JP3212704B2 - Microwave dielectric porcelain composition - Google Patents

Microwave dielectric porcelain composition

Info

Publication number
JP3212704B2
JP3212704B2 JP22637392A JP22637392A JP3212704B2 JP 3212704 B2 JP3212704 B2 JP 3212704B2 JP 22637392 A JP22637392 A JP 22637392A JP 22637392 A JP22637392 A JP 22637392A JP 3212704 B2 JP3212704 B2 JP 3212704B2
Authority
JP
Japan
Prior art keywords
zno
catio
porcelain composition
graph showing
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22637392A
Other languages
Japanese (ja)
Other versions
JPH0656519A (en
Inventor
宗臣 加藤
博文 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP22637392A priority Critical patent/JP3212704B2/en
Priority to US08/101,252 priority patent/US5340784A/en
Priority to DE69311768T priority patent/DE69311768T2/en
Priority to EP93112424A priority patent/EP0582274B1/en
Publication of JPH0656519A publication Critical patent/JPH0656519A/en
Application granted granted Critical
Publication of JP3212704B2 publication Critical patent/JP3212704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を高い値で維持しつつ、共振周波数の
温度係数(以下、単にτfという。)をゼロに近づける
ことができ、更にCaTiO3 の混合割合を加減するこ
とによって、τfをゼロを中心としてプラス側とマイナ
ス側に任意に制御し得ることができ、またZnOの添加
により低温で焼成しても高品質を備えるマイクロ波誘電
体磁器組成物に関するものである。本発明は、マイクロ
波領域において誘電体共振器、マイクロ波集積回路基
板、各種マイクロ波回路のインピーダンス整合等に利用
される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more particularly, to a temperature coefficient of resonance frequency (hereinafter referred to as "Qu") while maintaining a high value of unloaded Q (hereinafter referred to simply as "Qu"). Hereinafter, simply referred to as τf) can be made close to zero, and by further adjusting the mixing ratio of CaTiO 3 , τf can be arbitrarily controlled to be a plus side and a minus side with zero as a center. The present invention relates to a microwave dielectric porcelain composition having high quality even when baked at a low temperature by the addition of water. INDUSTRIAL APPLICABILITY The present invention is used for a dielectric resonator, a microwave integrated circuit board, impedance matching of various microwave circuits, and the like in a microwave region.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の誘電体磁器材料としては、結晶構
造がペロブスカイト相とイルメナイト相との2相を含む
誘電体磁器組成物(特開平2−129065号公報)、
MgTiO3 とTiO2 に所定量のCaTiO3 を含有
した誘電体磁器組成物(特開昭52−118599号公
報)等が知られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase dielectric loss as the operating frequency increases.
There is a demand for a dielectric ceramic composition having a large Qu in the micro frequency range. As a conventional dielectric porcelain material, a dielectric porcelain composition having a crystal structure including two phases of a perovskite phase and an ilmenite phase (Japanese Patent Laid-Open No. 2-129065),
A dielectric ceramic composition containing a predetermined amount of CaTiO 3 in MgTiO 3 and TiO 2 (Japanese Patent Application Laid-Open No. Sho 52-118599) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の誘電体
磁器組成物ではNd2 3 、La2 3 、PbO、Zn
O等の他成分が多く含まれる上、Quも必ずしも大きな
値とは言えない。後者の誘電体磁器組成物では、TiO
2 を必須成分として含み、CaTiO3 の混合量が3〜
10重量%の範囲においてはτfが+87〜−100と
大きく変化し、0付近の小さな値には調整が困難等の問
題があった。
However, in the former dielectric ceramic composition, Nd 2 O 3 , La 2 O 3 , PbO, Zn
In addition to containing many other components such as O, Qu cannot always be said to be a large value. In the latter dielectric porcelain composition, TiO
2 as an essential component, and the mixing amount of CaTiO 3 is 3 to
In the range of 10% by weight, τf greatly changes from +87 to -100, and a small value near 0 has a problem that adjustment is difficult.

