JP2516620B2 - Dielectric porcelain - Google Patents

Dielectric porcelain

Info

Publication number
JP2516620B2
JP2516620B2 JP62069894A JP6989487A JP2516620B2 JP 2516620 B2 JP2516620 B2 JP 2516620B2 JP 62069894 A JP62069894 A JP 62069894A JP 6989487 A JP6989487 A JP 6989487A JP 2516620 B2 JP2516620 B2 JP 2516620B2
Authority
JP
Japan
Prior art keywords
dielectric
temperature coefficient
porcelain
resonance frequency
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62069894A
Other languages
Japanese (ja)
Other versions
JPS63236213A (en
Inventor
哲朗 中村
俊樹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP62069894A priority Critical patent/JP2516620B2/en
Publication of JPS63236213A publication Critical patent/JPS63236213A/en
Application granted granted Critical
Publication of JP2516620B2 publication Critical patent/JP2516620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波用とし好適な新規誘電体磁器に関し、
特に、共振器を構成したときの共振周波数の温度係数が
負であって温度係数の補償用として有用である誘電体磁
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a novel dielectric ceramic suitable for high frequency,
In particular, the present invention relates to a dielectric porcelain having a negative temperature coefficient of the resonance frequency when the resonator is configured and useful for compensating the temperature coefficient.

〔従来の技術〕[Conventional technology]

近年、マイクロ波、ミリ波などの高周波領域で用いら
れる誘電体磁器として、無負荷Q及び比誘電率が高い誘
電体磁器が開発されている。
In recent years, as a dielectric ceramic used in a high frequency region such as a microwave and a millimeter wave, a dielectric ceramic having an unloaded Q and a high relative dielectric constant has been developed.

これらの高周波用誘電体磁器の中には、無負荷Q、及
び比誘電率が優れているにも拘らず、共振器を構成した
ときの共振周波数の温度係数が正に偏り過ぎるために発
振周波数安定化等の用途に使用することが困難であるも
のがあり、例えば、TiO2、SrO−TiO2系磁器等が挙げら
れる。
Among these high-frequency dielectric porcelains, the temperature coefficient of the resonance frequency when the resonator is constructed is too positively biased despite the fact that the no-load Q and the relative permittivity are excellent. Some of them are difficult to use for applications such as stabilization, and examples thereof include TiO 2 and SrO—TiO 2 porcelain.

このような共振周波数の温度係数が正に偏り過ぎる誘
電体磁器の改良方法として、このような誘電体磁器を温
度係数が逆に負に大きい誘電体磁器と複合化して、温度
係数を±10ppm/℃の範囲内に制御して実用的なものとす
る試みが行なわれている。この複合化に用いる共振周波
数の温度係数が負に大きい誘電体磁器として、例えば、
MgTiO3、La2Ti2O7、Ca2Nb2O7等が知られている。
As a method for improving such a dielectric porcelain in which the temperature coefficient of the resonance frequency is too positively biased, such a dielectric porcelain is compounded with a dielectric porcelain having a large negative temperature coefficient, and the temperature coefficient is ± 10 ppm / Attempts have been made to make it practical by controlling it within the range of ° C. As a dielectric porcelain with a large negative negative temperature coefficient of the resonance frequency used for this composite, for example,
MgTiO 3 , La 2 Ti 2 O 7 , Ca 2 Nb 2 O 7 and the like are known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の共振周波数の温度係数が負に大きい誘
電体磁器は複合化によって温度係数を補償することはで
きるものの、無負荷Qが小さいため、得られる複合誘電
体の無負荷Qが低下するという問題があった。
However, although the dielectric ceramics having a large negative temperature coefficient of the resonance frequency can compensate the temperature coefficient by compounding, since the unloaded Q is small, the unloaded Q of the obtained composite dielectric is lowered. There was a problem.

