JPS63236359A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63236359A
JPS63236359A JP6882387A JP6882387A JPS63236359A JP S63236359 A JPS63236359 A JP S63236359A JP 6882387 A JP6882387 A JP 6882387A JP 6882387 A JP6882387 A JP 6882387A JP S63236359 A JPS63236359 A JP S63236359A
Authority
JP
Japan
Prior art keywords
layer
type
angstrom
gaas
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6882387A
Other languages
Japanese (ja)
Other versions
JP2564296B2 (en
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Masao Yamane
正雄 山根
Takeyuki Hiruma
健之 比留間
Tomoyoshi Mishima
友義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62068823A priority Critical patent/JP2564296B2/en
Publication of JPS63236359A publication Critical patent/JPS63236359A/en
Application granted granted Critical
Publication of JP2564296B2 publication Critical patent/JP2564296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a device structure suitable to form a collector layer into a thin film and effective for reducing the sheet resistivity of a base by a method wherein the base layer of a two-dimensional electron gas heterojunction bipolar transistor (2DEG-HBT) is formed in a three-layer structure with two-dimensional electron gas (2DEG). CONSTITUTION:For example, a P<+> GaAs layer 41 (collector layer) containing Be of 1X10<19>cm<-3>, an undoped GaAs collector layer 42, an N-type AlxGa1-xAs (x-0.3) layer 43' containing Si of 3X10<18>cm<-3>, an undoped GaAs layer 42, an N-type AlGaAs layer 43 containing Si of 3X10<18>cm<-3>, a P-type AlGaAs layer 45 containing Be of 1X19<19>cm<-3> and a P-type GaAs layer 45' are respectively formed on a semi-insulative GaAs substrate 40 in 4000 Angstrom , 700 Angstrom , 60 Angstrom , 100 Angstrom , 200 Angstrom , 1500 Angstrom and 2000 Angstrom using an MBE (molecular beam epitaxy) method. Then, an emitter region, a base region and an interelement isolation are formed by mesa etching and a metal emitter electrode 25, a metal base electrode 24 and a metal collector electrode 26 are each formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二次元状担体をベース層に用いるバイポーラ
型トランジスタに係り、特にr’bb’領域、ベース・
コレクタ耐圧向上、或いはカットオフ周波数fT向上に
好適な二次元電子ガスヘテロ接合バイポーラトランジス
タに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bipolar transistor using a two-dimensional carrier as a base layer, and particularly relates to a bipolar transistor using a two-dimensional carrier as a base layer.
The present invention relates to a two-dimensional electron gas heterojunction bipolar transistor suitable for improving collector breakdown voltage or improving cutoff frequency fT.

〔従来の技術〕[Conventional technology]

砒化ガリウム(GaAs)とアルミニウム砒化ガリウム
(A Q x G a L−X A S )とのヘテロ
接合界面に形成される2次元状担体をベース層に用いた
新構造のHBT(総称として20EG−HBTと呼ぶ)
を既に特許出願している(特願昭60−164126号
、特願昭60−164128号、特願昭61−4024
4号)。またこれらの出願は、特開昭60−13447
9号において接合型ゲート構造(同公開特許公報第5,
6図で、ゲート13がp型A Q GaAs、またはG
 a A sである場合に対応する)とした場合の特有
の作用を用いた新原理に基づくバイポーラトランジスタ
と云うこともできる。
HBT with a new structure (generally referred to as 20EG-HBT) uses a two-dimensional carrier formed at the heterojunction interface between gallium arsenide (GaAs) and aluminum gallium arsenide (A )
(Japanese Patent Application No. 60-164126, Japanese Patent Application No. 164128-1982, Japanese Patent Application No. 61-4024)
No. 4). In addition, these applications
In No. 9, a junction type gate structure (the same published patent publication No. 5,
In Figure 6, the gate 13 is p-type AQ GaAs or G
It can also be said that it is a bipolar transistor based on a new principle using the unique action of the case (corresponding to the case of a A s).

以上の特許出願にて述べられているトランジスタを総称
して2DEG−HBTと呼ぶ。
The transistors described in the above patent applications are collectively referred to as 2DEG-HBT.

