JPH02304708A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH02304708A
JPH02304708A JP12420989A JP12420989A JPH02304708A JP H02304708 A JPH02304708 A JP H02304708A JP 12420989 A JP12420989 A JP 12420989A JP 12420989 A JP12420989 A JP 12420989A JP H02304708 A JPH02304708 A JP H02304708A
Authority
JP
Japan
Prior art keywords
soft magnetic
layer
head
magnetic field
amorphous soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12420989A
Other languages
Japanese (ja)
Other versions
JPH07118059B2 (en
Inventor
Kazuhiko Yamada
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12420989A priority Critical patent/JPH07118059B2/en
Publication of JPH02304708A publication Critical patent/JPH02304708A/en
Publication of JPH07118059B2 publication Critical patent/JPH07118059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain an MR head where a suitable bias level is impressed with a small bias current by laminating a ferro-magneto-resistance effect element and a non-crystal soft magnetic substance layer through a non-magnetic conductor layer and composing the non-crystal soft magnetic substance layer with the material which defines Co, Ta and Mo as main components. CONSTITUTION:As the non-crystal soft magnetic substance layer, a CoTaMo film layer 7 (82%Co-6%Ta-12%Mo, atom %) is filmed on a non-magnetic conduc tor layer 2. Afterwards, a photo-regist pattern in a prescribed shape is formed on a laminated body 2 and ion etching is executed in a gaseous Ar atmosphere. Then, the laminated body is worked to a rectangular pattern. Next, a terminal 6 is formed to supply a sense current I to the laminated body and the MR head is prepared. Namely, when the CoTaMo film is used as the non-crystal soft magnetic substance layer 5, the satisfactory bias level, for which a bias angle is made almost 45 deg., can be obtained. Thus, the MR head for which the suitable bias level is impressed even by the small bias current and which is provided with satisfactory linear response and high reproducing efficiency can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記憶媒体に出き込まれた磁気的情報を、磁
気抵抗効果を利用して読み出す強磁性磁気抵抗効果素子
(以下、MR素子と略記する)を具備した磁気抵抗効果
ヘット(以下、MRヘッドと略記する)に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a ferromagnetic magnetoresistive element (hereinafter referred to as an MR element) that reads magnetic information written into a magnetic storage medium using the magnetoresistive effect. The present invention relates to a magnetoresistive head (hereinafter abbreviated as MR head) equipped with a magnetoresistive head (hereinafter abbreviated as MR head).

[従来の技術] 周知の如く、MR素子を磁気記憶媒体に書き込まれた磁
気的情報に対して線形応答性を甲する高効率の再生古川
磁気ヘッドとして使用覆る場合には、MR素子に流すセ
ンス電流IとMR素子の磁化Mのなす角度θ(以下、バ
イアス角度と称する)を所定の値(望ましくは45度)
に設定するバイアス手段を具備しなければならない。
[Prior Art] As is well known, when an MR element is used as a highly efficient reproducing Furukawa magnetic head that has a linear response to magnetic information written on a magnetic storage medium, the sense flowing through the MR element is used. The angle θ (hereinafter referred to as bias angle) formed by the current I and the magnetization M of the MR element is set to a predetermined value (preferably 45 degrees).
Bias means shall be provided to set the

上述のバイアス手段としては、種々の方法が開示されて
いるが、この中で実願昭51048201号に開示され
たMRヘットにあいでは、MR素子上に非磁性導体層と
非晶質軟磁性体層とを順次積層した構造により良好なバ
イアス角度θが得られ、線形応答性に優れたMRヘッド
が実現できることが示されている。
Various methods have been disclosed as the above-mentioned bias means, but among these, the MR head disclosed in Utility Model Application No. 51048201 uses a nonmagnetic conductor layer and an amorphous soft magnetic material on the MR element. It has been shown that an excellent bias angle θ can be obtained by a structure in which layers are sequentially laminated, and an MR head with excellent linear response can be realized.

