JPS63236213A - Dielectric ceramic - Google Patents

Dielectric ceramic

Info

Publication number
JPS63236213A
JPS63236213A JP62069894A JP6989487A JPS63236213A JP S63236213 A JPS63236213 A JP S63236213A JP 62069894 A JP62069894 A JP 62069894A JP 6989487 A JP6989487 A JP 6989487A JP S63236213 A JPS63236213 A JP S63236213A
Authority
JP
Japan
Prior art keywords
dielectric
temperature coefficient
porcelain
load
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62069894A
Other languages
Japanese (ja)
Other versions
JP2516620B2 (en
Inventor
哲朗 中村
俊樹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP62069894A priority Critical patent/JP2516620B2/en
Publication of JPS63236213A publication Critical patent/JPS63236213A/en
Application granted granted Critical
Publication of JP2516620B2 publication Critical patent/JP2516620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波用とし好適な新規誘電体磁器に関し、特
に、共振器を構成したときの共振周波数の温度係数が負
であって温度係数の補償用として有用である誘電体磁器
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel dielectric ceramic suitable for high frequencies, and in particular, when a resonator is constructed, the temperature coefficient of the resonant frequency is negative and the temperature coefficient is negative. This invention relates to dielectric ceramics useful for compensation purposes.

〔従来の技術〕[Conventional technology]

近年、マイクロ波、ミリ波などの高周波領域で用いられ
る誘電体磁器として、無負荷Q及び比誘電率が高い誘電
体磁器が開発されている。
In recent years, dielectric ceramics with high no-load Q and high dielectric constant have been developed as dielectric ceramics used in high frequency regions such as microwaves and millimeter waves.

これらの高周波用誘電体磁器の中には、無負荷Q、及び
比誘電率が優れているにも拘らず、共振器を構成したと
きの共振周波数の温度係数が正に偏り過ぎるために発振
周波数安定化等の用途に使用することが困難であるもの
があり、例えば、Ti0z、5rO−TiO□系磁器導
磁器げられる。
Although some of these high-frequency dielectric ceramics have excellent no-load Q and relative dielectric constant, when a resonator is constructed, the temperature coefficient of the resonant frequency is too positive, so the oscillation frequency There are some materials that are difficult to use for purposes such as stabilization, such as TiOz and 5rO-TiO□-based porcelain conductors.

このような共振周波数の温度係数が正に偏り過ぎる誘電
体磁器の改良方法として、このような誘電体磁器を温度
係数が逆に負に大きい誘電体磁器と複合化して、温度係
数を±10ppm/ ”Cの範囲内に制御して実用的な
ものとする試みが行なわれている。この複合化に用いる
共振周波数の温度係数が負に大きい誘電体磁器として、
例えば、MgTi0.、LazTiz07、CazNb
zOl等が知られている。
As a method for improving dielectric ceramics in which the temperature coefficient of the resonant frequency is too positive, such dielectric ceramics are combined with dielectric ceramics whose temperature coefficients are negatively large, and the temperature coefficient is adjusted to ±10 ppm/ ``Attempts are being made to make it practical by controlling it within the range of C.As a dielectric ceramic with a negative temperature coefficient of the resonant frequency used for this composite,
For example, MgTi0. , LazTiz07, CazNb
zOl etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の共振周波数の温度係数が負に大きい誘電
体磁器は複合化によって温度係数を補償することはでき
るものの、無負荷Qが小さいため、得られる複合誘電体
の無負荷Qが低下するという問題があった。
However, although it is possible to compensate for the temperature coefficient of dielectric ceramics with a negative temperature coefficient of the resonant frequency mentioned above by compounding, the no-load Q of the obtained composite dielectric is low because the no-load Q is small. There was a problem.

そこで、本発明の目的は、共振周波数の温度係数が負で
、かつ無負荷Q、比誘電率等の特性が優れ、共振周波数
の温度係数の補償用として適する新規な誘電体磁器を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel dielectric ceramic having a negative temperature coefficient of resonance frequency, excellent characteristics such as no-load Q, relative dielectric constant, etc., and suitable for compensation of the temperature coefficient of resonance frequency. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記従来の問題点を解決するものとして、 Ln203(ここで、Lnは、Las Nds Sm、
 Bus Gds Tb及びDYから選ばれる少なくと
も1種の希土類元素を表わす)とAI、0.とからなる
実質的にペロブスカイト構造を有する誘電体磁器を提供
するものである。
The present invention solves the above conventional problems by providing Ln203 (where Ln is Las Nds Sm,
Bus Gds represents at least one rare earth element selected from Tb and DY) and AI, 0. The present invention provides a dielectric ceramic having a substantially perovskite structure comprising:

ここで、本発明の誘電体磁器が「実質的にペロブスカイ
ト構造を有する」とは、X線回折において、ペロブスカ
イト型結晶構造の相が認められ、かつそれ以外の相が全
(またはほとんど全く認められないことを意味する。
Here, the dielectric ceramic of the present invention "substantially has a perovskite structure" means that a perovskite crystal structure phase is observed in X-ray diffraction, and all (or almost no) other phases are observed. It means no.

本発明においては、希土類元素のLnとしては、La、
NL SmXEu、Gd、Tb及びDyの1種単独でも
2種以上の組合わせでもよ< 、LnzO=とAl2O
2の割合は、一般に、LnzO:+ 60〜80重量%
、Alz(h 20〜40重景%の範囲が好ましく、特
に、LnzO375〜80重量%、Al2O320〜2
5重量%の範囲がより好ましい。LnzOsが60重量
%未満でAlz(hが40重世%を超えると、磁器の比
誘電率が低下して実用に供し難くなり、またしnz03
が80重量%を超えAl2O3が20重量%未満である
と、磁器の焼結密度したがって機械的強度が低下すると
ともに無負荷Qが低下するからである。
In the present invention, the rare earth element Ln includes La,
NL SmXEu, Gd, Tb and Dy may be used alone or in combination of two or more, LnzO= and Al2O
The proportion of 2 is generally LnzO: +60-80% by weight
, Alz(h) is preferably in the range of 20 to 40% by weight, particularly LnzO375 to 80% by weight, Al2O320 to 2
A range of 5% by weight is more preferred. If LnzOs is less than 60% by weight and Alz (h exceeds 40% by weight, the dielectric constant of the porcelain will decrease and it will be difficult to put it into practical use.
is more than 80% by weight and Al2O3 is less than 20% by weight, the sintered density and therefore the mechanical strength of the porcelain will decrease, and the no-load Q will decrease.

希土類元素として単一種類の元素を用いる場合には、各
希土類元素ごとのAlzO3との好ましい割合は第1表
に示すとおりであり、これらの場合においてさらに特に
好ましい割合はいずれの希土類元素の場合でも、Ln、
o、 75〜80重世%、八120320〜25重量%
の範囲である。
When a single type of element is used as the rare earth element, the preferable ratio of each rare earth element to AlzO3 is as shown in Table 1, and in these cases, the particularly preferable ratio is as follows for any rare earth element: ,Ln,
o, 75-80% by weight, 8120320-25% by weight
is within the range of

第1表 本発明の誘電体磁器の製法は、特に限定されず、通常の
方法により製造することができる。例えば希土類元素の
原料として希土類酸化物を用い、アルミニウムの原料と
して酸化アルミニウムを選び、それぞれを所要の割合に
秤取、混合し、約1000〜1200℃で仮焼した後、
加圧成形物を1500〜1650℃の温度で焼成するこ
とにより製造することができる。
Table 1 The method for manufacturing the dielectric ceramic of the present invention is not particularly limited, and can be manufactured by a conventional method. For example, use a rare earth oxide as the raw material for the rare earth element, select aluminum oxide as the raw material for aluminum, weigh each in the required proportions, mix them, and calcinate at about 1000 to 1200 ° C.
It can be manufactured by firing a press-molded product at a temperature of 1500 to 1650°C.

本発明の誘電体磁器は、共振器を構成したときの共振周
波数の温度係数が負の値を有し、しかも無負荷Q、比誘
電率等も高周波用として十分なものである。したがって
、無負荷Q、比誘電率等が良好でありながら共振周波数
の温度係数が正に偏り過ぎるため従来実用に供し難かっ
た誘電体磁器の温度係数を複合化により実用上適切な±
10ppm/℃の範囲内に補償するのに適している。
The dielectric ceramic of the present invention has a negative temperature coefficient of the resonant frequency when forming a resonator, and has sufficient no-load Q, dielectric constant, etc. for high frequency use. Therefore, although the no-load Q, dielectric constant, etc. are good, the temperature coefficient of the resonant frequency is too positive, so it has been difficult to put it into practical use in the past.
Suitable for compensation within a range of 10 ppm/°C.

複合化の方法としては、本発明の例えば板状の誘電体磁
器と補償しようとする板状の誘電体磁器を接合する方法
、再読電体磁器を粉砕して粉体として混合し、焼成によ
り一体化し、再読電体磁器のそれぞれの小さな相からな
る磁器を形成する方法など用いることができる。すなわ
ち、発明の磁器が後者のように微細な粒子の状態で別の
磁器と複合がされた場合も本発明の一態様として含まれ
る。
Examples of composite methods include, for example, joining the plate-shaped dielectric porcelain of the present invention and the plate-shaped dielectric porcelain to be compensated, and pulverizing the rereading porcelain and mixing it as a powder, and then firing it to make it into one piece. A method of forming a porcelain consisting of each small phase of rereading material porcelain can be used. That is, the case where the porcelain of the invention is composited with another porcelain in the form of fine particles as in the latter case is also included as one aspect of the present invention.

〔実施例〕〔Example〕

以下、本発明を次の実施例により具体的に説明するが、
これら実施例に限定されるものではない。
Hereinafter, the present invention will be specifically explained using the following examples.
The present invention is not limited to these examples.

実施例I LazO3とAlzOiとからなり、その組成が第2表
に示すとおりである5種の誘電体磁器(試料番号1〜5
)を次のようにして製造した。
Example I Five types of dielectric ceramics (sample numbers 1 to 5) consisting of LazO3 and AlzOi and whose compositions are as shown in Table 2
) was produced as follows.

原料として純度99.9%以上の酸化ランタン(Laz
Oz)と酸化アルミニウム(Al2O2)を所定の割合
に秤取し、ジルコニアボールを用いてポット内で純水中
、16時間ボールミルで粉砕、混合を行った。この混合
物をポットより取り出し、150℃で5時間乾燥した後
、1000〜1200℃で仮焼した。仮焼後粉砕し、整
粒したのち、直径10龍、高さ5鶴の成形体とし、15
00〜1650℃にて1〜3時間焼成した。得られた磁
器の比誘電率(εr)および10GHzにおける無負荷
Q (Qu)を誘電体共振器法により測定した。さらに
温度を+60℃から0℃まで変化させて共振器の共振周
波数を測定し、温度係数 (τ、)を算出した。得られた結果を第2表に示す。
Lanthanum oxide (Laz) with a purity of 99.9% or more is used as a raw material.
Oz) and aluminum oxide (Al2O2) were weighed out at a predetermined ratio, and ground and mixed in a ball mill for 16 hours in a pot in pure water using zirconia balls. This mixture was taken out from the pot, dried at 150°C for 5 hours, and then calcined at 1000-1200°C. After calcining, it is crushed and sized to form a compact with a diameter of 10 dragons and a height of 5 cranes.
It was baked at 00 to 1650°C for 1 to 3 hours. The relative dielectric constant (εr) and no-load Q (Qu) at 10 GHz of the obtained ceramic were measured by the dielectric resonator method. Furthermore, the temperature was varied from +60° C. to 0° C., the resonant frequency of the resonator was measured, and the temperature coefficient (τ,) was calculated. The results obtained are shown in Table 2.

第 2 表(実施例1) 実施例2〜8 実施例2〜7においては、希土類元素酸化物としてLa
103の代りに、それぞれ、純度99.9%以上である
Nd2O2、SmzOz 、EuzOz 、Gd2O2
、TbtOz及びoy、o、を用い、また実施例8にお
いてはLa、O。
Table 2 (Example 1) Examples 2 to 8 In Examples 2 to 7, La was used as the rare earth element oxide.
103, Nd2O2, SmzOz, EuzOz, Gd2O2, each with a purity of 99.9% or more
, TbtOz and oy,o, and in Example 8, La,O.

の代りにNd2O2とEuz03の混合物を用いた以外
は、実施例1と同様の方法で数種の誘電体磁器を製造し
た。実施例2〜8で製造した磁器の組成及び実施例と同
様にして測定した共振周波数の温度係数(τ、)、無負
荷Q (Qu)及び比誘電率(εr)を、それぞれ第3
〜9表に示す。
Several types of dielectric ceramics were manufactured in the same manner as in Example 1, except that a mixture of Nd2O2 and Euz03 was used instead. The composition of the porcelain manufactured in Examples 2 to 8 and the temperature coefficient of resonance frequency (τ, ), no-load Q (Qu), and relative dielectric constant (εr) measured in the same manner as in Examples were determined by the third
- Shown in Table 9.

また、実施例1の試料番号3、実施例2の試料番号4、
及び実施例4の試料番号4の磁器を粉砕し、得られた粉
末をX線回折に供したところペロブスカイト型結晶構造
の相が認められ、かつそれ以外の相が全くまたはほとん
ど全く認められなかった。
In addition, sample number 3 of Example 1, sample number 4 of Example 2,
When the porcelain of Sample No. 4 of Example 4 was crushed and the resulting powder was subjected to X-ray diffraction, a phase with a perovskite crystal structure was observed, and no or almost no other phases were observed. .

■ 第 4 表(実施例3) 第 5 表(実施例4) 実施例9 比誘電率38、無負荷Q 12000 (12GHz)
、共振器としたときの共振周波数の温度係数+150p
pm/”cである5rO−TiOz系誘電体磁器(組成
: SrO/Ti0z=2/1(重量))の前記温度係
数を、前記実施例4の試料番号5の誘電体磁器を用い複
合化により補償を試みた。
■ Table 4 (Example 3) Table 5 (Example 4) Example 9 Relative dielectric constant 38, no-load Q 12000 (12GHz)
, temperature coefficient of resonance frequency when used as a resonator +150p
The temperature coefficient of the 5rO-TiOz-based dielectric porcelain (composition: SrO/TiOz=2/1 (weight)) having a I tried to make amends.

すなわち、5rO−TiOz系誘電体磁器は直径7.5
龍、厚さ1.0■の円板に、実施例4、試料番号5の誘
電体磁器は直径7.5鶴、厚さ2.7n+の円板に加工
後、両者の片面同士を貼り合わせ、円板型共振器を作成
した。こうして得られた複合誘電体共振器を実施例1と
同様にして測定したところ、比誘電率23、無負荷Q 
8950、共振周波数の温度係数は+9.2ppm/ 
’C(12Gllz)であった。
In other words, the diameter of 5rO-TiOz dielectric porcelain is 7.5
The dielectric porcelain of Example 4 and Sample No. 5 was processed into a disk with a diameter of 7.5cm and a thickness of 2.7n+, and then one side of the two was bonded together. , a disc-shaped resonator was created. When the thus obtained composite dielectric resonator was measured in the same manner as in Example 1, the relative dielectric constant was 23, and the unloaded Q
8950, temperature coefficient of resonance frequency is +9.2ppm/
'C (12Gllz).

〔発明の効果〕〔Effect of the invention〕

実施例から明らかなように、本発明の誘電体磁器はマイ
クロ波領域において共振周波数の温度係数が負であり、
しかも比誘電率、無負荷Qとも十分に高く優れたもので
ある。したがって、従来、比誘電率、無負荷Q等が良好
でありながら共振周波数の温度係数が正に偏り過ぎるた
めに実用に供し得なかった誘電体磁器の温度係数を複合
化により改良するのに適し、これら材料の実用性を高め
るものである。
As is clear from the examples, the dielectric ceramic of the present invention has a negative temperature coefficient of resonance frequency in the microwave region,
Furthermore, both the dielectric constant and the no-load Q are sufficiently high and excellent. Therefore, it is suitable for improving the temperature coefficient of dielectric ceramics, which conventionally could not be put to practical use because the temperature coefficient of the resonant frequency was too positive even though the relative permittivity and no-load Q were good. , which increases the practicality of these materials.

Claims (1)

【特許請求の範囲】[Claims]  Ln_2O_3(ここで、Lnは、La、Nd、Sm
、Eu、Gd、Tb及びDyから選ばれる少なくとも1
種の希土類元素を表わす)とAl_2O_3とからなる
実質的にペロブスカイト構造を有する誘電体磁器。
Ln_2O_3 (here, Ln is La, Nd, Sm
, Eu, Gd, Tb and Dy.
A dielectric porcelain having a substantially perovskite structure consisting of Al_2O_3 and Al_2O_3.
JP62069894A 1987-03-24 1987-03-24 Dielectric porcelain Expired - Lifetime JP2516620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069894A JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069894A JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Publications (2)

Publication Number Publication Date
JPS63236213A true JPS63236213A (en) 1988-10-03
JP2516620B2 JP2516620B2 (en) 1996-07-24

Family

ID=13415876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069894A Expired - Lifetime JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Country Status (1)

Country Link
JP (1) JP2516620B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JPH08325054A (en) * 1995-05-31 1996-12-10 Kyocera Corp Low dielectric loss body
WO2016052010A1 (en) * 2014-09-29 2016-04-07 住友大阪セメント株式会社 Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
JP2016069268A (en) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 Corrosion resistant member, electrostatic chuck member, and method of producing the corrosion resistant member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270460A (en) * 1986-05-19 1987-11-24 日本特殊陶業株式会社 Colored ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270460A (en) * 1986-05-19 1987-11-24 日本特殊陶業株式会社 Colored ceramic composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676633A (en) * 1992-06-24 1994-03-18 Kyocera Corp Dielectric ceramic composition and dielectric resonator
JP2625074B2 (en) * 1992-06-24 1997-06-25 京セラ株式会社 Dielectric ceramic composition and dielectric resonator
JPH08325054A (en) * 1995-05-31 1996-12-10 Kyocera Corp Low dielectric loss body
WO2016052010A1 (en) * 2014-09-29 2016-04-07 住友大阪セメント株式会社 Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
JP2016069268A (en) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 Corrosion resistant member, electrostatic chuck member, and method of producing the corrosion resistant member
KR20170066313A (en) * 2014-09-29 2017-06-14 스미토모 오사카 세멘토 가부시키가이샤 Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
US20170294331A1 (en) * 2014-09-29 2017-10-12 Sumitomo Osaka Cement Co., Ltd. Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
US10497599B2 (en) 2014-09-29 2019-12-03 Sumitomo Osaka Cement Co., Ltd Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member

Also Published As

Publication number Publication date
JP2516620B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
EP0915066B1 (en) Dielectric ceramic composition and dielectric resonator made by using the same
JPH0687367B2 (en) Dielectric porcelain composition
JPH0351042B2 (en)
JPS63236213A (en) Dielectric ceramic
EP0169077B1 (en) Dielectric porcelain material
US4792537A (en) Dielectric ceramic composition for high frequencies
JP3393776B2 (en) Dielectric ceramic composition and dielectric resonator
JP3446249B2 (en) High frequency dielectric ceramic composition
JP3450913B2 (en) Dielectric porcelain composition
US4717694A (en) Dielectric ceramic composition for high frequencies
US4849384A (en) Dielectric porcelain
JPH06333426A (en) Dielectric ceramic composition for high frequency
JP3212704B2 (en) Microwave dielectric porcelain composition
JPH0654604B2 (en) Dielectric porcelain
JP3242243B2 (en) Microwave dielectric porcelain composition
JP2005239446A (en) Porcelain composition and its manufacturing method
JP3285759B2 (en) High frequency dielectric ceramic composition
JPH0664934B2 (en) High frequency dielectric porcelain
JPH0334164B2 (en)
JPH07187771A (en) Dielectric porcelain composition
JPH06215624A (en) High-frequency dielectric porcelain composition
JP3359507B2 (en) High frequency dielectric ceramic composition
JPH04292460A (en) Dielectric ceramic composition
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JPS62252007A (en) Microwave dielectric porcelain compound