本発明は、2DEG−HBTのベース抵抗rbb’ を
従来の2DEG−HBTの約173にでき、ベース・コ
レクタ間の高耐圧化或いは高いカットオフ周波数を与え
る構造についての2DEG−HBTの改良に関する。
The present invention relates to an improvement of the 2DEG-HBT in terms of a structure that allows the base resistance rbb' of the 2DEG-HBT to be approximately 173 times higher than that of the conventional 2DEG-HBT, and provides a higher withstand voltage between the base and collector or a higher cutoff frequency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記特許出願の構造において、G a A s/Al2
GaAs、ヘテロ界面の2次元電子ガスをベースに用い
るとき、ベース・コレクタ走行時間t2は係数、WBは
ベース膜厚、Xvはコレクタ膜厚、v、gは正孔飽和の
速度である。右辺第1項は2次元電子層の通過時間で約
0.05psec、第2項はp−QaAsコレクタ層が
3000人の場合約1.50psecである。
In the structure of the above patent application, G a A s/Al2
When GaAs, a two-dimensional electron gas at a heterointerface, is used as the base, the base-collector transit time t2 is a coefficient, WB is the base film thickness, Xv is the collector film thickness, and v and g are the hole saturation speeds. The first term on the right side is the transit time of the two-dimensional electron layer, which is about 0.05 psec, and the second term is about 1.50 psec when there are 3000 p-QaAs collector layers.

即ち、従来の2DEG−HBTのtdlはほとんどすべ
てp−型G a A sコレクタ層走行時間により支配
されている。
That is, the tdl of the conventional 2DEG-HBT is almost entirely dominated by the transit time of the p-type GaAs collector layer.

t、i  を更に小さくしようとすると、p−型GaA
sコレクタ層の薄膜化(x v→小)が最も効果的であ
るが、従来の20EG−HBTの場合、1500〜20
00人が下限である。
When trying to further reduce t,i, p-type GaA
The most effective method is to make the collector layer thinner (xv→smaller), but in the case of the conventional 20EG-HBT, the thickness of 1500~20
00 people is the lower limit.

又、従来の2DEG−HBTの場合単一の2DECを用
いているので、室温でのベースシート抵抗ρBはIKΩ
/口程度程度る。
In addition, in the case of conventional 2DEG-HBT, a single 2DEC is used, so the base sheet resistance ρB at room temperature is IKΩ.
/ About a mouthful.

本発明の目的は、コレクタ層薄膜化に適し、ベースシー
ト抵抗低減に有効なデバイス構造を提供することにある
An object of the present invention is to provide a device structure suitable for thinning the collector layer and effective for reducing base sheet resistance.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、上記目的は、2DEGを3ケ形成することで、 (1)ベースシート抵抗を330Ω/口(室温)にでき (2)p−型コレクタ層を700人程人程で薄膜化する
ことが可能となる。
That is, the above purpose is to form three 2DEGs to (1) make the base sheet resistance 330Ω/gate (at room temperature) and (2) make the p-type collector layer thinner with about 700 people. It becomes possible.

更に、p−型コレクタ層をp−型AΩGaAsの様に広
い禁止帯を有する材料におきかえることでp−型コレク
タ層を500人程人程で薄膜化できる。
Furthermore, by replacing the p-type collector layer with a material having a wide forbidden band, such as p-type AΩGaAs, the p-type collector layer can be made thinner by about 500 people.

第1図(a)、(b)、(c)、(d)に各々本発明の
2DEG−HBTのデバイス断面構造(第1図(a))
と対応するエネルギーバンド図(第1図(b)、(Q)
、(d)’)を示す。
FIGS. 1(a), (b), (c), and (d) each show a device cross-sectional structure of the 2DEG-HBT of the present invention (FIG. 1(a)).
and the corresponding energy band diagram (Fig. 1 (b), (Q)
, (d)').

40は半絶縁性GaAs基板、41はp÷型GaAs、
42’はアンドープaaAs (p−コレクタ層)43
′はn型A Q GaAs層(ドーピング3X101’
国−3膜厚60人程度)42はアンドープG a A 
sで100人、43はn型AjlGaAs。
40 is a semi-insulating GaAs substrate, 41 is p÷ type GaAs,
42' is undoped aaAs (p-collector layer) 43
' is an n-type AQ GaAs layer (doping 3X101'
Country-3 film thickness about 60 people) 42 is undoped G a A
s, 100 people, 43 are n-type AjlGaAs.

45はp型A 12 xGaz−、As (0≦、X≦
1)24はベース電極メタル、25はエミッタ電極メタ
ル、26はコレクタ電極メタル、59は2次元電子ガス
である。
45 is p-type A 12 xGaz-, As (0≦, X≦
1) 24 is a base electrode metal, 25 is an emitter electrode metal, 26 is a collector electrode metal, and 59 is a two-dimensional electron gas.

特に、アンドープG a A s 42中に形成される
20EGは43及び43′の両方から担体を供給される
ので2DEGシート抵抗(14Ω/口)は通常の約半分
(〜500Ω/口)になる。
In particular, since the 20EG formed in the undoped GaAs 42 is supplied with carriers from both 43 and 43', the 2DEG sheet resistance (14Ω/hole) is about half of the normal value (~500Ω/hole).

又、42′側に形成される2DEGは43′のn型A 
Q GaAs層から形成されている。この様に2DEG
ベ一ス層を3層化するとベース・シート抵抗は従来の約
1/3になるが、ベース膜厚は260人程Pa従来のW
a (= 100人)の2.6p seeからQ、33
8psecと約6倍大きくなる。
Also, the 2DEG formed on the 42' side is the n-type A of 43'.
Q It is formed from a GaAs layer. 2DEG like this
When the base layer is made into three layers, the base sheet resistance becomes about 1/3 that of the conventional one, but the base film thickness is about 260 Pa compared to the conventional W.
a (= 100 people) 2.6p see to Q, 33
8 psec, which is about 6 times larger.

又、ベースコレクタ間耐圧を向上させるには、第1図(
c)に示す様に、p−G a A s 層42′を10
0〜200人程度にし、その他のp−コレクタ層はp−
型A Q xGax−xAs50におきかえることで更
に向上する。又、この場合AQ組成比Xをgraded
にして第1図(d)の様にすることも可能である。即ち
、2DEG側のAQ組成比Xを大きく (0,2〜0.
45) 、p十型コレクタ層41側のXを小さく(〜o
、0)することが可能である。
In addition, in order to improve the base-collector breakdown voltage, the method shown in Figure 1 (
As shown in c), the p-G a As layer 42' has a thickness of 10
The number of people should be around 0 to 200, and the other p- collector layer should be p-
It is further improved by replacing it with type AQ xGax-xAs50. In addition, in this case, the AQ composition ratio X is graded
It is also possible to do as shown in FIG. 1(d). That is, the AQ composition ratio X on the 2DEG side is increased (0,2 to 0.
45), reduce X on the p-type collector layer 41 side (~o
, 0).

〔作用〕[Effect]

この様に、ベース層を2 D E Gの3層構造にする
ことで。
In this way, by making the base layer a three-layer structure of 2DEG.

(1)ベースは抵抗を約173にできる。(1) The base can have a resistance of about 173.

(2)p−型コレクタ層を薄膜化(〜700人)できる
(2) The p-type collector layer can be made thinner (up to 700 layers).

更に、p−型コレクタ層を上記の如くp−型AQGaA
sMにおきかえることで、ペースコレクタ間アバランシ
ェ破壊電圧を大きくすることができ、その結果として (3)p−型コレクタ層を更に薄膜化(〜500人)で
きる。
Furthermore, the p-type collector layer is made of p-type AQGaA as described above.
By replacing it with sM, the pace-collector avalanche breakdown voltage can be increased, and as a result, (3) the p-type collector layer can be made even thinner (up to 500 layers).

p Seeから0.25psscと約1/6に小さくす
ることが可能になりベース層が約2.6倍厚くなった効
果をとり入れてもベース走行時td1は0.58111
p seeとなり従来の2DEG−HBTの約1/3に
なる。
It is possible to reduce p See to 0.25 pssc, about 1/6, and even if we take into account the effect that the base layer is about 2.6 times thicker, td1 during base running is 0.58111.
p see, which is about 1/3 that of the conventional 2DEG-HBT.

即ち、本発明により従来の2DEG−HBTに比べ (1)ベース抵抗を約1/3 (2)真性カットオフ周波数ft+を約3倍にすること
ができ、 通常のnpn型HBTと比較して、約6倍程度の高速化
が可能となる。
That is, the present invention can increase (1) the base resistance by about 1/3, and (2) increase the intrinsic cutoff frequency ft+ by about 3 times compared to the conventional 2DEG-HBT. It is possible to increase the speed by about 6 times.

〔実施例〕〔Example〕

以下本発明の実施例を通して更に詳しく本発明を説明す
る。
The present invention will be explained in more detail below through examples.

実施例1 第1図(a)にG a A s /A Q GaASヘ
テロ接合を用いたpnp型2DEG−HBTの試作例を
示す。
Example 1 FIG. 1(a) shows an example of a prototype pnp type 2DEG-HBT using a GaAs/AQ GaAS heterojunction.

半絶縁性GaAs基板4o上にMBE (分子線エピタ
キシー; Mo1ecular Beam Epita
xy )法を用いてBeをIXIO19am−δ含有す
るp+G a A 541(コレクタ層)を4000人
、アンドープG a A sコレクタ層42′を700
人、Siを3XIO18am−8含有するn型A jl
 xGaz−xAs (x 〜0.3)43’ を60
人、アンドープG a A s 42を100人、Si
を3 X 1018cm−”含有するn型A Q Ga
As43を200人、BeをI X 101gcm−3
含有するp型AQGaAs45を1500人及びp型G
 a A s 45 ’ を2000人形成した。
MBE (Molecular Beam Epitaxy) is applied on the semi-insulating GaAs substrate 4o.
4000 layers of p+GaA 541 (collector layer) containing Be IXIO19am-δ and 700 layers of undoped GaAs collector layer 42' using the xy) method.
Human, n-type A jl containing 3XIO18am-8 Si
xGaz-xAs (x ~0.3)43' to 60
100 people, undoped Ga As 42, Si
n-type AQ Ga containing 3 x 1018 cm-”
200 people of As43, I x 101gcm-3 of Be
Containing p-type AQGaAs45 and p-type G
2000 people formed a A s 45'.

次に、エミッタ領域、ベース領域、素子間分離をメサエ
ッチングにより形成し、エミッタ電極金属25、ベース
電極金属24コレクタ電極金属26を各々形成した。
Next, an emitter region, a base region, and isolation between elements were formed by mesa etching, and an emitter electrode metal 25, a base electrode metal 24, and a collector electrode metal 26 were formed, respectively.

エミッタ層p型AΩGaAs 45は目的に応じてはな
くてもよく、即ちp型GaAsでも良い、又ドーピング
レベルは通常lX10”7〜10zO■−8の範囲で目
的に応じて選ぶことが多い。
The emitter layer p-type AΩGaAs 45 may be omitted depending on the purpose, that is, it may be p-type GaAs, and the doping level is usually selected in the range of lx10''7 to 10zO2-8 depending on the purpose.

又、素子間分離はメサエッチング法ではなく02等のイ
オン注入により行なっても良い、又。
Further, the isolation between elements may be performed by ion implantation such as 02 instead of the mesa etching method.

第1図(Q)、(d)に示した様に、アンドープG a
 A s 42 ’はアンドープG a A s 42
 ’100人、p−型1014〜IQiIIcn−8)
A Q xGax−xAm50 400人等に置きかえ
てもよい。又p十型コレクタ層は基板中に埋込む構造に
しても良い。
As shown in FIG. 1 (Q) and (d), undoped Ga
A s 42' is undoped G a A s 42
'100 people, p-type 1014-IQiIIcn-8)
A Q xGax-xAm50 You may replace it with 400 people, etc. Further, the p-type collector layer may be embedded in the substrate.

実施例2 第2図(a)(b)(e)に2DEG−HBTと2DE
G−FETを同一基板に形成した例を示す。
Example 2 2DEG-HBT and 2DE are shown in Fig. 2 (a), (b), and (e).
An example in which G-FETs are formed on the same substrate is shown.

MBEによるエピタキシカル構造は実施例1と同様であ
る。
The epitaxial structure obtained by MBE is the same as in Example 1.

3層の2 D E G It F E T (Fiel
d EffatTransistar )の能動層に用
いる時には、ソース・ドレイン電極20.21を^QG
aAs45上AuGe/N i / A uを用いて形
成し、接合型ゲート電極メタル22をA u G e 
/ A uを用いて形成した(第2図(a))、FET
部分をAでHBT部分をBで表わす、FET下方のp十
型GaAs層41には外部制御電位端子をつけることが
多い。
3 layers of 2 D E G It F E T (Fiel
When used in the active layer of dEffatTransistor, the source/drain electrodes 20 and 21 are
The junction type gate electrode metal 22 is formed using AuGe/Ni/Au on As45.
/ A u (Fig. 2(a)), FET
An external control potential terminal is often attached to the p-type GaAs layer 41 below the FET, where the portion is denoted by A and the HBT portion is denoted by B.

FET部分でショットキーゲート構造にしたい時には、
ショットキーゲートメタルとして、Ti/ P t /
 A u r A Qt W S x 、W A n等
のメタルをn型A Q GaAs45上に形成する(第
2図(b))。
When you want to have a Schottky gate structure in the FET part,
As a Schottky gate metal, Ti/Pt/
Metals such as A ur A Qt W S x and W A n are formed on the n-type A Q GaAs 45 (FIG. 2(b)).

FET部分は、第2図(Q)に示す様にゲートメタル部
分は、n型AOGaAs43をエツチング除去し、アン
ドープG a A s 42中に形成してもよい。或い
は、CCQ 2Fx/ He混合ガスのドライエツチン
グを用いてn型AQGaAs 43’上に形成する様に
選んでもよい。
In the FET portion, as shown in FIG. 2(Q), the gate metal portion may be formed in undoped GaAs 42 by removing n-type AOGaAs 43 by etching. Alternatively, one may choose to form it on n-type AQGaAs 43' using dry etching of a CCQ 2Fx/He gas mixture.

p 型A Q GaAs 45のドーピングレベルは目
的に応じて、1017〜10”(1m″″3の範囲で用
いることが多い。
The doping level of p-type AQ GaAs 45 is often in the range of 1017 to 10'' (1 m''''3) depending on the purpose.

以上の実施例ではG a A s /AQGaAsヘテ
ロ接合系の場合について説明したが、他の二元/三元系
ヘテロ接合、たとえば、G a A s / G e 
In the above embodiments, the case of a GaAs/AQGaAs heterojunction system was explained, but other binary/ternary heterojunctions, such as GaAs/Ge
.

AuGaAg/Ge、I nAAAs/I nGaAs
AuGaAg/Ge, InAAAs/InGaAs
.

InGaAgP/InP等のヘテロ接合においても二次
元状担体が形成されて従来のベース層を本発明の如く3
層構造にすることで同様の効果を出すJBが可能である
A two-dimensional carrier is also formed in a heterojunction such as InGaAgP/InP, and a conventional base layer can be replaced with a three-dimensional carrier as in the present invention.
It is possible to create a JB with a similar effect by using a layered structure.

更に、20EGではなく、二次元正孔ガス(Two D
imensional Ho1e Gas ; T D
 HG )を用いても同様の発明を達成できる。たとえ
ば実施例1でp型とp型を置きかえればよい。即ち不純
物として用いたSiとBθを多くの実施例で置きかえて
もnpn型2次元正孔HBTを実現できる。
Furthermore, instead of 20EG, two-dimensional hole gas (Two D
annual Hole Gas; T D
A similar invention can be achieved using HG). For example, in Example 1, p-type and p-type may be replaced. That is, an npn type two-dimensional hole HBT can be realized even if Si and Bθ used as impurities are replaced in many embodiments.

またFET部分のしきい電圧V t vはゲートメタル
下部分の膜厚、ドーピングレベルを調整し、即ちたとえ
ば、エツチング等で膜厚を調整することで決めているの
は従来FETと同様である。
Further, the threshold voltage V t v of the FET portion is determined by adjusting the film thickness and doping level of the lower portion of the gate metal, that is, by adjusting the film thickness by, for example, etching, as in the conventional FET.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ベース層を2DEGによる3層構造に
形成することで (1)ベースシート抵抗を従来の約、1/3にでき。
According to the present invention, by forming the base layer in a three-layer structure using 2DEG, (1) the base sheet resistance can be reduced to about 1/3 of that of the conventional structure.

(2)p−コレクタ層を700人程人程で薄膜化するこ
とが可能となる。
(2) The p-collector layer can be made thinner by about 700 people.

又、 (3)p−型コレクタ層をP−型A 12 GaAsに
おきかえる(p−型コレクタ層よりエネルギー禁止帯幅
の広い材料)ことでp−型コレクタ層を500人程人程
まで、ベース・コレクタ間耐圧を小さくすることなしに
薄膜化でき、従来のnpn型HBTの約3倍の1ntr
insic f Tを実現できる。
(3) By replacing the p-type collector layer with P-type A 12 GaAs (a material with a wider energy gap than the p-type collector layer), the p-type collector layer can be expanded to about 500 base layers.・The film can be made thinner without reducing the withstand voltage between the collectors, and the 1ntr is about three times that of conventional npn-type HBTs.
insic fT can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのトランジスタ断面構造
図及びエネルギーバンド図である。 第2図はpnp型2DEG−HBTと2DEG−FET
を同一基板内に形成した時の断面構造図である。 50−p−AQGaAs、 50’ −graded 
p−AQGaAs。 45− p −A Q GaAs、45’−p+GaA
s、43゜43 ’ −n −A D、 GaAs、4
2.42’・・・アンドープG a A s、41− 
p + G a A s、4.0−・・半絶縁性G a
 A s基板、25・・・エミッタ電極メタル、24・
・・ベース電極メタル、26・・・コレクタ電極メタル
、22・・・接合型ゲート電極メタル、22′・・・シ
ョットキーゲートメタル、20.21・・・ソース、ド
レイン電極メタル。 茅1図 午υλ了シドーフ’fzhAs V)図 12図 芽2図
FIG. 1 is a cross-sectional structure diagram and an energy band diagram of a transistor for explaining the present invention. Figure 2 shows pnp type 2DEG-HBT and 2DEG-FET.
FIG. 3 is a cross-sectional structural diagram when the two are formed in the same substrate. 50-p-AQGaAs, 50'-graded
p-AQGaAs. 45-p-A Q GaAs, 45'-p+GaA
s, 43°43' -n -AD, GaAs, 4
2.42'...Undoped G a As, 41-
p + Ga As, 4.0-...Semi-insulating Ga
A s substrate, 25... Emitter electrode metal, 24.
...Base electrode metal, 26...Collector electrode metal, 22...Junction type gate electrode metal, 22'...Schottky gate metal, 20.21...Source and drain electrode metal. Figure 1 Figure 1 Figure 12 Picture Bud 2

Claims (1)

【特許請求の範囲】[Claims] 1、エネルギー禁止帯幅の広い半導体層 I と狭い半導
体層IIとのヘテロ接合を I −II− I −IIの形で配しこ
れにより生じる3ケ所のヘテロ接合界面の二次状担体を
ベース領域としたことを特徴とするバイポーラトランジ
スタを有する半導体装置。
1. A heterojunction between a semiconductor layer I with a wide energy bandgap and a semiconductor layer II with a narrow energy gap is arranged in the form I -II- I -II, and the secondary carriers at the three heterojunction interfaces created by this are used as a base region. A semiconductor device having a bipolar transistor, characterized in that:
JP62068823A 1987-03-25 1987-03-25 Semiconductor device Expired - Lifetime JP2564296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068823A JP2564296B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068823A JP2564296B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63236359A true JPS63236359A (en) 1988-10-03
JP2564296B2 JP2564296B2 (en) 1996-12-18

Family

ID=13384816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068823A Expired - Lifetime JP2564296B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2564296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270223A (en) * 1991-06-28 1993-12-14 Texas Instruments Incorporated Multiple layer wide bandgap collector structure for bipolar transistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120551A (en) * 1983-12-05 1985-06-28 Fujitsu Ltd Semiconductor integrated circuit device
JPS6225455A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120551A (en) * 1983-12-05 1985-06-28 Fujitsu Ltd Semiconductor integrated circuit device
JPS6225455A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270223A (en) * 1991-06-28 1993-12-14 Texas Instruments Incorporated Multiple layer wide bandgap collector structure for bipolar transistors

Also Published As

Publication number Publication date
JP2564296B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
CA1222330A (en) Compound semiconductor integrated circuit device
JPH038340A (en) Hetero junction bipolar transistor
US5814843A (en) Heterojunction bipolar transistor having a graded-composition base region
JP2964637B2 (en) Field effect transistor
JPS63236359A (en) Semiconductor device
WO1987000692A1 (en) Semiconductor device
JPH01143270A (en) Semiconductor device
JP2621854B2 (en) High mobility transistor
JP2633848B2 (en) Semiconductor device
JPS61268069A (en) Semiconductor device
JPS5929462A (en) Hetero-junction element
JP4222033B2 (en) InGaP / InGaAs heterojunction bipolar transistor
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JP2980630B2 (en) Compound semiconductor device
JPS61102072A (en) Hetero junction field effect transistor
JPS6247157A (en) Semiconductor device
JP2855629B2 (en) Heterojunction bipolar transistor
JPH01225368A (en) Semiconductor device
JP2786208B2 (en) Semiconductor device
JPH01149465A (en) Heterojunction bipolar transistor
JPS6052055A (en) Semiconductor device
JP2606660B2 (en) Heterojunction field effect transistor
JPH0435037A (en) Heterojunction bipolar transistor
JPH04214637A (en) Semiconductor device
JPH02271534A (en) Heterojunction bipolar transistor