即ら、第4図に示すように、ガラス、フェライト等から
なる表面の滑らかな絶縁性基板(図示せず)上に、スパ
ッタ法ないしは蒸着法により、強磁性体薄膜からなるM
R索子1(例えば膜厚200〜50〇へのNiFe合金
)を形成し、前記MR素子1上にT i、Mo、Cr、
’la、W等の非磁性導体層2を同様の方法で形成し、
更に前記非磁性導体層2上に非晶質軟磁性体層5を同様
な方法で形成した構造を有するMRヘッドを開示してい
る。
That is, as shown in FIG. 4, M made of a ferromagnetic thin film is deposited by sputtering or vapor deposition on an insulating substrate (not shown) with a smooth surface made of glass, ferrite, etc.
An R element 1 (for example, a NiFe alloy with a film thickness of 200 to 500) is formed, and Ti, Mo, Cr,
A non-magnetic conductor layer 2 such as 'la, W, etc. is formed in the same manner,
Furthermore, an MR head having a structure in which an amorphous soft magnetic layer 5 is formed on the nonmagnetic conductor layer 2 by a similar method is disclosed.

こごで、6はMR素子1、非磁性導体層2および非晶質
軟磁性体層5の積層体に通電するための端子である。
Here, reference numeral 6 denotes a terminal for supplying current to the laminate of the MR element 1, the nonmagnetic conductor layer 2, and the amorphous soft magnetic layer 5.

このようなMRヘッドにおいては、端子6から供給され
るセンス電流Iは、MR素子1にのみならず非磁性導体
層2および非晶質磁性体層5にも分流する。従って、こ
のような構造においては、MR素子1および非磁性導体
層2に分流したセンス電流■により、非晶質軟磁性体層
5の面内を通りかつセンス電流Iの方向と垂直方向の磁
界が発生し、この磁界により非晶質軟磁性体層5の磁化
方向が回転する。このため、非晶質軟磁性体層5におけ
る磁化は、非晶質軟磁性体層5の周囲に前記磁化の方向
とは逆方向の磁界を生じ、その一部はMR素子1に印加
される。一方、非晶質軟磁性体図5および非磁性導体H
2に分流したセンス電流Iにより、MR素子1の面内を
通りセンス電流lと垂直方向の磁界が生じ、この磁界の
方向は前述の非晶質軟磁性体層5の磁化によって発生す
る磁界の方向と一致する。つまり、非晶質軟磁性体層5
の磁化によって発生する磁界とセンス電流Iによって生
じる磁界が、fVIR素子1にバイアス磁界として印加
される。このバイアス磁界は、MR索子1の磁化をセン
ス電流Iに対して回転ざ甘、MR素子のバイアス角度θ
を所定の値(理想的には45度)とし、線形応答性に優
れたMRヘッドが実現される。
In such an MR head, the sense current I supplied from the terminal 6 is branched not only to the MR element 1 but also to the nonmagnetic conductor layer 2 and the amorphous magnetic layer 5. Therefore, in such a structure, the sense current (IV) shunted to the MR element 1 and the non-magnetic conductor layer 2 generates a magnetic field that passes within the plane of the amorphous soft magnetic layer 5 and in a direction perpendicular to the direction of the sense current I. is generated, and this magnetic field rotates the magnetization direction of the amorphous soft magnetic layer 5. Therefore, the magnetization in the amorphous soft magnetic layer 5 generates a magnetic field around the amorphous soft magnetic layer 5 in a direction opposite to the direction of the magnetization, a part of which is applied to the MR element 1. . On the other hand, amorphous soft magnetic material Figure 5 and non-magnetic conductor H
2, a magnetic field is generated in the plane of the MR element 1 in a direction perpendicular to the sense current I, and the direction of this magnetic field is similar to that of the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 described above. Match the direction. In other words, the amorphous soft magnetic layer 5
A magnetic field generated by the magnetization and a magnetic field generated by the sense current I are applied to the fVIR element 1 as a bias magnetic field. This bias magnetic field rotates the magnetization of the MR element 1 with respect to the sense current I, and the bias angle θ of the MR element
is set to a predetermined value (ideally 45 degrees), and an MR head with excellent linear response is realized.