【0004】本発明は、上記問題点を解決するものであ
り、CaTiO3 及びZnOの配合割合を加減すること
によって、εr 及びQuを実用的な特性範囲に維持しつ
つ、τfをゼロに近づける又はゼロを中心としてプラス
側とマイナス側の所望の値に任意に且つ安定して制御し
得ることができ、更にZnOの添加により低温で焼成し
ても若しくは焼成温度が変動しても高品質を備える誘電
体磁器組成物を提供することを目的とする。
[0004] The present invention is intended to solve the above problems, by adjusting the mixing ratio of CaTiO 3 and ZnO, while maintaining a practical characteristic range epsilon r and Qu, close the τf to zero Alternatively, it can be arbitrarily and stably controlled to a desired value on the plus side and the minus side with zero as the center. Further, even if firing is performed at a low temperature by adding ZnO or the firing temperature fluctuates, high quality can be obtained. It is an object of the present invention to provide a dielectric ceramic composition comprising the same.

【0005】[0005]

【課題を解決するための手段】本発明者は、誘電体磁器
組成物において、高いQuを維持しつつ、τfをゼロに
近づけることができ、且つ焼成温度を変えても安定した
品質を備える組成について種々検討した結果、CaTi
3 及びZnOの添加割合を加減することによりこの欠
点が解消されることを見出して、本発明を完成するに至
ったのである。
Means for Solving the Problems The present inventor has proposed a dielectric ceramic composition which can make τf close to zero while maintaining a high Qu, and has a stable quality even when the firing temperature is changed. As a result of various investigations, CaTi
The inventors have found that this disadvantage can be solved by adjusting the proportions of O 3 and ZnO added, and have completed the present invention.

【0006】即ち、本発明の誘電体磁器組成物は、xM
gTiO3・(1−x)CaTiO3〔但し、0.925
≦x≦0.950〕で示される組成を主成分とし、これ
に、上記xMgTiO3・(1−x)CaTiO3100
重量部に対して3〜9重量部のZnOを添加含有し、共
振周波数6GHzにおけるQuが3330〜4390、
εrが19〜22であり、τfが−17〜+23ppm
/℃であることを特徴とする。上記xが0.925より
小さいと、τfが大きな正の値をとるとともに、Quが
小さくなり、逆に0.950を越えるとτfが大きな負
の値をとり、好ましくないからである。また、特に、上
記xが0.935〜0.945、ZnOの添加量が6重
量%である場合は、Quが3900〜4100、τfが
−5〜+5(ppm/℃)、εrが21前後であり、ま
た低温で焼成しても高品質なものを確保できるし、且つ
焼成温度に対する安定性を示すので、好ましい。
That is, the dielectric ceramic composition of the present invention comprises xM
gTiO 3 · (1-x) CaTiO 3 [provided that 0.925
≦ x ≦ 0.950 as a main component a composition represented by], to which the xMgTiO 3 · (1-x) CaTiO 3 100
3 to 9 parts by weight of ZnO is added to and contained by weight.
Qu at vibration frequency 6 GHz is 3330-4390,
εr is 19 to 22 and τf is −17 to +23 ppm
/ ° C. If x is smaller than 0.925, τf takes a large positive value and Qu decreases. Conversely, if it exceeds 0.950, τf takes a large negative value, which is not preferable. In particular, when x is 0.935 to 0.945 and the amount of ZnO added is 6% by weight, Qu is 3900 to 4100, τf is -5 to +5 (ppm / ° C.), and ε r is 21. This is preferable because high quality can be ensured even when fired at a low temperature and stability against the firing temperature is exhibited.

【0007】尚、CaTiO3 の混合割合が、多くなる
ほど、τfは負の値から正の方向へ向かい(図3)、ε
r は大きくなり(図2)、一方Quは小さくなる傾向に
ある(図1)。また、図7に示すように、ZnOの添加
により、低温(例えば1325〜1350℃)により焼
成しても密度の高い焼結体を製造でき、そのため焼成温
度を種々変動させても(又はたとえ低温で焼成しても)
安定した品質のものとすることができる(図4〜1
1)。以上より、CaTiO3 及びZnOの上記適正な
混合範囲において、これらの性能のバランスのとれたも
のとなるとともに、安定した品質のものとなる。
Incidentally, as the mixing ratio of CaTiO 3 increases, τf changes from a negative value to a positive direction (FIG. 3),
r tends to increase (FIG. 2), while Qu tends to decrease (FIG. 1). Further, as shown in FIG. 7, by adding ZnO, a sintered body having a high density can be manufactured even when firing is performed at a low temperature (for example, 1325 to 1350 ° C.). Even if fired)
Stable quality can be obtained (FIGS. 4-1)
1). As described above, in the above-mentioned appropriate mixing range of CaTiO 3 and ZnO, the performance is balanced and the quality is stable.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。MgO粉末(純度;99.4%)、CaOとしてC
aCO3 粉末(純度;99%)、TiO2 粉末(純度;
99.98%)、ZnO粉末(純度;99.5%)を出
発原料として、図1及び4に示すように、組成式xMg
TiO3 ・(1−x)CaTiO3 +y重量%ZnO
〔xMgTiO3 ・(1−x)CaTiO3 100重量
部に対してZnOy重量部を意味する。〕の各xとyが
変化した組成になるように、所定量(全量として約60
0g)を秤量、混合した。その後、ミキサーで乾式によ
る混合(20〜30分)及び一次粉砕を施した後、大気
雰囲気中にて1100℃の温度で2時間仮焼した。次い
で、この仮焼粉末に適量の有機バインダー(29g)と
水(300〜400g)を加え、20mmφのアルミナ
ボールで、90rpm、23時間粉砕した。その後、真
空凍結乾燥(約0.4Torr、40〜50℃、約20
時間)により造粒し、この造粒された原料を用いて10
00kg/cm2 のプレス圧で19mmφ×11mmt
(厚さ)の円柱状に成形した。
The present invention will be described below in detail with reference to examples. MgO powder (purity; 99.4%), C as CaO
aCO 3 powder (purity; 99%), TiO 2 powder (purity;
99.98%) and ZnO powder (purity: 99.5%) as starting materials, and as shown in FIGS.
TiO 3 · (1-x) CaTiO 3 + y wt% ZnO
[XMnTiO 3 · (1-x) means 100 parts by weight of ZnOy with respect to 100 parts by weight of CaTiO 3 . ] So that each of x and y has a changed composition.
0 g) were weighed and mixed. Then, after performing dry mixing (20 to 30 minutes) and primary pulverization with a mixer, the mixture was calcined at 1100 ° C. for 2 hours in an air atmosphere. Next, an appropriate amount of an organic binder (29 g) and water (300 to 400 g) were added to the calcined powder, and the powder was ground with a 20 mmφ alumina ball at 90 rpm for 23 hours. Then, vacuum freeze drying (about 0.4 Torr, 40-50 ° C., about 20
Time), and the granulated material is used for 10
19mmφ × 11mmt at a press pressure of 00kg / cm 2
(Thickness).

【0009】次に、この成形体を大気中、500℃、3
時間にて脱脂し、その後、各図に示す1300〜142
5℃の範囲の各温度で、4時間焼成し、最後に両端面を
約16mmφ×8mmt(厚さ)の円柱状に研磨して、
誘電体試料とした。そして、各試料につき、平行導体板
型誘電体円柱共振器法(TE011 MODE)等により、
εr (比誘電率)、Qu及びτf、更に、焼結密度をア
ルキメデス法により測定した。尚、共振周波数は6GH
zである。これらの結果を図1〜図11に示す。また、
一例として、0.95MgTiO3 ・0.05CaTi
3の場合のX線回折の結果を図12(0.95MgT
iO3 ・0.05CaTiO3 に対して6重量%のZn
Oを含有、1300℃で4時間焼成)、図13(ZnO
を含有せず、1360℃で4時間焼成)に示す。
Next, the compact is heated at 500 ° C.
Degreasing at time, then 1300-142 shown in each figure
Baking at each temperature in the range of 5 ° C. for 4 hours, and finally polishing both end surfaces into a cylindrical shape of about 16 mmφ × 8 mmt (thickness)
A dielectric sample was used. Then, for each sample, a parallel conductor plate type dielectric cylinder resonator method (TE 011 MODE) is used.
ε r (relative permittivity), Qu and τf, and the sintered density were measured by Archimedes' method. The resonance frequency is 6GH
z. These results are shown in FIGS. Also,
As an example, 0.95MgTiO 3 · 0.05CaTi
FIG. 12 shows the result of X-ray diffraction in the case of O 3 (0.95 MgT
against iO 3 · 0.05CaTiO 3 6% by weight of Zn
O-containing, baked at 1300 ° C. for 4 hours), FIG. 13 (ZnO
And calcined at 1360 ° C. for 4 hours).

【0010】これらの結果によれば、xMgTiO3
(1−x)CaTiO3 のxが小さいとQu値は小さく
なる傾向にあるが、逆にτfとεr はプラス側に大きく
なる傾向がある。尚、焼結密度は焼成温度が高いほど大
きくなる傾向にあるが、ZnOの添加量が増すと焼成温
度に対して平坦になる。焼成温度が1350〜1425
℃において、xが0.925〜0.950の範囲では、
τfは+23〜−17、εr は19〜22、Quは33
30〜4390と実用的な特性範囲を示すため好まし
い。特にxが0.940、ZnOの添加量が6重量%の
場合は、例えば焼成温度が1350℃及び1375℃の
場合をとると、図1〜6に示すように、τfが−1〜+
1ppm/℃、εr が約21、Quが約4000であ
り、特に優れた性能バランスを示す。更に、τfに関し
て言えば、焼成温度に対する変化率が低いため0付近の
小さな値を調節し易い。一方、CaTiO3 を含まない
場合は、Qu値が大きいもののεr が小さく、しかもτ
fが−25〜−44とマイナス側に著しく小さなものと
なり、好ましくない。
According to these results, xMgTiO 3.
(1-x) Qu value x is small CaTiO 3 is tends to be low, the τf and epsilon r conversely tends to increase on the plus side. The sintering density tends to increase as the firing temperature increases, but becomes flat with respect to the firing temperature when the amount of ZnO added increases. Firing temperature is 1350-1425
In ° C., when x is in the range of 0.925 to 0.950,
τf is + 23~-17, ε r is 19~22, Qu 33
It is preferable to show a practical characteristic range of 30 to 4390. In particular, when x is 0.940 and the amount of ZnO added is 6% by weight, for example, when the firing temperature is 1350 ° C. and 1375 ° C., as shown in FIGS.
1 ppm / ° C., ε r is about 21, and Qu is about 4000, showing a particularly excellent performance balance. Further, with respect to τf, since the rate of change with respect to the firing temperature is low, it is easy to adjust a small value near 0. On the other hand, when CaTiO 3 is not contained, ε r is small although Qu value is large, and τ
f becomes extremely small on the minus side as −25 to −44, which is not preferable.

【0011】また、図12に示すX線回折ピークの有無
による分析方法によれば、本発明品の構造は、MgTi
3 (○、一部ZnTiO3 を含む。)とCaTiO3
(●)を含み、他のピークとしてはMg2 TiO
4 (△、一部ZnTiO4 を含む。)があり、MgO、
CaO、TiO2 を含んでいないことを示している。
尚、図13は、ZnOを含まない場合のものであり、こ
の場合はMgTiO3 (○)とCaTiO3 (●)とか
らなることを示しており、やはりMgO、CaO、Ti
2 を含んでいないことを示している。
According to the analysis method based on the presence or absence of the X-ray diffraction peak shown in FIG.
O 3 (○, partially including ZnTiO 3 ) and CaTiO 3
(●), and the other peaks were Mg 2 TiO
4 (△, partially including ZnTiO 4 ), MgO,
This indicates that CaO and TiO 2 are not contained.
FIG. 13 shows a case where ZnO is not included, and in this case, it is composed of MgTiO 3 (○) and CaTiO 3 (●), and again MgO, CaO, Ti
It shows that it does not contain O 2 .

【0012】更に、図示しないが、電子顕微鏡写真の結
果によれば、焼成温度の上昇とともに粒子径が大きくな
り(1300℃;3.1μm、1350℃;7.2μ
m、1400℃;12.8μm、いずれもIntercept 法
により測定)、しかも気孔が減少し、1400℃にて緻
密化が完了することを示している。破断面は1300℃
では粒界破壊、1350℃以上では粒内破壊を示した。
Further, although not shown, according to the results of electron micrographs, the particle diameter increases as the firing temperature increases (1300 ° C .; 3.1 μm, 1350 ° C .; 7.2 μm).
m, 1400 ° C .; 12.8 μm, all measured by the Intercept method), and the number of pores decreased, indicating that densification was completed at 1400 ° C. The fracture surface is 1300 ° C
At 1,350 ° C. or more, intragranular fracture was exhibited.

【0013】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。
The present invention is not limited to the specific embodiments described above, but can be variously modified within the scope of the present invention according to the purpose and application. That is,
Various calcination conditions such as the calcination temperature and calcination conditions such as the calcination temperature can be selected.

【0014】[0014]

【発明の効果】以上のように、本発明の誘電体磁器組成
物は、Qu及びεr を実用的な(高い)特性範囲に維持
しつつ、CaTiO3 の配合割合を加減することによっ
て、τfをゼロに近づける又はゼロを中心としてプラス
側とマイナス側の所望の値に任意に制御し得ることがで
きるとともに、τfを0付近に安定して調節できる。更
に、ZnOの添加により、焼成温度を種々変動させても
(又はたとえ低温で焼成しても)、密度が高く且つ高品
質な焼結体とすることができる。従って、目的に応じ
て、CaTiO3 及びZnOの混合割合を変えることが
できる。
As it is evident from the foregoing description, the dielectric ceramic composition of the present invention, while maintaining Qu and epsilon r practical (high) characteristic range, by adjusting the mixing ratio of CaTiO 3, .tau.f Can be controlled to a desired value on the plus side and the minus side with zero as the center, and τf can be stably adjusted to around zero. Furthermore, by adding ZnO, a sintered body having a high density and a high quality can be obtained even when the firing temperature is variously changed (or even when fired at a low temperature). Therefore, the mixing ratio of CaTiO 3 and ZnO can be changed according to the purpose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼成温度1350℃にて製造された〔xMgT
iO3 ・(1−x)CaTiO3 +6重量%ZnO〕磁
器組成物において、xとQuとの関係を示すグラフであ
る。
FIG. 1 [xMgT manufactured at a firing temperature of 1350 ° C.
6 is a graph showing the relationship between x and Qu in an iO 3. (1-x) CaTiO 3 +6 wt% ZnO] porcelain composition.

【図2】図1にて示す磁器組成物において、xとεr
の関係を示すグラフである。
In Figure 2 ceramic composition shown in FIG. 1 is a graph showing the relationship between x and epsilon r.

【図3】図1にて示す磁器組成物において、xとτfと
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between x and τf in the porcelain composition shown in FIG.

【図4】各焼成温度により焼成されて製造された〔0.
94MgTiO3 ・0.06CaTiO3 +(0〜9)
重量%ZnO〕磁器組成物において、ZnO量とQuと
の関係を示すグラフである。
FIG. 4 is manufactured by firing at each firing temperature [0.
94MgTiO 3 · 0.06CaTiO 3 + (0~9 )
2 is a graph showing the relationship between the amount of ZnO and Qu in a (% by weight ZnO) porcelain composition.

【図5】図4にて示す磁器組成物において、ZnO量と
εr との関係を示すグラフである。
In Figure 5 ceramic composition shown in FIG. 4 is a graph showing the relationship between the amount of ZnO and epsilon r.

【図6】図4にて示す磁器組成物において、ZnO量と
τf との関係を示すグラフである。
6 is a graph showing the relationship between the amount of ZnO and τ f in the porcelain composition shown in FIG.

【図7】図4にて示す磁器組成物において、ZnO量と
焼結密度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the amount of ZnO and the sintered density in the porcelain composition shown in FIG.

【図8】〔0.94MgTiO3 ・0.06CaTiO
3 +(0〜9)wt%ZnO〕磁器組成物において、焼
成温度とQuとの関係を示すグラフである。
FIG. 8 [0.94MgTiO 3 .0.06CaTiO
3 is a graph showing the relationship between firing temperature and Qu in a 3+ (0-9) wt% ZnO] porcelain composition.

【図9】図8にて示す磁器組成物において、焼成温度と
εr との関係を示すグラフである。
In ceramic composition shown in FIG. 9 8 is a graph showing the relationship between firing temperature and epsilon r.

【図10】図8にて示す磁器組成物において、焼成温度
とτfとの関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the firing temperature and τf in the porcelain composition shown in FIG.

【図11】図8にて示す磁器組成物において、焼成温度
と焼結密度との関係を示すグラフである。
11 is a graph showing a relationship between a sintering temperature and a sintering density in the porcelain composition shown in FIG.

【図12】〔0.95MgTiO3 ・0.05CaTi
3 +6wt%ZnO〕磁器組成物のX線回折結果を示
すグラフである。
FIG. 12 [0.95MgTiO 3 .0.05CaTi
3 is a graph showing an X-ray diffraction result of a [O 3 +6 wt% ZnO] porcelain composition.

【図13】0.95MgTiO3 ・0.05CaTiO
3 磁器組成物のX線回折結果を示すグラフである。
FIG. 13: 0.95MgTiO 3 .0.05CaTiO
3 is a graph showing an X-ray diffraction result of a three- porcelain composition.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/42-35/49 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 xMgTiO3・(1−x)CaTiO3
〔但し、0.925≦x≦0.950〕で示される組成
を主成分とし、これに、上記xMgTiO3・(1−
x)CaTiO3100重量部に対して3〜9重量部の
ZnOを添加含有し、共振周波数6GHzにおけるQu
が3330〜4390、εrが19〜22であり、τf
が−17〜+23ppm/℃であることを特徴とするマ
イクロ波誘電体磁器組成物。
1. xMgTiO 3. (1-x) CaTiO 3
[However, a composition represented by 0.925 ≦ x ≦ 0.950] as a main component, and the composition represented by the above xMgTiO 3. (1-
x) 3 to 9 parts by weight of ZnO added to 100 parts by weight of CaTiO 3, and Qu at a resonance frequency of 6 GHz
Is 3330-4390, εr is 19-22, and τf
Is from −17 to +23 ppm / ° C. in a microwave dielectric porcelain composition.
JP22637392A 1992-08-03 1992-08-03 Microwave dielectric porcelain composition Expired - Lifetime JP3212704B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22637392A JP3212704B2 (en) 1992-08-03 1992-08-03 Microwave dielectric porcelain composition
US08/101,252 US5340784A (en) 1992-08-03 1993-08-02 Microwave dielectric ceramic composition
DE69311768T DE69311768T2 (en) 1992-08-03 1993-08-03 Dielectric ceramic composition for microwaves
EP93112424A EP0582274B1 (en) 1992-08-03 1993-08-03 Microwave dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22637392A JP3212704B2 (en) 1992-08-03 1992-08-03 Microwave dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0656519A JPH0656519A (en) 1994-03-01
JP3212704B2 true JP3212704B2 (en) 2001-09-25

Family

ID=16844118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22637392A Expired - Lifetime JP3212704B2 (en) 1992-08-03 1992-08-03 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3212704B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004046B2 (en) * 2003-03-17 2007-11-07 Tdk株式会社 Dielectric ceramic composition and dielectric resonator using the same
CN115490512B (en) * 2022-09-19 2023-10-20 大富科技(安徽)股份有限公司 5G microwave dielectric ceramic material, preparation method thereof and microwave dielectric ceramic device

Also Published As

Publication number Publication date
JPH0656519A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
JP3259677B2 (en) Piezoelectric ceramic composition
JPH05217426A (en) Non-reducing dielectric ceramic composition
JPH0687367B2 (en) Dielectric porcelain composition
JPH11228226A (en) Piezoelectric ceramic composition
JPH11228225A (en) Piezoelectric ceramic composition
JP3212704B2 (en) Microwave dielectric porcelain composition
JP2001114553A (en) Microwave dielectric substance ceramic composition
EP0533162B1 (en) BaO-xTiO2 dielectric ceramic composition
JP2974829B2 (en) Microwave dielectric porcelain composition
JP3322742B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3027031B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3220361B2 (en) Alumina porcelain composition
JP3162208B2 (en) Microwave dielectric porcelain composition
JP3179916B2 (en) Microwave dielectric porcelain composition
JP3179901B2 (en) Microwave dielectric porcelain composition
JP3311928B2 (en) Alumina sintered body for high frequency
JP3242243B2 (en) Microwave dielectric porcelain composition
JPS59103205A (en) Dielectric porcelain composition for microwave
JPH0692727A (en) Microwave dielectric porcelain composition
JP3301651B2 (en) Microwave dielectric porcelain composition
JP2974823B2 (en) Microwave dielectric porcelain composition
JP3120191B2 (en) High frequency dielectric ceramic composition
JP3550414B2 (en) Method for producing microwave dielectric porcelain composition
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JPH06203631A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12