そこで、本発明の目的は、共振周波数の温度係数が負
で、かつ無負荷Q、比誘電率等の特性が優れ、共振周波
数の温度係数の補償用として適する新規な誘電体磁器を
提供することにある。
Therefore, an object of the present invention is to provide a novel dielectric porcelain having a negative temperature coefficient of resonance frequency and excellent characteristics such as no-load Q and relative permittivity, which is suitable for compensation of the temperature coefficient of resonance frequency. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記従来の問題点を解決するものとして、 Ln2O3(ここで、Lnは、La、Sm、Eu、Gd、Tb及びDyか
ら選ばれる少なくとも1種の希土類元素を表わす)とAl
2O3とからなる実質的にペロブスカイト構造を有する誘
電体磁器を提供するものである。
In order to solve the above-mentioned conventional problems, the present invention provides Ln 2 O 3 (where Ln represents at least one rare earth element selected from La, Sm, Eu, Gd, Tb and Dy) and Al
Disclosed is a dielectric porcelain substantially composed of 2 O 3 and having a perovskite structure.

ここで、本発明の誘電体磁器が「実質的にペロブスカ
イト構造を有する」とは、X線回折において、ペロブス
カイト型結晶構造の相が認められ、かつそれ以外の相が
全くまたはほとんど全く認められないことを意味する。
Here, the dielectric ceramics of the present invention having “substantially have a perovskite structure” means that a phase having a perovskite type crystal structure is observed in X-ray diffraction, and no other phase is observed at all. Means that.

本発明においては、希土類元素のLnとしては、La、S
m、Eu、Gd、Tb及びDyの1種単独でも2種以上の組合わ
せでもよく、Ln2O3とAl2O3の割合は、一般に、Ln2O360
〜80重量%、Al2O320〜40重量%の範囲が好ましく、特
に、Ln2O375〜80重量%、Al2O320〜25重量%の範囲がよ
り好ましい。Ln2O3が60重量%未満でAl2O3が40重量%を
超えると、磁器の比誘電率が低下して実用に供し難くな
り、またLn2O3が80重量%を超えAl2O3が20重量%未満で
あると、磁器の焼結密度したがって機械的強度が低下す
るとともに無負荷Qが低下するからである。
In the present invention, as the rare earth element Ln, La, S
One of m, Eu, Gd, Tb and Dy may be used alone or in combination of two or more, and the ratio of Ln 2 O 3 and Al 2 O 3 is generally Ln 2 O 3 60
-80 wt% and Al 2 O 3 20-40 wt% are preferable, and Ln 2 O 3 75-80 wt% and Al 2 O 3 20-25 wt% are more preferable. When Ln 2 O 3 is less than 60% by weight and Al 2 O 3 exceeds 40% by weight, the relative permittivity of the porcelain decreases and it becomes difficult to put it into practical use. Also, when Ln 2 O 3 exceeds 80% by weight, Al 2 O 3 exceeds 80% by weight. This is because if O 3 is less than 20% by weight, the sinter density of the porcelain, and thus the mechanical strength, decreases and the unloaded Q also decreases.

希土類元素として単一種類の元素を用いる場合には、
各希土類元素ごとのAl2O3との好ましい割合は第1表に
示すとおりであり、これらの場合においてさらに特に好
ましい割合はいずれの希土類元素の場合でも、Ln2O375
〜80重量%、Al2O320〜25重量%の範囲である。
When using a single type of element as a rare earth element,
The preferable ratio of each rare earth element to Al 2 O 3 is as shown in Table 1, and in these cases, a particularly preferable ratio is Ln 2 O 3 75 in any rare earth element.
80% by weight, in the range of Al 2 O 3 20-25% by weight.

本発明の誘電体磁器の製法は、特に限定されず、通常
の方法により製造することができる。例えば希土類元素
の原料として希土類酸化物を用い、アルミニウムの原料
として酸化アルミニウムを選び、それぞれを所要の割合
に秤取、混合し、約1000〜1200℃で仮焼した後、加圧成
形物を1500〜1650℃の温度で焼成することにより製造す
ることができる。
The method for producing the dielectric porcelain of the present invention is not particularly limited, and it can be produced by an ordinary method. For example, a rare earth oxide is used as a raw material of a rare earth element, aluminum oxide is selected as a raw material of aluminum, each is weighed at a required ratio, mixed, and calcined at about 1000 to 1200 ° C. It can be produced by firing at a temperature of ~ 1650 ° C.

本発明の誘電体磁器は、共振器を構成したときの共振
周波数の温度係数が負の値を有し、しかも無負荷Q、比
誘電率等も高周波用として十分なものである。したがっ
て、無負荷Q、比誘電率等が良好でありながら共振周波
数の温度係数が正に偏り過ぎるため従来実用に供し難か
った誘電体磁器の温度係数を複合化により実用上適切な
±10ppm/℃の範囲内に補償するのに適している。
The dielectric porcelain of the present invention has a negative temperature coefficient of the resonance frequency when the resonator is formed, and the unloaded Q, the relative dielectric constant and the like are sufficient for high frequencies. Therefore, the temperature coefficient of the resonance frequency is too positively biased even though the no-load Q and the relative permittivity are good. Suitable for compensation within the range of.

複合化の方法としては、本発明の例えば板状の誘電体
磁器と補償しようとする板状の誘電体磁器を接合する方
法、両誘電体磁器を粉砕して粉体として混合し、焼成に
より一体化し、両誘電体磁器のそれぞれの小さな相から
なる磁器を形成する方法など用いることができる。すな
わち、発明の磁器が後者のように微細な粒子の状態で別
の磁器と複合がされた場合も本発明の一態様として含ま
れる。
Examples of the compounding method include, for example, a method of joining a plate-shaped dielectric ceramic with a plate-shaped dielectric ceramic to be compensated for according to the present invention, and a method in which both dielectric ceramics are crushed and mixed as a powder, and then integrated by firing. It is possible to use a method of forming a porcelain composed of small phases of both dielectric porcelains. That is, the case where the porcelain of the invention is combined with another porcelain in the state of fine particles like the latter is also included as one aspect of the present invention.

〔実施例〕〔Example〕

以下、本発明を次の実施例により具体的に説明する
が、これら実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

実施例1 La2O3とAl2O3とからなり、その組成が第2表に示すと
おりである5種の誘電体磁器(試料番号1〜5)を次の
ようにして製造した。
Example 1 Five types of dielectric porcelain (Sample Nos. 1 to 5), which consisted of La 2 O 3 and Al 2 O 3, and whose compositions are as shown in Table 2, were manufactured as follows.

原料として純度99.9%以上の酸化ランタン(La2O3
と酸化アルミニウム(Al2O3)を所定の割合に秤取し、
ジルコニアボールを用いてポット内で純水中、16時間ボ
ールミルで粉砕、混合を行った。この混合物をポットよ
り取り出し、150℃で5時間乾燥した後、1000〜1200℃
で仮焼した。仮焼後粉砕し、整粒したのち、直径10mm、
高さ5mmの成形体とし、1500〜1650℃にて1〜3時間焼
成した。得られた磁器の比誘電率(ε)および10GHz
における無負荷Q(Qu)を誘電体共振器法により測定し
た。さらに温度を+60℃から0℃まで変化させて共振器
の共振周波数を測定し、温度係数 (τ)を算出した。得られた結果を第2表に示す。
Lanthanum oxide (La 2 O 3 ) with a purity of 99.9% or more as a raw material
And aluminum oxide (Al 2 O 3 ) are weighed in a predetermined ratio,
Zirconia balls were used to pulverize and mix in pure water in a pot for 16 hours in a ball mill. This mixture was taken out of the pot and dried at 150 ° C for 5 hours, then 1000-1200 ° C
And calcined. After calcination, crush and sizing, then diameter 10mm,
A formed body having a height of 5 mm was fired at 1500 to 1650 ° C for 1 to 3 hours. The relative permittivity (ε r ) of the obtained porcelain and 10 GHz
The unloaded Q (Qu) in the above was measured by the dielectric resonator method. Furthermore, the temperature was changed from + 60 ° C. to 0 ° C., the resonance frequency of the resonator was measured, and the temperature coefficient (τ f ) was calculated. The results obtained are shown in Table 2.

実施例2〜6 実施例2〜6においては、希土類元素酸化物としてLa
2O3の代りに、それぞれ、純度99.9%以上であるSm2O3
Eu2O3、Gd2O3、Tb2O3及びDy2O3を用い、た以外は、実施
例1と同様の方法で数種の誘電体磁器を製造した。実施
例2〜6で製造した磁器の組成及び実施例と同様にして
測定した共振周波数の温度係数(τ)、無負荷Q(Q
u)及び比誘電率(ε)を、それぞれ第3〜7表に示
す。
Examples 2 to 6 In Examples 2 to 6, La was used as the rare earth element oxide.
Instead of 2 O 3, respectively, Sm 2 O 3 is 99.9% or higher,
Several kinds of dielectric porcelain were manufactured in the same manner as in Example 1 except that Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 and Dy 2 O 3 were used. Compositions of porcelains manufactured in Examples 2 to 6, temperature coefficient (τ f ) of resonance frequency measured in the same manner as in Example, unloaded Q (Q
u) and relative permittivity (ε r ) are shown in Tables 3 to 7, respectively.

また、実施例1の試料番号3、及び実施例4の試料番
号4の磁器を粉砕し、得られた粉末をX線回折に供した
ところペロブスカイト型結晶構造の相が認められ、かつ
それ以外の相が全くまたはほとんど全く認められなかっ
た。
Further, when the porcelains of Sample No. 3 of Example 1 and Sample No. 4 of Example 4 were crushed and the obtained powder was subjected to X-ray diffraction, a phase having a perovskite type crystal structure was observed, and other No or little phase was observed.

実施例7 比誘電率38、無負荷Q12000(12GHz)、共振器とした
ときの共振周波数の温度係数+150ppm/℃であるSrO−Ti
O2系誘電体磁器(組成:SrO/TiO2=2/1(重量))の前記
温度係数を、前記実施例4の試料番号5の誘電体磁器を
用い複合化により補償を試みた。
Example 7 SrO-Ti having a relative permittivity of 38, no load Q12000 (12 GHz), and a temperature coefficient of resonance frequency of a resonator of +150 ppm / ° C.
An attempt was made to compensate for the temperature coefficient of the O 2 -based dielectric ceramic (composition: SrO / TiO 2 = 2/1 (weight)) by compounding the dielectric ceramic of sample No. 5 of Example 4 described above.

すなわち、SrO−TiO2系誘電体磁器は直径7.5mm、厚さ
1.0mmの円板に、実施例4、試料番号5の誘電体磁器は
直径7.5mm、厚さ2.7mmの円板に加工後、両者の片面同士
を貼り合わせ、円板型共振器を作成した。こうして得ら
れた複合誘電体共振器を実施例1と同様にして測定した
ところ、比誘電率23、無負荷Q8950、共振周波数の温度
係数は+9.2ppm/℃(12GHz)であった。
That is, the SrO-TiO 2 system dielectric ceramic has a diameter of 7.5 mm and a thickness of
The dielectric ceramics of Example 4 and Sample No. 5 were processed into a disk having a diameter of 7.5 mm and a thickness of 2.7 mm on a disk having a thickness of 1.0 mm, and one surface of the both was bonded to form a disk resonator. . The composite dielectric resonator thus obtained was measured in the same manner as in Example 1. As a result, the relative dielectric constant was 23, the unloaded Q8950 and the temperature coefficient of the resonance frequency were +9.2 ppm / ° C. (12 GHz).

〔発明の効果〕〔The invention's effect〕

実施例から明らかなように、本発明の誘電体磁器はマ
イクロ波領域において共振周波数の温度係数が負であ
り、しかも比誘電率、無負荷Qとも十分に高く優れたも
のである。したがって、従来、比誘電率、無負荷Q等が
良好でありながら共振周波数の温度係数が正に偏り過ぎ
るために実用に供し得なかった誘電体磁器の温度係数を
複合化により改良するのに適し、これら材料の実用性を
高めるものである。
As is clear from the examples, the dielectric ceramics of the present invention have a negative temperature coefficient of the resonance frequency in the microwave region, and are excellent in both the relative permittivity and the no-load Q. Therefore, it is suitable to improve the temperature coefficient of the dielectric porcelain that cannot be put to practical use by compounding it because the temperature coefficient of the resonance frequency is too positively biased while the relative permittivity and the no-load Q are good. , Enhances the practicality of these materials.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ln2O3(ここで、Lnは、La、Sm、Eu、Gd、T
b及びDyから選ばれる少なくとも1種の希土類元素を表
わす)とAl2O3とからなる実質的にペロブスカイト構造
を有する誘電体磁器。
1. Ln 2 O 3 (where Ln is La, Sm, Eu, Gd, T
A dielectric ceramic having a substantially perovskite structure composed of Al 2 O 3 and at least one rare earth element selected from b and Dy).
JP62069894A 1987-03-24 1987-03-24 Dielectric porcelain Expired - Lifetime JP2516620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069894A JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069894A JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Publications (2)

Publication Number Publication Date
JPS63236213A JPS63236213A (en) 1988-10-03
JP2516620B2 true JP2516620B2 (en) 1996-07-24

Family

ID=13415876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069894A Expired - Lifetime JP2516620B2 (en) 1987-03-24 1987-03-24 Dielectric porcelain

Country Status (1)

Country Link
JP (1) JP2516620B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625074B2 (en) * 1992-06-24 1997-06-25 京セラ株式会社 Dielectric ceramic composition and dielectric resonator
JP3339989B2 (en) * 1995-05-31 2002-10-28 京セラ株式会社 Low dielectric loss material
JP6156446B2 (en) * 2014-09-29 2017-07-05 住友大阪セメント株式会社 Corrosion-resistant member, electrostatic chuck member, and method of manufacturing corrosion-resistant member
WO2016052010A1 (en) * 2014-09-29 2016-04-07 住友大阪セメント株式会社 Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270460A (en) * 1986-05-19 1987-11-24 日本特殊陶業株式会社 Colored ceramic composition

Also Published As

Publication number Publication date
JPS63236213A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US5449652A (en) Ceramic compositions for BZN dielectric resonators
JP2516620B2 (en) Dielectric porcelain
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2001114553A (en) Microwave dielectric substance ceramic composition
EP0169077B1 (en) Dielectric porcelain material
JP3450913B2 (en) Dielectric porcelain composition
US5013695A (en) Dielectric ceramic composition
US4717694A (en) Dielectric ceramic composition for high frequencies
JPH06333426A (en) Dielectric ceramic composition for high frequency
US4849384A (en) Dielectric porcelain
JP3443859B2 (en) High frequency dielectric ceramic composition
JPH07187771A (en) Dielectric porcelain composition
JP3212704B2 (en) Microwave dielectric porcelain composition
JPH06309926A (en) Dielectric ceramic composition
JPH0654604B2 (en) Dielectric porcelain
JP3067814B2 (en) Dielectric porcelain composition
JPH0334164B2 (en)
JP3242243B2 (en) Microwave dielectric porcelain composition
JP3359507B2 (en) High frequency dielectric ceramic composition
JPH11199320A (en) Microwave dielectric porcelain composition
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JP3024300B2 (en) High frequency dielectric ceramic composition
JPH0676630A (en) Dielectric ceramic composition for high frequency
JPH04292460A (en) Dielectric ceramic composition
JPH11130534A (en) Dielectric composition for producing ceramic