[発明が解決しようとする課題] ところで、前)ホの構造、即ちMR素子1、非磁性導体
層2および非晶質軟磁性体層5を積層した構造を有する
MRヘッドにおいては、非晶質軟磁性体層5としてC0
Zr、CoZrNb等を用いた場合、これらの異方性磁
界Hkが大きいため、通常のセンス電流の範囲(5〜2
0mA>では非晶質軟磁性体層5の磁化方向が十分に回
転せず、良好なバイアスレベルを実現できなかった。こ
のため、MRヘッドの線形応答性が損なわれ、再生効率
が低下すると(1)う問題点があった。
[Problems to be Solved by the Invention] By the way, in the MR head having the structure of (e) above, that is, the structure in which the MR element 1, the nonmagnetic conductor layer 2, and the amorphous soft magnetic layer 5 are laminated, the amorphous C0 as the soft magnetic layer 5
When Zr, CoZrNb, etc. are used, their anisotropic magnetic field Hk is large, so the normal sense current range (5 to 2
0 mA>, the magnetization direction of the amorphous soft magnetic layer 5 did not rotate sufficiently, and a good bias level could not be achieved. For this reason, there is a problem (1) in that the linear response of the MR head is impaired and the reproduction efficiency is reduced.

一方、異方性磁界)−1にの大きな非晶質材料を非晶質
軟磁性体層5として用い、しかも良好なバイアスレベル
を実現する一つの手段として、センス電流の値を大きく
することが考えられる。しかし、このことはセンス電流
による発熱を増加させ、MR素子の電気抵抗の熱的なド
リフトや熱雑音を生じ、MRヘッドの特性を損なうもの
であった。また、発熱による断線も時として発生し、デ
バイスの信頼性を損ねていた。
On the other hand, one way to use an amorphous material with a large anisotropic magnetic field (-1) as the amorphous soft magnetic layer 5 and to achieve a good bias level is to increase the value of the sense current. Conceivable. However, this increases heat generation due to the sense current, causes thermal drift in the electrical resistance of the MR element and thermal noise, and impairs the characteristics of the MR head. In addition, disconnections due to heat generation sometimes occurred, impairing the reliability of the device.

更に、非晶質軟磁性体層5となる非晶質軟磁性材料を成
膜後、困難軸方向に磁界を印加しながら熱処理し、異方
性磁界1−1kを弱めるという手段も考えられるが、磁
界中での熱処理であることから、MR素子となるNiF
e膜に磁気的な分散性が発生し、バルクハウゼンノイズ
が増加するという問題があった。また、熱処理中にMR
素子1、非磁性導体層2あるいは非晶質軟磁性体層5の
各層間で相互拡散膏起こし、MR素子1あるいは非晶質
軟磁性体層5の磁気特性が劣化するという問題もあった
Furthermore, after forming the amorphous soft magnetic material that will become the amorphous soft magnetic layer 5, heat treatment may be performed while applying a magnetic field in the difficult axis direction to weaken the anisotropic magnetic field 1-1k. , since the heat treatment is performed in a magnetic field, the NiF that becomes the MR element
There was a problem in that magnetic dispersion occurred in the e-film and Barkhausen noise increased. In addition, MR during heat treatment
There is also the problem that mutual diffusion occurs between the elements 1, the nonmagnetic conductor layer 2, or the amorphous soft magnetic layer 5, and the magnetic properties of the MR element 1 or the amorphous soft magnetic layer 5 deteriorate.

従って、通常のセンス電流■の範囲(5〜2゜mA)で
磁化が回転し、M、R素子1に十分なバイアスレベルを
付与するため、異方性磁界)−1kが小さな軟磁性材料
を非晶質軟磁性体層5として用いることが、前述した問
題点の本質的な解決を図るうえで重要である。
Therefore, the magnetization rotates in the range of the normal sense current (5 to 2 mA), and in order to provide a sufficient bias level to the M and R elements 1, a soft magnetic material with a small anisotropic magnetic field (-1k) is used. It is important to use it as the amorphous soft magnetic layer 5 in order to essentially solve the above-mentioned problems.

本発明は、以上述べたような従来の事情に対処してなさ
れたもので、小さなバイアス電流で適切なバイアスレベ
ルが印加されるMRヘッドを提供することを目的とする
The present invention has been made in response to the conventional circumstances as described above, and an object of the present invention is to provide an MR head in which an appropriate bias level can be applied with a small bias current.

[課題を解決するための手段] 本発明は、強磁性磁気抵抗効果素子と非晶質軟磁性体層
とが非磁性導体層を介して積層され、かつ前記非晶質軟
磁性体層がCo、Taおよびlvl。
[Means for Solving the Problems] The present invention provides a structure in which a ferromagnetic magnetoresistive element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductive layer interposed therebetween, and the amorphous soft magnetic layer is made of Co. , Ta and lvl.

を主成分とする材料からなることを特徴とする磁気抵抗
効果ヘッドである。
This is a magnetoresistive head characterized by being made of a material whose main component is

[作用] 第2図は本発明によるMRヘッドのバイアスレベルと非
晶質軟磁性体層をなす軟磁性材料の異方性磁界Hkとの
関係を示す計算機シミュレーション結果を示す図である
。ここで、センス電流の値は10 m八とし、MR素子
の膜厚は400人、飽和磁化MSは800 emu/c
c、異方性磁界Hkは40e、比抵抗ρは20μΩ・c
m、抵抗変化率△ρ/ρは2%であり、非磁性導体層の
膜厚は200人、ρは50μΩ・cmとした。また、非
晶質軟磁性体層の膜厚は300人、飽和磁化MSは80
0 emu/cc、比抵抗ρは100μΩ・cmとした
。更に、バイアスレベルの定義は、第3図に示したよう
に、MR素子が充分に飽和するのに足る士ト10の外部
磁界ト1を印加したときの最大抵抗変化△Rmaxと、
外部磁界がOの時と±Hoの外部磁界を与えた時の抵抗
の差△Rとの比とした。即ち、 バイアスレベル=ΔR/△Rmaxである。
[Operation] FIG. 2 is a diagram showing the results of a computer simulation showing the relationship between the bias level of the MR head according to the present invention and the anisotropic magnetic field Hk of the soft magnetic material forming the amorphous soft magnetic layer. Here, the value of the sense current is 10 m8, the film thickness of the MR element is 400 emu/c, and the saturation magnetization MS is 800 emu/c.
c, anisotropic magnetic field Hk is 40e, specific resistance ρ is 20μΩ・c
m, the resistance change rate Δρ/ρ was 2%, the thickness of the nonmagnetic conductor layer was 200, and ρ was 50 μΩ·cm. In addition, the thickness of the amorphous soft magnetic layer is 300 mm, and the saturation magnetization MS is 80 mm.
0 emu/cc, and the specific resistance ρ was 100 μΩ·cm. Furthermore, the definition of bias level is, as shown in FIG. 3, the maximum resistance change ΔRmax when an external magnetic field 10 of 10 which is sufficient to saturate the MR element is applied, and
It was taken as the ratio of the difference ΔR in resistance when the external magnetic field is O and when an external magnetic field of ±Ho is applied. That is, bias level=ΔR/ΔRmax.

第2図より明らかな通り、異方性磁界Hkの値として8
0e以上ではバイアスレベルにして約0.6以上となり
、MR素子に不適切なバイアスが印加されることがわか
る。非晶質軟磁性体層をなす非晶質軟磁性体材料の異方
性磁界Hkが80e未満では、バイアスレベルはほぼ一
定で約0.5の理想的な値を示している。従って、非晶
質軟磁性材料の異方性磁界Hkを80e未満とすること
で、纜れた線形応答性と再生効率を有するMRヘッドか
1qられる。
As is clear from Figure 2, the value of the anisotropic magnetic field Hk is 8.
It can be seen that above 0e, the bias level becomes about 0.6 or above, and an inappropriate bias is applied to the MR element. When the anisotropic magnetic field Hk of the amorphous soft magnetic material forming the amorphous soft magnetic layer is less than 80e, the bias level is approximately constant and exhibits an ideal value of about 0.5. Therefore, by setting the anisotropic magnetic field Hk of the amorphous soft magnetic material to less than 80e, an MR head having a highly linear response and reproduction efficiency can be obtained by 1q.

本発明者は、上述のシミュレーション結果を参考として
、種々のCo−金属系非晶質軟磁性材料を蒸着法あるい
はスパッタ法を用いて薄膜化し、その異方性磁界Hkを
VSM (振動試料型磁力計)やB−HカーブI・シー
1ノーを用いて測定した結果、表−1に示すような結果
を1qた。
Referring to the above simulation results, the present inventors thinned various Co-metallic amorphous soft magnetic materials by vapor deposition or sputtering, and applied the anisotropic magnetic field Hk to VSM (vibrating sample magnetic field). As a result of measurement using B-H Curve I/C1NO, the results shown in Table 1 were obtained.

表  −1 表−1に示したように、COTaMo非晶質材料におい
て4〜60eの異方性磁界か1qられており、第2図に
示したシミュレーション結果を満足している。つまり、
COTaMo膜を非晶質軟磁性体@5として用いること
により、バイアス角度かほぼ45度となる良好なバイア
スレベルが得られ、高い再生効率を持つMR/\ツドが
実現される。
Table 1 As shown in Table 1, an anisotropic magnetic field of 4 to 60 e is applied to 1 q in the COTaMo amorphous material, which satisfies the simulation results shown in FIG. 2. In other words,
By using the COTaMo film as the amorphous soft magnetic material@5, a good bias level with a bias angle of approximately 45 degrees can be obtained, and MR/@D with high reproduction efficiency can be realized.

[実施例] 次に本発明の実施例について、図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

実施例1 第1図は、本発明の一実施例の構成図である。Example 1 FIG. 1 is a configuration diagram of an embodiment of the present invention.

第1図において、カラス等の非磁性基板(図示せず)上
に蒸着法を用いてMR素子1となる膜厚400人のバー
?ロイ(Ni82%−Fe18%、Φ1%)膜を成膜し
た。なお、蒸着時には1000eの磁界を永久磁石で印
加し、パーマロイ膜に一軸異方性を付与した。次いで、
同じく蒸着法を用いて非磁性導体層2となる膜厚200
へのTi膜を前記パーマロイ膜上に成膜した。更に、非
晶質軟磁性体層として、膜厚300人、異方性磁界1−
1に50eのCoTaMo膜層7 (Co 82%−1
−a6%−Mo12%、j皇子%)を前jホのTi膜上
に蒸着法を用いて成膜した。その後、この積層体上に所
定形状のフ4トレジストパターンを形成し、△rカス雰
囲気中でイオンエツチングを行い、長ざ]]0廊、幅5
μ7+1の矩形状のパターンに加工した。
In FIG. 1, the MR element 1 is formed by using a vapor deposition method on a non-magnetic substrate (not shown) such as glass, and the film thickness is 400 mm. A alloy (82% Ni-18% Fe, 1% Φ) film was formed. Note that during the deposition, a magnetic field of 1000 e was applied using a permanent magnet to impart uniaxial anisotropy to the permalloy film. Then,
The thickness of the non-magnetic conductor layer 2 is 200 mm using the same vapor deposition method.
A Ti film was formed on the permalloy film. Furthermore, as an amorphous soft magnetic layer, a film thickness of 300 mm and an anisotropic magnetic field of 1-
1 to 50e CoTaMo film layer 7 (Co 82%-1
-A6%-Mo12%, J-Oji%) was formed into a film on the Ti film of the previous J-ho using a vapor deposition method. After that, a four-dimensional resist pattern with a predetermined shape is formed on this laminate, and ion etching is performed in a △r gas atmosphere.
It was processed into a rectangular pattern of μ7+1.

ここで、エツチング条件は、加速電圧:  500V、
A rカス1土カニ  0.1 mrorrである。
Here, the etching conditions are: acceleration voltage: 500V;
A r 1 soil crab 0.1 mrorr.

次いで、前述の積層体にセンス電流Iを供給づる端子6
を集積化薄膜技術を用いて形成し、MRヘットを作製し
た。なお、端子6は王iとAUの積層蒸着膜を使用し、
膜厚は各々50人、0.5μmC゛ある。
Next, a terminal 6 is connected to supply the sense current I to the above-mentioned stacked body.
was formed using integrated thin film technology to produce an MR head. In addition, the terminal 6 uses a laminated vapor deposited film of Oi and AU,
The film thickness was 0.5 μmC for 50 people each.

以上のような構成を持つ本実施例によるtVIRヘット
においては、センス電流Iか5〜15…AFMR素子1
のバイアス角度θかほぼ45度に設定できることか確認
され、良好な線形応答性と高い再生効率を有するMRヘ
ットが実現された。
In the tVIR head according to this embodiment having the above-described configuration, the sense current I is 5 to 15...AFMR element 1.
It was confirmed that the bias angle θ could be set to approximately 45 degrees, and an MR head with good linear response and high reproduction efficiency was realized.

なお、以上の実施例においては、MR素子、非磁性導体
層、COTaMo膜層の順序で積層する例のみについて
言及したが、Co王aMo膜層、非磁性導体層、MR素
子の順序で積層したMRヘッドにおいても優れた線形応
答性と高い再生効率が17られた。また、非磁性導体層
をなす材料はTiに限定されるものではなく、例えばT
a、MolWあるいはこれらの合金等を使用しても構わ
ない。更に、実施例中のCoTaMo膜の組成は一例で
あり、適用されるMRヘッドの構造、仕様等によって他
の組成を用いても構わない。勿論この場合、CoZrM
o膜の磁気特性、特に異方性磁界ト1kを劣化させない
組成であることは言うまでもない。また、磁気特性、特
に異方性磁界Hkを劣化させない範囲であれば、Co、
Ta、MoO40元素をCoTaMo膜中に添加しても
差し支えない。
In addition, in the above embodiment, only the example in which the MR element, the nonmagnetic conductor layer, and the COTaMo film layer are laminated in this order has been mentioned, but it is also possible to laminate in the order of the Co-O-Al-AMo film layer, the nonmagnetic conductor layer, and the MR element. The MR head also exhibited excellent linear response and high reproduction efficiency. Furthermore, the material forming the nonmagnetic conductor layer is not limited to Ti, for example, T.
a, MolW, or an alloy thereof may be used. Furthermore, the composition of the CoTaMo film in the examples is just an example, and other compositions may be used depending on the structure, specifications, etc. of the applied MR head. Of course, in this case, CoZrM
Needless to say, the composition does not deteriorate the magnetic properties of the O film, especially the anisotropic magnetic field 1k. In addition, Co, as long as it does not deteriorate the magnetic properties, especially the anisotropic magnetic field Hk,
There is no problem even if Ta and MoO40 elements are added to the CoTaMo film.

比較例1 非晶質軟磁性体層を膜厚300人、異方性磁界Hk i
60eのC0Zr層とした以外は実施例と金く同様にし
てMRヘッドを作製した。このMRヘッドにおいては、
センス電流を35〜40 mA程度流しても充分なバイ
アスがMR素子に印加されず、本発明によるMRヘッド
に比較して、再生効率が30〜50%程度小さく、実用
に供することができないことが明らかとなった。
Comparative Example 1 Amorphous soft magnetic layer with a thickness of 300 mm and an anisotropic magnetic field Hk i
An MR head was manufactured in the same manner as in the example except that a 60e C0Zr layer was used. In this MR head,
Even if a sense current of about 35 to 40 mA is passed, a sufficient bias is not applied to the MR element, and the reproduction efficiency is about 30 to 50% lower than the MR head according to the present invention, making it impossible to put it into practical use. It became clear.

また、大きな異方性磁界Hk、を有する伯の非晶質軟磁
性材料、即ら、COT r 、coHt、c。
Moreover, amorphous soft magnetic materials having a large anisotropic magnetic field Hk, namely COTr, coHt, c.

ZrNb、C0ZrHf、CoZrT iを非晶質軟磁
性体層として用いたMRヘッドにおいても、本比較例の
MRヘッドと同様に、充分なバイアスレベルが得られず
、再生効率が小さかった。
Even in the MR head using ZrNb, COZrHf, or CoZrTi as the amorphous soft magnetic layer, a sufficient bias level could not be obtained and the reproduction efficiency was low, similar to the MR head of this comparative example.

[発明の効果] 以上説明したように、本発明によれば15mA程度の小
ざなバイアス電流でも適切なバイアスレベルが印加され
、優れた線形応答性と高い再生効率を持つMRヘッドが
実現される。
[Effects of the Invention] As described above, according to the present invention, an appropriate bias level can be applied even with a small bias current of about 15 mA, and an MR head with excellent linear response and high reproduction efficiency can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図はMR/\
ツドのバイアスレベルと非晶質軟磁性体層を形成する軟
磁性材料の異方性磁界との関係を示す特性図、第3図は
バイアスレベルを説明するための説明図、第4図はMR
ヘッドを説明するための説明図である。 1・・・MR素子 2・・・非磁性導体層 5・・・非晶質軟磁性体層 6・・・端子 7−COT a M O膜層
Figure 1 is a configuration diagram of an embodiment of the present invention, and Figure 2 is MR/\
A characteristic diagram showing the relationship between the bias level of the magnet and the anisotropic magnetic field of the soft magnetic material forming the amorphous soft magnetic layer. Figure 3 is an explanatory diagram for explaining the bias level. Figure 4 is MR.
FIG. 3 is an explanatory diagram for explaining a head. 1...MR element 2...Nonmagnetic conductor layer 5...Amorphous soft magnetic layer 6...Terminal 7-COT a MO film layer

Claims (1)

【特許請求の範囲】[Claims] (1)強磁性磁気抵抗効果素子と非晶質軟磁性体層とが
非磁性導体層を介して積層され、かつ前記非晶質軟磁性
体層がCo、TaおよびMoを主成分とする材料からな
ることを特徴とする磁気抵抗効果ヘッド。
(1) A ferromagnetic magnetoresistive element and an amorphous soft magnetic layer are laminated with a nonmagnetic conductive layer interposed therebetween, and the amorphous soft magnetic layer is made of a material containing Co, Ta, and Mo as main components. A magnetoresistive head characterized by comprising:
JP12420989A 1989-05-19 1989-05-19 Magnetoresistive head Expired - Fee Related JPH07118059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12420989A JPH07118059B2 (en) 1989-05-19 1989-05-19 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12420989A JPH07118059B2 (en) 1989-05-19 1989-05-19 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH02304708A true JPH02304708A (en) 1990-12-18
JPH07118059B2 JPH07118059B2 (en) 1995-12-18

Family

ID=14879696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12420989A Expired - Fee Related JPH07118059B2 (en) 1989-05-19 1989-05-19 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JPH07118059B2 (en)

Also Published As

Publication number Publication date
JPH07118059B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
JPH11354860A (en) Spin valve magnetic conversion element and magnetic head
JPS59210630A (en) Method of producing magnetic thin film structure
JPH04103014A (en) Ferromagnetic tunnel effect film and magneto-resistance effect element formed by using this film
JP2001143223A (en) Spin valve thin film magnetic element and thin film magnetic head
JP2001118217A (en) Spin valve type thin-film magnetic device, thin-film magnetic head, and manufacturing method of spin valve thin-film magnetic device
JPH10162320A (en) Magnetoresistance effect type head and its usage
JP2780588B2 (en) Stacked magnetic head core
JPH02304708A (en) Magneto-resistance effect type head
JP3634997B2 (en) Manufacturing method of magnetic head
JP2560482B2 (en) Magnetoresistive head
JPS63237204A (en) Magneto-resistance effect head
JPH10340431A (en) Magneto-resistance effect type head and magnetic recording/reproducing device
JP3151133B2 (en) Magnetoresistive head
JPH06325329A (en) Thin film magnetic head
JP2569897B2 (en) Magnetoresistive head
JPH0642566B2 (en) Method of manufacturing magnetic low resistance element
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JP2001196657A (en) Magnetoresistive effect element and magnetic memory using it
JPH03108112A (en) Production of magneto-resistance effect head
JP2692468B2 (en) Magnetoresistive head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JP2699567B2 (en) Magnetoresistive head
JP2867416B2 (en) Magnetoresistive head
JPH09180135A (en) Magnetoresistive head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees