方性を有する強磁
性体であり、前記第2の磁性層は高い保磁力および垂直
磁気異方性を有する強磁性体である磁気抵抗効果素子に
おいて、前記第2の磁性層は、小さな飽和磁化を有す
る、希土類−遷移金属からなる非晶質合金膜から構成さ
れることを特徴とする。
The present invention also provides a ferromagnetic material having at least a first magnetic layer, a non-magnetic layer, and a second magnetic layer, wherein the first magnetic layer has a low coercive force and perpendicular magnetic anisotropy. Wherein the second magnetic layer is a ferromagnetic material having a high coercive force and a perpendicular magnetic anisotropy, wherein the second magnetic layer has a small saturation magnetization; Characterized by comprising an amorphous alloy film made of

【0013】また、本発明は、少なくとも第1の磁性
層、非磁性層、第2の磁性層から構成され、前記第1お
よび第2の磁性層が垂直磁気異方性を有し、前記第1ま
たは第2の磁性層のどちらか一方が室温付近に補償点を
有するフェリ磁性体で構成される磁気抵抗効果素子を用
いた磁気メモリである。
Further, the present invention comprises at least a first magnetic layer, a non-magnetic layer, and a second magnetic layer, wherein the first and second magnetic layers have perpendicular magnetic anisotropy. This is a magnetic memory using a magnetoresistive element in which one of the first and second magnetic layers is made of a ferrimagnetic material having a compensation point near room temperature.

【0014】[0014]

【発明の実施の形態】以下、図をもとに本発明について
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings.

【0015】図1に本発明の磁気抵抗効果素子の概略構
成図を示す。本発明の磁気抵抗効果素子は、第1の磁性
層11、非磁性層12、第2の磁性層13で構成され
る。第1の磁性層11および第2の磁性層13は、いず
れも希土類金属(RE)と鉄族遷移金属(TM)の非晶
質合金垂直磁化膜からなる強磁性体、つまりフェリ磁性
体であり、RE−TM材料としては、二元合金(GdF
e、TbFe、GdCo、TbCoなど)或は三元合金
(GdFeCo、TbFeCo、GdTbFe、GdT
bCoなど)があげられる。
FIG. 1 is a schematic structural view of a magnetoresistive element according to the present invention. The magnetoresistive element according to the present invention includes a first magnetic layer 11, a nonmagnetic layer 12, and a second magnetic layer 13. Each of the first magnetic layer 11 and the second magnetic layer 13 is a ferromagnetic material composed of an amorphous alloy perpendicular magnetization film of a rare earth metal (RE) and an iron group transition metal (TM), that is, a ferrimagnetic material. , RE-TM materials include binary alloys (GdF
e, TbFe, GdCo, TbCo) or a ternary alloy (GdFeCo, TbFeCo, GdTbFe, GdT)
bCo).

【0016】第1の磁性層11をメモリ層とすると、第
1の磁性層は書込み磁界により書換えできる程度に保磁
力Hcが低くかつある程度の飽和磁化Msを有し、第2
の磁性層13は第1の磁性層11への影響を低減できか
つ外部磁界の影響を受けないように、飽和磁化Msが小
さくかつ保磁力Hcが大きいものとしなければならな
い。
Assuming that the first magnetic layer 11 is a memory layer, the first magnetic layer has a low coercive force Hc and a certain degree of saturation magnetization Ms to such an extent that it can be rewritten by a write magnetic field.
The magnetic layer 13 must have a small saturation magnetization Ms and a large coercive force Hc so that the influence on the first magnetic layer 11 can be reduced and the magnetic layer 13 is not affected by an external magnetic field.

【0017】そこで、RE−TM材料の二元合金の例と
してTbCo非晶質合金膜の室温における飽和磁化Ms
および保磁力Hcの組成依存性を図2に示すと、図2か
ら明らかなように、第2の磁性層13としてTb組成が
20〜23at%すなわち室温で補償点近傍組成のもの
を選択すると、第2の磁性層13は上記の条件を満足す
る。一方、第1の磁性層11としては上記の条件を満足
するためには上記の組成範囲以外が適している。
Therefore, as an example of a binary alloy of the RE-TM material, the saturation magnetization Ms of a TbCo amorphous alloy film at room temperature is considered.
FIG. 2 shows the composition dependency of the coercive force Hc. As is clear from FIG. 2, when the second magnetic layer 13 is selected to have a Tb composition of 20 to 23 at%, that is, a composition near the compensation point at room temperature, The second magnetic layer 13 satisfies the above conditions. On the other hand, in order to satisfy the above conditions, the first magnetic layer 11 has a composition other than the above composition range.

【0018】第2の磁性層13として補償点近傍組成を
選択すると飽和磁化Msはほとんど消失するが、フェリ
磁性体であることから、REおよびTMの各副格子の磁
化は十分の大きさを維持している。一方、磁気抵抗効果
は主にTMに依存すると考えられることから、飽和磁化
Msが消失する補償点近傍組成においても、十分大きな
磁気抵抗効果を得ることができる。
When the composition near the compensation point is selected as the second magnetic layer 13, the saturation magnetization Ms almost disappears, but since it is a ferrimagnetic material, the magnetization of the RE and TM sublattices maintains a sufficient magnitude. are doing. On the other hand, since the magnetoresistance effect is considered to mainly depend on TM, a sufficiently large magnetoresistance effect can be obtained even in the composition near the compensation point where the saturation magnetization Ms disappears.

【0019】非磁性層12として、従来のGMR素子で
使用されているCu等の導電性を有する非磁性層を用い
ることも、従来のTMR素子で使用されているAl23
膜を用いることもできる。
As the non-magnetic layer 12, a conductive non-magnetic layer such as Cu used in the conventional GMR element may be used, or the Al 2 O 3 used in the conventional TMR element may be used.
A membrane can also be used.

【0020】しかしながら、非磁性層として酸化膜を使
用すると、磁性層に使用している希土類金属が酸化され
る危険性があることから、絶縁性の非磁性層としては、
AlN、BN等のような窒化膜、或いはSi、ダイヤモ
ンド、DLC(ダイヤモンド・ライク・カーボン)等の
ような共有結合を有する絶縁膜を用いるのがよい。
However, if an oxide film is used as the nonmagnetic layer, there is a risk that the rare earth metal used in the magnetic layer is oxidized.
It is preferable to use a nitride film such as AlN or BN, or an insulating film having a covalent bond such as Si, diamond, DLC (diamond-like carbon), or the like.

【0021】また、従来のGMR素子およびTMR素子
と同様、非磁性層12として絶縁層を使用した方が大き
な磁気抵抗変化率を有することができる。
As in the case of the conventional GMR element and TMR element, the use of an insulating layer as the nonmagnetic layer 12 can provide a larger magnetoresistance ratio.

【0022】第1の磁性層11および第2の磁性層13
は、磁性層の膜厚が薄くなりすぎると熱的エネルギーに
よる影響で超常磁性化するため、磁性層の膜厚は50Å
以上必要であり、膜厚が厚すぎると微細な素子を加工す
ることが困難となるため、磁性層の膜厚は5000Å以
下がよい。
First magnetic layer 11 and second magnetic layer 13
Is that if the thickness of the magnetic layer becomes too thin, it becomes superparamagnetic due to the influence of thermal energy.
This is necessary. If the film thickness is too large, it becomes difficult to process a fine element. Therefore, the film thickness of the magnetic layer is preferably 5000 ° or less.

【0023】また、前記非磁性層12の膜厚は、TMR
素子の場合には、非磁性層12の膜厚が5Å以下である
と磁性層間で電気的にショートしてしまう可能性があ
り、膜厚が30Å以上である場合、電子のトンネル現象
が起きにくくなってしまうため、5Å以上30Å以下が
よい。一方、GMR素子では、非磁性層12の膜厚が厚
くなると素子抵抗が小さくなりすぎて磁気抵抗変化率も
低下するため、50Å以下がよい。
The nonmagnetic layer 12 has a thickness of TMR.
In the case of an element, if the thickness of the nonmagnetic layer 12 is 5 mm or less, there is a possibility that an electrical short circuit occurs between the magnetic layers. If the thickness is 30 mm or more, electron tunneling hardly occurs. Therefore, it is preferable that the angle be 5 ° or more and 30 ° or less. On the other hand, in the case of the GMR element, when the thickness of the nonmagnetic layer 12 is large, the element resistance becomes too small, and the magnetoresistance ratio is also reduced.

【0024】上述では、第1の磁性層11および第2の
磁性層13としてフェリ磁性体であるRE−TM合金を
使用したが、第1の磁性層としてはそれ以外に、CoC
r、CoPt等の垂直磁気異方性を有する通常の強磁性
体を使用することも可能である。
In the above description, the first magnetic layer 11 and the second magnetic layer 13 are made of a ferrimagnetic RE-TM alloy, but the first magnetic layer may be made of CoC.
It is also possible to use a normal ferromagnetic material having perpendicular magnetic anisotropy such as r or CoPt.

【0025】上記の磁気抗効果素子を磁気メモリに応用
する場合、第2の磁性層13として補償点近傍組成を選
択していることから、保磁力Hcが非常に大きくなる
が、キュリー点近傍まで加熱しながら磁界を印可するこ
とにより、容易に初期化することができる。
When the above-described magnetoresistive element is applied to a magnetic memory, the composition near the compensation point is selected as the second magnetic layer 13, so that the coercive force Hc becomes very large. The initialization can be easily performed by applying a magnetic field while heating.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、素子を
微細化しても端部磁極の影響を低減することができ、漏
れ磁界による擾乱を低減することができ、垂直磁化の磁
化状態を安定に保つことができる。
As described above, according to the present invention, even if the element is miniaturized, the influence of the end magnetic pole can be reduced, the disturbance due to the leakage magnetic field can be reduced, and the magnetization state of the perpendicular magnetization can be reduced. Can be kept stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果素子の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a magnetoresistive element of the present invention.

【図2】Tb−Co合金の飽和磁化Msおよび保磁力H
cのTb組成依存を示す図である。
FIG. 2 shows a saturation magnetization Ms and a coercive force H of a Tb—Co alloy.
It is a figure which shows Tb composition dependence of c.

【図3】従来のTMR素子の基本的な概略構成図であ
る。
FIG. 3 is a basic schematic configuration diagram of a conventional TMR element.

【図4】従来の垂直磁化を用いた磁気抵抗効果素子の概
略構成図である。
FIG. 4 is a schematic configuration diagram of a conventional magnetoresistance effect element using perpendicular magnetization.

【符号の説明】[Explanation of symbols]

11 第1の磁性層 12 非磁性層 13 第2の磁性層 31 第1の磁性層 32 非磁性層 33 第2の磁性層 34 反強磁性層 41 第1の磁性層 42 非磁性層 43 第2の磁性層 DESCRIPTION OF SYMBOLS 11 1st magnetic layer 12 non-magnetic layer 13 2nd magnetic layer 31 1st magnetic layer 32 non-magnetic layer 33 2nd magnetic layer 34 antiferromagnetic layer 41 1st magnetic layer 42 non-magnetic layer 43 2nd Magnetic layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南方 量二 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5D034 BA05 CA05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuji Minami 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka F-term (reference) 5D034 BA05 CA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも第1の磁性層、非磁性層、第
2の磁性層から構成され、前記第1および第2の磁性層
が垂直磁気異方性を有する磁気抵抗効果素子において、 前記第1または第2の磁性層のどちらか一方が室温付近
に補償点を有するフェリ磁性体で構成されることを特徴
とする磁気抵抗効果素子。
1. A magnetoresistive element comprising at least a first magnetic layer, a nonmagnetic layer, and a second magnetic layer, wherein the first and second magnetic layers have perpendicular magnetic anisotropy. A magnetoresistive element, wherein one of the first and second magnetic layers is made of a ferrimagnetic material having a compensation point near room temperature.
【請求項2】 前記請求項1の磁気抵抗効果素子におい
て、前記非磁性層が絶縁体で構成されることを特徴とす
る磁気抵抗効果素子。
2. The magnetoresistance effect element according to claim 1, wherein said nonmagnetic layer is made of an insulator.
【請求項3】 少なくとも第1の磁性層、非磁性層、第
2の磁性層から構成され、前記第1の磁性層は低い保磁
力および垂直磁気異方性を有する強磁性体であり、前記
第2の磁性層は高い保磁力および垂直磁気異方性を有す
る強磁性体である磁気抵抗効果素子であって、 前記第2の磁性層は、小さな飽和磁化を有する、希土類
−遷移金属からなる非晶質合金膜から構成されることを
特徴とする磁気抵抗効果素子。
3. A semiconductor device comprising at least a first magnetic layer, a non-magnetic layer, and a second magnetic layer, wherein the first magnetic layer is a ferromagnetic material having a low coercive force and a perpendicular magnetic anisotropy. The second magnetic layer is a magnetoresistive element which is a ferromagnetic material having high coercive force and perpendicular magnetic anisotropy, and the second magnetic layer is made of a rare earth-transition metal having a small saturation magnetization. A magnetoresistive element comprising an amorphous alloy film.
【請求項4】 少なくとも第1の磁性層、非磁性層、第
2の磁性層から構成され、前記第1および第2の磁性層
が垂直磁気異方性を有し、前記第1または第2の磁性層
のどちらか一方が室温付近に補償点を有するフェリ磁性
体で構成される磁気抵抗効果素子を用いたことを特徴と
する磁気メモリ。
4. A semiconductor device comprising at least a first magnetic layer, a non-magnetic layer, and a second magnetic layer, wherein the first and second magnetic layers have perpendicular magnetic anisotropy, and A magnetic memory characterized in that either one of the magnetic layers uses a magnetoresistive element composed of a ferrimagnetic material having a compensation point near room temperature.
JP2000001189A 2000-01-07 2000-01-07 Magnetoresistive element and magnetic memory using the same Expired - Fee Related JP3574773B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000001189A JP3574773B2 (en) 2000-01-07 2000-01-07 Magnetoresistive element and magnetic memory using the same
EP01100253A EP1115164B1 (en) 2000-01-07 2001-01-03 Magnetoresistive device and magnetic memory using the same
DE60110944T DE60110944T2 (en) 2000-01-07 2001-01-03 Magnetoresistive device and magnetic storage element using the same
US09/755,905 US6628542B2 (en) 2000-01-07 2001-01-05 Magnetoresistive device and magnetic memory using the same
CNB011113790A CN1254870C (en) 2000-01-07 2001-01-06 Magnet resistor and magnetic memory using the same magnetoresistance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001189A JP3574773B2 (en) 2000-01-07 2000-01-07 Magnetoresistive element and magnetic memory using the same

Publications (2)

Publication Number Publication Date
JP2001196657A true JP2001196657A (en) 2001-07-19
JP3574773B2 JP3574773B2 (en) 2004-10-06

Family

ID=18530439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001189A Expired - Fee Related JP3574773B2 (en) 2000-01-07 2000-01-07 Magnetoresistive element and magnetic memory using the same

Country Status (1)

Country Link
JP (1) JP3574773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078184A (en) * 2001-08-31 2003-03-14 Canon Inc Dry etching working method and work piece and structure using magnetic resistance effect film
JP2005503669A (en) * 2001-09-20 2005-02-03 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Magnetic memory for writing with spin-polarized current using amorphous ferrimagnetic alloy and writing method thereof
JP2005109477A (en) * 2003-09-26 2005-04-21 Samsung Electronics Co Ltd Magnetoresistive memory containing mtj layer comprising tunnel film of constant thickness, and manufacturing method thereof
JP2005524225A (en) * 2002-04-23 2005-08-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Memory storage device with heating element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078184A (en) * 2001-08-31 2003-03-14 Canon Inc Dry etching working method and work piece and structure using magnetic resistance effect film
JP2005503669A (en) * 2001-09-20 2005-02-03 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Magnetic memory for writing with spin-polarized current using amorphous ferrimagnetic alloy and writing method thereof
JP2005524225A (en) * 2002-04-23 2005-08-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Memory storage device with heating element
JP2005109477A (en) * 2003-09-26 2005-04-21 Samsung Electronics Co Ltd Magnetoresistive memory containing mtj layer comprising tunnel film of constant thickness, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3574773B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US6628542B2 (en) Magnetoresistive device and magnetic memory using the same
JPS59210630A (en) Method of producing magnetic thin film structure
JP2003526913A (en) Magnetic element having bias magnetic layer structure
JP2003110094A (en) Magnetic storage device using vertically magnetized film and its manufacturing method
JP2002280639A (en) Magnetoresistive element, memory element using the same, memory cell, and recording/reproducing method of memory element
JPH10312513A (en) Thin film magnetic head
JP3550524B2 (en) Magnetoresistive element and magnetic memory using the same
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP3559722B2 (en) Magnetoresistive element, solid-state memory
JP3524486B2 (en) Magnetoresistance element and memory element using the element
KR100258165B1 (en) Magnetoresistive effect element and magnetoresistive effect sensor
US5668523A (en) Magnetoresistive sensor employing an exchange-bias enhancing layer
JP3574773B2 (en) Magnetoresistive element and magnetic memory using the same
JP3544638B2 (en) Magnetoresistive element and magnetic memory using the same
US6442064B1 (en) Magnetic tunnel junction element and magnetic memory using the same
JP3653442B2 (en) Magnetic memory and recording method thereof
JP2002216333A (en) Magnetic recording medium and magnetic recording machine
JP3647306B2 (en) Magnetoresistive element and magnetoresistive memory element
JP3515940B2 (en) Magnetic tunnel junction device and magnetic memory using the same
JP2001273757A (en) Magnetic memory and recording method for the same
JP2001267522A (en) Magnetic memory element and magnetic memory
WO2011096312A1 (en) Tunnel magnetoresistance effect element, and magnetic memory cell and magnetic random access memory employing same
JPH09260744A (en) Magnetoresistance effect element and magnetic head with it
JPH06325329A (en) Thin film magnetic head
JP3350311B2 (en) Magnetic thin film memory element and magnetic thin film memory

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees