JPS6323648B2 - - Google Patents

Info

Publication number
JPS6323648B2
JPS6323648B2 JP54082249A JP8224979A JPS6323648B2 JP S6323648 B2 JPS6323648 B2 JP S6323648B2 JP 54082249 A JP54082249 A JP 54082249A JP 8224979 A JP8224979 A JP 8224979A JP S6323648 B2 JPS6323648 B2 JP S6323648B2
Authority
JP
Japan
Prior art keywords
internal electrode
dielectric
parts
electrode material
aluminum metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54082249A
Other languages
Japanese (ja)
Other versions
JPS566417A (en
Inventor
Kyoshi Inoe
Fumio Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichikon KK
Original Assignee
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichikon KK filed Critical Nichikon KK
Priority to JP8224979A priority Critical patent/JPS566417A/en
Publication of JPS566417A publication Critical patent/JPS566417A/en
Publication of JPS6323648B2 publication Critical patent/JPS6323648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は新規な内部電極材料を用いたことを特
徴とする積層セラミツクコンデンサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer ceramic capacitor characterized by using a novel internal electrode material.

従来、積層セラミツクコンデンサはその内部電
極材料として白金、パラジウムなどの高価な貴金
属を用いていたため、積層セラミツクコンデンサ
のコストが非常に高価となる欠点を有していた。
Conventionally, multilayer ceramic capacitors have used expensive noble metals such as platinum and palladium as their internal electrode materials, which has resulted in the disadvantage that the cost of multilayer ceramic capacitors is extremely high.

すなわち、積層コンデンサの内部電極は誘電体
を1200〜1300℃の高温で焼成する必要があるた
め、このような高温で誘電体を反応せず、また内
部電極金属の融点が誘電体の焼結温度よりも高く
する必要があると孝えられていたために高価な白
金、パラジウムを使用せざるを得なかつた。
In other words, the internal electrodes of multilayer capacitors require the dielectric to be fired at a high temperature of 1,200 to 1,300°C, so the dielectric does not react at such high temperatures, and the melting point of the internal electrode metal is close to the dielectric's sintering temperature. Because it was mandated that it needed to be higher than the standard, expensive platinum and palladium had to be used.

一方誘電体の焼結温度を1000℃まで下げること
により安価なパラジウム−銀合金を内部電極とし
て用いる方法も考えられてはいるが、しかし0.02
〜0.05mmという非常に薄い誘電体膜厚では銀のマ
イグレーシヨンによるコンデンサの絶縁抵抗の劣
化が生じるという致命的な欠点を有する。
On the other hand, a method of lowering the sintering temperature of the dielectric material to 1000°C and using an inexpensive palladium-silver alloy as the internal electrode has been considered;
A very thin dielectric film thickness of ~0.05 mm has a fatal drawback in that the insulation resistance of the capacitor deteriorates due to silver migration.

本発明は上述のような欠点を改良し、安価な積
層コンデンサを提供しようとするものである。
The present invention aims to improve the above-mentioned drawbacks and provide an inexpensive multilayer capacitor.

本発明者等は積層コンデンサの電極材料として
種々金属材料を変えて実験を繰返した結果、内
部電極材料としては誘電体の焼成温度以上の融点
をもつことが必ずしも必要ではないこと、通常
金属は融点以上では分子凝集力により金属膜は形
成されず玉状となつてしまうが、アルミニウム金
属を用いると融点の670℃以上の温度においても
アルミニウム表面に薄い酸化被膜が形成されて凝
集作用は生じないこと、低温焼成セラミツクの
焼結温度領域においてもアルミニウム金属の融点
よりも300〜400℃程高温であるにも拘らず、アル
ミニウム金属表面の酸化被膜の存在のためか、誘
電体セラミツクとの相互反応、相互拡散は生じな
いことを見出した。
As a result of repeated experiments using various metal materials as electrode materials for multilayer capacitors, the inventors of the present invention found that it is not necessarily necessary for the internal electrode material to have a melting point higher than the firing temperature of the dielectric; In the above case, a metal film is not formed due to molecular cohesive force and becomes bead-shaped, but when aluminum metal is used, a thin oxide film is formed on the aluminum surface even at temperatures above the melting point of 670°C, and no agglomeration effect occurs. Although the sintering temperature range of low-temperature fired ceramics is about 300 to 400 degrees Celsius higher than the melting point of aluminum metal, there is no interaction with the dielectric ceramic, perhaps due to the presence of an oxide film on the aluminum metal surface. It was found that no mutual diffusion occurred.

以下、本発明を実施例についてさらに詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例 1 チタン酸バリウム 90モル% ジルコン酸カルシウム 2モル% 酸化ジルコニウム 3モル% 酸化ビスマス 2モル% 酸化チタン 3モル% の組成物に低融点ガラスフリツト2.0重量%添加
し、30μmの誘電体シート(以下グリーンシート
という)を形成した。
Example 1 To a composition of 90 mol% barium titanate, 2 mol% calcium zirconate, 3 mol% zirconium oxide, 2 mol% bismuth oxide, and 3 mol% titanium oxide, 2.0% by weight of low-melting glass frit was added, and a 30 μm dielectric sheet (hereinafter referred to as A green sheet was formed.

このグリーンシートに アルミニウム金属粉末 100部 エチルセルロース 8.6部 カルビトールアセテート 60部 の組成物のペーストを内部電極として印刷し、シ
ートを交互に積層した後所定寸法にカツトし、
900℃で30分焼成した後電気的特性を測定した。
A paste of a composition of 100 parts of aluminum metal powder, 8.6 parts of ethyl cellulose, and 60 parts of carbitol acetate was printed on this green sheet as an internal electrode, and the sheets were laminated alternately and then cut to a predetermined size.
The electrical properties were measured after baking at 900°C for 30 minutes.

容 量 12500PF 見掛誘電率 850 誘電損失 5.6% 実施例 2 実施例1と同様のグリーンシートに アルミニウム金属粉末 90部 鉛金属粉末 10部 エチルセルロース 8.6部 カルビトールアセテート 60部 の組成物のペーストを内部電極として印刷し、シ
ートを交互に積層した後所定寸法にカツトし、
900℃で30分焼成した後電気的特性を測定した。
Capacity 12500PF Apparent permittivity 850 Dielectric loss 5.6% Example 2 A paste of the composition of aluminum metal powder 90 parts lead metal powder 10 parts ethyl cellulose 8.6 parts carbitol acetate 60 parts was applied to the same green sheet as in Example 1 as an internal electrode. After printing the sheets as
The electrical properties were measured after baking at 900°C for 30 minutes.

容 量 14400PF 見掛誘電率 982 誘電損失 3.7% 実施例 3 実施例1と同様のグリーンシートに アルミニウム金属粉末 90部 鉛金属粉末 5部 パラジウム金属粉末 5部 エチルセルロース 8.6部 カルビトールアセテート 60部 の組成物のペーストを内部電極として印刷し、シ
ートを交互に積層した後所定寸法にカツトし、
950℃で30分焼成した後電気的特性を測定した。
Capacity 14400PF Apparent permittivity 982 Dielectric loss 3.7% Example 3 Composition of aluminum metal powder 90 parts lead metal powder 5 parts palladium metal powder 5 parts ethyl cellulose 8.6 parts carbitol acetate 60 parts on a green sheet similar to Example 1 The paste is printed as internal electrodes, the sheets are laminated alternately, and then cut to the specified size.
The electrical properties were measured after baking at 950°C for 30 minutes.

容 量 15600PF 見掛誘電率 1064 誘電損失 2.4% 実施例 4 実施例1と同様のグリーンシートに アルミニウム金属粉末 90部 鉛金属粉末 5部 銀粉末 5部 の組成物のペーストを内部電極として印刷し、シ
ートを交互に積層した後所定寸法にカツトし、
950℃で30分焼成した後電気的特性を測定した。
Capacity 15600PF Apparent permittivity 1064 Dielectric loss 2.4% Example 4 A paste of the composition of aluminum metal powder 90 parts lead metal powder 5 parts silver powder 5 parts was printed as an internal electrode on a green sheet similar to Example 1. After stacking the sheets alternately, cut them to the specified size,
The electrical properties were measured after baking at 950°C for 30 minutes.

容 量 15300PF 見掛誘電率 1040 誘電損失 2.5% 以上述べたようにアルミニウム金属を主体とし
た電極材料は積層内部電極として充分使用に耐え
ることが立証された。
Capacity: 15300PF Apparent permittivity: 1040 Dielectric loss: 2.5% As mentioned above, it has been proven that the electrode material mainly made of aluminum metal can be used as a laminated internal electrode.

さらに誘電損失の減少と見掛誘電率の向上には
鉛、パラジウム、銀金属の添加が有効である。
Further, it is effective to add lead, palladium, and silver metals to reduce dielectric loss and improve apparent dielectric constant.

図はアルミニウム金属−鉛金属の内部電極材料
組成に対する見掛誘電率および誘電損失の依存性
を示す。鉛が5〜10重量%の組成のものが最も低
い誘電損失を示し、20重量%を越えると誘電損失
が増加し、見掛誘電率が減少する。
The figure shows the dependence of the apparent permittivity and dielectric loss on the internal electrode material composition of aluminum metal-lead metal. A composition containing 5 to 10% by weight of lead exhibits the lowest dielectric loss, and when lead exceeds 20% by weight, the dielectric loss increases and the apparent permittivity decreases.

これは内部電極金属と誘電体セラミツクの界面
で、金属酸化物の生成によるものと思われる。こ
のことは積層体の焼成温度を上げた場合には逆に
見掛誘電率が減少することからも理解できる。
This is thought to be due to the formation of metal oxides at the interface between the internal electrode metal and the dielectric ceramic. This can be understood from the fact that when the firing temperature of the laminate is increased, the apparent dielectric constant decreases.

さらに誘電体セラミツク中にマンガンが存在す
ると見掛誘電率が激減することからも類推するこ
とができる。
Furthermore, this can be inferred from the fact that the presence of manganese in dielectric ceramic drastically reduces the apparent dielectric constant.

以上説明したように本発明は廉価なアルミニウ
ム金属を積層内部電極材料として使用するため、
白金、パラジウムに比してはるかに安価に製作で
き、工業上極めて有益なものである。
As explained above, since the present invention uses inexpensive aluminum metal as the laminated internal electrode material,
It can be produced at a much lower cost than platinum or palladium, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図は積層セラミツクコンデンサのアルミニウム
−鉛金属の内部電極材料組成に対する見掛誘電率
および誘電損失特性図である。
The figure is a diagram showing the apparent dielectric constant and dielectric loss characteristics for the aluminum-lead metal internal electrode material composition of a multilayer ceramic capacitor.

Claims (1)

【特許請求の範囲】 1 誘電体セラミツク材料と内部電極材料とを積
層し焼成してなる積層セラミツクコンデンサにお
いて、該コンデンサの内部電極材料としてアルミ
ニウム金属を用いたことを特徴とする積層セラミ
ツクコンデンサ。 2 誘電体セラミツク材料と内部電極材料とを積
層し焼成してなる積層セラミツクコンデンサにお
いて、該コンデンサの内部電極材料としてアルミ
ニウム金属に20重量%以下の鉛を含有した金属組
成物を用いたことを特徴とする積層セラミツクコ
ンデンサ。
[Scope of Claims] 1. A multilayer ceramic capacitor formed by laminating and firing a dielectric ceramic material and an internal electrode material, characterized in that aluminum metal is used as the internal electrode material of the capacitor. 2. A multilayer ceramic capacitor formed by laminating and firing a dielectric ceramic material and an internal electrode material, characterized in that a metal composition containing 20% by weight or less of lead in aluminum metal is used as the internal electrode material of the capacitor. A multilayer ceramic capacitor.
JP8224979A 1979-06-28 1979-06-28 Laminated capacitor Granted JPS566417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8224979A JPS566417A (en) 1979-06-28 1979-06-28 Laminated capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8224979A JPS566417A (en) 1979-06-28 1979-06-28 Laminated capacitor

Publications (2)

Publication Number Publication Date
JPS566417A JPS566417A (en) 1981-01-23
JPS6323648B2 true JPS6323648B2 (en) 1988-05-17

Family

ID=13769151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8224979A Granted JPS566417A (en) 1979-06-28 1979-06-28 Laminated capacitor

Country Status (1)

Country Link
JP (1) JPS566417A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177916A (en) * 1982-04-13 1983-10-18 Kowa Co External drug
JPS593909A (en) * 1982-06-29 1984-01-10 ニチコン株式会社 Electrode paste for ceramic condenser
JPS5916323A (en) * 1982-07-19 1984-01-27 株式会社村田製作所 Ceramic laminated condenser
JPS6089995A (en) * 1983-10-24 1985-05-20 日本電気株式会社 Composite laminated ceramic part
JP3531475B2 (en) * 1998-05-22 2004-05-31 日亜化学工業株式会社 Flip chip type optical semiconductor device
JP4483597B2 (en) * 2005-01-20 2010-06-16 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
TW201107267A (en) * 2009-08-21 2011-03-01 Darfon Electronics Corp Ceramic powder composition, ceramic material and laminated ceramic capacitor made of the same
JP5293971B2 (en) * 2009-09-30 2013-09-18 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
WO2011114809A1 (en) 2010-03-16 2011-09-22 株式会社村田製作所 Laminated ceramic electronic component
JP5527401B2 (en) * 2010-03-16 2014-06-18 株式会社村田製作所 Multilayer ceramic electronic components
JP5527404B2 (en) 2010-03-16 2014-06-18 株式会社村田製作所 Multilayer ceramic electronic components
WO2011114804A1 (en) * 2010-03-16 2011-09-22 株式会社村田製作所 Laminated ceramic electronic component
WO2012023406A1 (en) * 2010-08-18 2012-02-23 株式会社村田製作所 Laminated ceramic electronic component
JP5429393B2 (en) * 2010-09-30 2014-02-26 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466450A (en) * 1977-11-01 1979-05-29 Univ Illinois Unhomogeneous phase ceramic condenser
JPS54131762A (en) * 1978-04-05 1979-10-13 Honshu Paper Co Ltd Metalized dielectric capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466450A (en) * 1977-11-01 1979-05-29 Univ Illinois Unhomogeneous phase ceramic condenser
JPS54131762A (en) * 1978-04-05 1979-10-13 Honshu Paper Co Ltd Metalized dielectric capacitor

Also Published As

Publication number Publication date
JPS566417A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
US4082906A (en) Low temperature fired ceramic capacitors
JP2998639B2 (en) Multilayer ceramic capacitors
JP3636123B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP2993425B2 (en) Multilayer ceramic capacitors
JPS6323648B2 (en)
JPH01283915A (en) Multilayer device and its manufacture
MX2007015503A (en) Dielectric ceramic capacitor comprising non-reducible dielectric.
JPS6131607B2 (en)
JP2003168619A (en) Conductive paste for terminal electrode of laminated ceramic electronic part, method for manufacturing the laminated ceramic electronic part, and the laminated ceramic electronic part
JP2001294481A (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPS63126117A (en) Dielectric ceramic composition for non- reducing temperature compensation
JPS60131708A (en) Nonreduced temperature compensating dielectric porcelain composition
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS6323646B2 (en)
JPH059882B2 (en)
JP2691181B2 (en) Dielectric porcelain composition
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS6120084B2 (en)
JPH0432213A (en) Ceramic capacitor
JP2803227B2 (en) Multilayer electronic components
JPH03233805A (en) Electrode of electronic part
JPH0234448B2 (en)
JP2821768B2 (en) Multilayer ceramic capacitors
JPH0337725B2 (en)