JPH0692727A - Microwave dielectric porcelain composition - Google Patents

Microwave dielectric porcelain composition

Info

Publication number
JPH0692727A
JPH0692727A JP4266534A JP26653492A JPH0692727A JP H0692727 A JPH0692727 A JP H0692727A JP 4266534 A JP4266534 A JP 4266534A JP 26653492 A JP26653492 A JP 26653492A JP H0692727 A JPH0692727 A JP H0692727A
Authority
JP
Japan
Prior art keywords
porcelain composition
catio
firing temperature
composition
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4266534A
Other languages
Japanese (ja)
Inventor
Muneomi Katou
宗臣 加藤
Hirobumi Ozeki
博文 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4266534A priority Critical patent/JPH0692727A/en
Priority to US08/101,252 priority patent/US5340784A/en
Priority to DE69311768T priority patent/DE69311768T2/en
Priority to EP93112424A priority patent/EP0582274B1/en
Publication of JPH0692727A publication Critical patent/JPH0692727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide a dielectric porcelain composition capable of optionally and stably controlling so as to bring tauf to '0' or a desired value between a plus side and a minus side with '0' as a center while keeping epsilonr and Qu in a specific range and small in the dispersion of performance even if firing temp. is fluctuated. CONSTITUTION:This porcelain composition has a composition expressed by a formula (x)MgTiO3.(1-x)CaTiO3 (where, 0.923<=(x)<=0.940), as a main component and is made by adding 2-4 pts.wt. Ta2O5 to 100 pts.wt. (x)MgTiO3.(1-x) CaTiO3. When (x) is 0.927-0.935 and the adding quantity of Ta2O5 is 3wt.% (firing temp.; 1300-1400 deg.C), Qu is 3920-4260, tauf is -8.5-(+2.3) (ppm/ deg.C) and epsilonr is 19.7-216 and even in the case of changing the firing temp., the dispersion of the performance is extremely small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を高い値で維持しつつ、共振周波数の
温度係数(以下、単にτfという。)をゼロに近づける
ことができ、更にCaTiO3 の混合割合及びTa2
5 の添加量を加減することによって、τfをゼロを中心
としてプラス側とマイナス側に任意に制御し得ることが
でき、更にTa2 5 の添加により焼成温度を変えても
性能ばらつきが小さいマイクロ波誘電体磁器組成物に関
するものである。本発明は、マイクロ波領域において誘
電体共振器、マイクロ波集積回路基板、各種マイクロ波
回路のインピーダンス整合等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more specifically, to a high temperature of unloaded Q (hereinafter simply referred to as "Q") while maintaining a temperature coefficient of resonance frequency ( Hereinafter, simply referred to as τf) can be brought close to zero, and the mixing ratio of CaTiO 3 and Ta 2 O
By adjusting the addition amount of 5 , τf can be arbitrarily controlled to the plus side and the minus side around zero, and even if the firing temperature is changed by the addition of Ta 2 O 5 , microscopic variation is small. The present invention relates to a wave dielectric ceramic composition. INDUSTRIAL APPLICABILITY The present invention is utilized for impedance matching of dielectric resonators, microwave integrated circuit substrates, various microwave circuits, etc. in the microwave region.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の誘電体磁器材料としては、結晶構
造がペロブスカイト相とイルメナイト相との2相を含む
誘電体磁器組成物(特開平2−129065号公報)、
MgTiO3 とTiO2 に所定量のCaTiO3 を含有
した誘電体磁器組成物(特開昭52−118599号公
報)等が知られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase in dielectric loss as the operating frequency becomes higher.
A dielectric ceramic composition having a large Qu in the micro frequency range is desired. As a conventional dielectric porcelain material, a dielectric porcelain composition having a crystal structure containing two phases of a perovskite phase and an ilmenite phase (Japanese Patent Laid-Open No. 2-129065),
A dielectric ceramic composition (Japanese Patent Laid-Open No. 52-118599) in which MgTiO 3 and TiO 2 contain a predetermined amount of CaTiO 3 is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の誘電体
磁器組成物ではNd2 3 、La2 3 、PbO、Zn
O等の他成分が多く含まれる上、Quも必ずしも大きな
値とは言えない。後者の誘電体磁器組成物では、TiO
2 を必須成分として含み、CaTiO3 の混合量が3〜
10重量%の範囲においてはτfが+87〜−100と
大きく変化し、0付近の小さな値には調整が困難等の問
題があった。
However, in the former dielectric ceramic composition, Nd 2 O 3 , La 2 O 3 , PbO and Zn are used.
In addition to containing many other components such as O, Qu is not always a large value. In the latter dielectric ceramic composition, TiO 2
2 is included as an essential component, and the mixing amount of CaTiO 3 is 3 to
In the range of 10% by weight, τf greatly changes from +87 to -100, and there is a problem that it is difficult to adjust a small value near 0.

【0004】本発明は、上記問題点を解決するものであ
り、CaTiO3 の配合割合及びTa2 5 の添加量を
加減することによって、εr 及びQuを実用的な特性範
囲に維持しつつ、τfをゼロに近づける又はゼロを中心
としてプラス側とマイナス側の所望の値に任意に且つ安
定して制御し得ることができ、更にTa2 5 の添加に
より焼成温度が変動しても性能ばらつきが小さい誘電体
磁器組成物を提供することを目的とする。
The present invention solves the above-mentioned problems, and maintains ε r and Qu within a practical characteristic range by adjusting the compounding ratio of CaTiO 3 and the addition amount of Ta 2 O 5. , Τf can be controlled to a desired value on the plus side and the minus side centering on zero or close to zero, and the performance can be improved even if the firing temperature changes due to the addition of Ta 2 O 5. An object is to provide a dielectric ceramic composition having a small variation.

【0005】[0005]

【課題を解決するための手段】本発明者は、誘電体磁器
組成物において、高いQuを維持しつつ、τfをゼロに
近づけることができ、且つ焼成温度を変えても安定した
品質を備える組成について種々検討した結果、CaTi
3 及びTa2 5 の混合(構成)割合を加減すること
によりこの欠点が解消されることを見出して、本発明を
完成するに至ったのである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have proposed a dielectric porcelain composition in which τf can be brought close to zero while maintaining a high Qu and the composition has stable quality even when the firing temperature is changed. As a result of various studies on CaTi
The inventors have found that this drawback can be solved by adjusting the mixing (composition) ratio of O 3 and Ta 2 O 5 , and have completed the present invention.

【0006】即ち、本発明の誘電体磁器組成物は、xM
gTiO3 ・(1−x)CaTiO3 〔但し、0.92
3≦x≦0.940〕で示される組成を主成分とし、こ
れに上記xMgTiO3 ・(1−x)CaTiO3 10
0重量部に対して2〜4重量部(以下、2〜4重量%と
いう。)のTa2 5 を添加含有させたことを特徴とす
る。上記xが0.923より小さいと、τfが大きな正
の値をとるとともに、Quが小さくなり、逆に0.94
0を越えるとτfが大きな負の値をとり、好ましくない
からである。また、特に、上記xが0.927〜0.9
35、Ta2 5 の添加量が3重量%である場合は、Q
uが3920〜4260、τfが−8.5〜+2.3
(ppm/℃)、εr が19.7〜21.6であり、ま
た焼成温度を変えても性能ばらつきが大変小さいので、
好ましい。
That is, the dielectric ceramic composition of the present invention is xM
gTiO 3 · (1-x) CaTiO 3 [however, 0.92
3 ≦ x ≦ 0.940] as a main component, and the above xMgTiO 3 · (1-x) CaTiO 3 10
It is characterized in that 2 to 4 parts by weight (hereinafter referred to as 2 to 4% by weight) of Ta 2 O 5 is added to 0 parts by weight. When x is smaller than 0.923, τf takes a large positive value and Qu becomes small, and conversely 0.94.
This is because τf takes a large negative value when it exceeds 0, which is not preferable. Further, in particular, x is 0.927 to 0.9.
35, if the added amount of Ta 2 O 5 is 3% by weight, Q
u is 3920 to 4260, and τf is -8.5 to +2.3.
(Ppm / ° C.), ε r is 19.7 to 21.6, and the variation in performance is very small even if the firing temperature is changed.
preferable.

【0007】尚、CaTiO3 の混合割合が、多くなる
ほど、τfは負の値から正の方向へ向かい(図3)、ε
r は大きくなり(図2)、一方Quは小さくなる傾向に
ある(図1)。また、図7に示すように、Ta2 5
添加により、低温(例えば1300〜1325℃)によ
り焼成しても密度の高い焼結体を製造できる。更に焼成
温度を1300〜1400℃の範囲内にて種々変動させ
ても安定した品質のものとすることができる(図4〜1
0)。以上より、CaTiO3 及びTa2 5 の上記適
正な混合範囲において、これらの性能のバランスのとれ
たものとなるとともに、安定した品質のものとなる。
As the mixing ratio of CaTiO 3 increases, τf moves from a negative value to a positive direction (FIG. 3), and ε
r tends to increase (Fig. 2), while Qu tends to decrease (Fig. 1). Further, as shown in FIG. 7, by adding Ta 2 O 5, a sintered body having a high density can be manufactured even if it is fired at a low temperature (for example, 1300 to 1325 ° C.). Further, even if the firing temperature is variously changed within the range of 1300 to 1400 ° C., stable quality can be obtained (FIGS. 4 to 1).
0). From the above, in the above proper mixing range of CaTiO 3 and Ta 2 O 5 , the performances thereof are well balanced and the quality is stable.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。MgO粉末(純度;99.4%)、CaOとしてC
aCO3 粉末(純度;99%)、TiO2 粉末(純度;
99.98%)、Ta2 5 粉末(純度;99.9%)
を出発原料として、表1、表2、図1及び4に示すよう
に、組成式xMgTiO3 ・(1−x)CaTiO3
y重量%Ta2 5 〔xMgTiO3 ・(1−x)Ca
TiO3 100重量部に対してTa2 5 y重量部を意
味する。〕の各xとyが変化した組成になるように、所
定量(全量として約500g)を秤量、混合した。その
後、ミキサーで乾式による混合(20〜30分)及び粉
砕を施した後、大気雰囲気中にて1100℃の温度で2
時間仮焼した。次いで、この仮焼粉末に適量の有機バイ
ンダー(29g)と水(300〜400g)を加え、2
0mmφのアルミナボールで、90rpm、23時間粉
砕した。その後、真空凍結乾燥(約0.4Torr、4
0〜50℃、約20時間)により造粒し、この造粒され
た原料を用いて1000kg/cm2 のプレス圧で19
mmφ×11mmt(厚さ)の円柱状に成形した。
EXAMPLES The present invention will be specifically described below with reference to examples. MgO powder (purity; 99.4%), C as CaO
aCO 3 powder (purity; 99%), TiO 2 powder (purity;
99.98%), Ta 2 O 5 powder (purity; 99.9%)
As a starting material, as shown in Tables 1 and 2 and FIGS. 1 and 4, the composition formula xMgTiO 3. (1-x) CaTiO 3 +
y wt% Ta 2 O 5 [xMgTiO 3 · (1-x) Ca
It means Ta 2 O 5 y parts by weight with respect to 100 parts by weight of TiO 3 . ] A predetermined amount (about 500 g as a total amount) was weighed and mixed so that each x and y in the above] had a changed composition. After that, after dry-mixing (20 to 30 minutes) and pulverization with a mixer, 2 at a temperature of 1100 ° C. in an air atmosphere.
I calcined for an hour. Then, an appropriate amount of organic binder (29 g) and water (300 to 400 g) were added to the calcined powder, and 2
It was crushed with a 0 mmφ alumina ball at 90 rpm for 23 hours. After that, vacuum freeze-drying (about 0.4 Torr, 4
Granulation at 0 to 50 ° C. for about 20 hours), and using the granulated raw material at a pressing pressure of 1000 kg / cm 2 for 19
It was formed into a cylindrical shape of mmφ × 11 mmt (thickness).

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】次に、この成形体を大気中、500℃、3
時間にて脱脂し、その後、各表及び図に示す1300〜
1400℃の範囲の各温度で、4時間焼成し、最後に両
端面を約16mmφ×8mmt(厚さ)の円柱状に研磨
して、誘電体試料とした。そして、各試料につき、平行
導体板型誘電体円柱共振器法(TE011 MODE)等に
より、εr (比誘電率)、Qu及びτf、更に、焼結密
度をアルキメデス法により測定した。尚、共振周波数は
6GHzである。これらの結果を表1、表2及び図1〜
図10に示す。また、一例として、0.93MgTiO
3 ・0.07CaTiO3 ・3重量%のTa2 5 の場
合のX線回折の結果を図11(1300℃で4時間焼
成)及び図12(1350℃で4時間焼成)に示す。
Next, the molded body was placed in the atmosphere at 500 ° C. for 3 days.
After degreasing at a certain time, 1300-300 shown in each table and figure
It was fired at each temperature in the range of 1400 ° C. for 4 hours, and finally both end faces were polished into a cylindrical shape of about 16 mmφ × 8 mmt (thickness) to obtain a dielectric sample. Then, for each sample, ε r (relative permittivity), Qu and τ f, and the sintered density were measured by the Archimedes method by a parallel conductor plate type dielectric cylinder resonator method (TE 011 MODE) or the like. The resonance frequency is 6 GHz. These results are shown in Table 1, Table 2 and FIGS.
As shown in FIG. Also, as an example, 0.93 MgTiO 3
The 3 · 0.07CaTiO 3 · 3% by weight of Ta 2 O results of X-ray diffraction in the case of 5 (4 hours firing at 1300 ° C.) 11 and shown in FIG. 12 (4 hours firing at 1350 ° C.).

【0012】これらの結果によれば、xMgTiO3
(1−x)CaTiO3 のxが小さいとQu値は小さく
なる傾向にあるが、逆にτfとεr はプラス側に大きく
なる傾向がある。尚、焼結密度は焼成温度が高いほど大
きくなる傾向にあるが、Ta2 5 の添加量が増すと焼
成温度に対して平坦になる。焼成温度が1300〜14
00℃において、xが0.923〜0.940の範囲で
は、τfは+8〜−13、εr は19〜22、Quは3
850〜4380と実用的な特性範囲を示すため好まし
い。特にxが0.930、Ta2 5 の添加量が3重量
%の場合は、例えば焼成温度が1325℃〜1375℃
の場合をとると、図1〜6及び表1、2に示すように、
τfが−0.1〜+0.65ppm/℃、εr が21.
1〜21.4、Quが4030〜4130であり、特に
優れた性能バランスを示すとともに、そのばらつきが大
変小さい。一方、CaTiO3を含まない場合は、Qu
値が大きいものの、εr が小さく、しかもτfが−25
〜−44とマイナス側に著しく小さなものとなり、好ま
しくない。
According to these results, xMgTiO 3 ·
When x of (1-x) CaTiO 3 is small, the Qu value tends to be small, but conversely, τf and ε r tend to be large on the plus side. Although the sintering density tends to increase as the firing temperature increases, it becomes flat with respect to the firing temperature as the amount of Ta 2 O 5 added increases. Baking temperature is 1300-14
At 00 ° C, when x is in the range of 0.923 to 0.940, τf is +8 to -13, ε r is 19 to 22, and Qu is 3.
It is preferable because it shows a practical characteristic range of 850 to 4380. Especially when x is 0.930 and the amount of Ta 2 O 5 added is 3% by weight, for example, the firing temperature is 1325 ° C to 1375 ° C.
In the case of, as shown in FIGS. 1 to 6 and Tables 1 and 2,
τf is −0.1 to +0.65 ppm / ° C., ε r is 21.
1 to 21.4 and Qu are 4030 to 4130, which shows a particularly excellent performance balance and has a very small variation. On the other hand, when CaTiO 3 is not contained, Qu
Although the value is large, ε r is small and τ f is -25.
It is unfavorable because it becomes extremely small on the minus side, which is about -44.

【0013】また、図11及び図12に示すX線回折ピ
ークの有無による分析方法によれば、本発明品の構造
は、MgTiO3 (○)とCaTiO3 (●)を含み、
他のピークとしてはMgTi2 5 (▽)があり、Mg
O、CaO、TiO2 を含んでいないことを示してい
る。
According to the analysis method based on the presence / absence of X-ray diffraction peaks shown in FIGS. 11 and 12, the structure of the present invention contains MgTiO 3 (◯) and CaTiO 3 (●),
Other peaks are MgTi 2 O 5 (▽),
It shows that it does not contain O, CaO, and TiO 2 .

【0014】更に、図示しないが、電子顕微鏡写真の結
果によれば、焼成温度の上昇とともに粒子径が大きくな
り(1300℃;2.5μm、1350℃;3.7μ
m、1400℃;6.5μm、いずれもIntercept 法に
より測定)、しかも気孔が減少し、1350℃にて緻密
化が完了することを示している。破断面は1300℃で
は粒界破壊、1350℃以上では粒内破壊を示した。ま
た、表面組織は焼成温度の上昇とともに巨大粒子(通常
粒子、粒径10〜50μm)と角状の微粒子(1〜10
未満μm)の2種類の粒子に分別された。EDS分析
(Energy Dispersive Spectrum)の結果、通常粒子から
はMg、Ca、Ti、Siが検出され角状粒子からはM
g、Ca、Ti、Taが検出された。この角状粒子はT
aの化合物になっているものと考えられる。また、Si
成分は出発原料から混入したものと考えられる。
Further, although not shown, according to the result of the electron micrograph, the particle diameter becomes larger as the firing temperature increases (1300 ° C .; 2.5 μm, 1350 ° C .; 3.7 μm).
m, 1400 ° C .; 6.5 μm, both measured by the Intercept method), and the number of pores is reduced, indicating that densification is completed at 1350 ° C. The fracture surface showed intergranular fracture at 1300 ° C and intragranular fracture at 1350 ° C or higher. In addition, the surface texture is such that, as the firing temperature increases, huge particles (normal particles, particle size 10 to 50 μm) and angular particles (1 to 10 μm)
Less than 1 μm). As a result of EDS analysis (Energy Dispersive Spectrum), Mg, Ca, Ti, and Si are detected from normal particles, and M is detected from angular particles.
g, Ca, Ti, and Ta were detected. This angular particle is T
It is considered to be a compound of a. Also, Si
The components are considered to have been mixed from the starting materials.

【0015】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。
The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
Various calcination conditions such as the calcination temperature and the calcination conditions such as the calcination temperature can be selected.

【0016】[0016]

【発明の効果】以上のように、本発明の誘電体磁器組成
物は、Qu及びεr を実用的な(高い)特性範囲に維持
しつつ、CaTiO3 の配合割合を加減することによっ
て、τfをゼロに近づける又はゼロを中心としてプラス
側とマイナス側の所望の値に任意に制御し得ることがで
きるとともに、τfを0付近に安定して調節できる。更
に、Ta2 5 の添加により、焼成温度を種々変動させ
ても、密度が高く且つ高品質な焼結体とすることができ
る。従って、目的に応じて、CaTiO3 及びTa2
5 の混合割合を変えることができる。
As described above, the dielectric porcelain composition of the present invention maintains the Qu and ε r in the practical (high) characteristic range, and adjusts the CaTiO 3 compounding ratio to adjust τf. Can be controlled to a desired value on the plus side and the minus side with zero as the center, and τf can be stably adjusted to near zero. Furthermore, by adding Ta 2 O 5 , it is possible to obtain a sintered body having a high density and high quality even if the firing temperature is changed variously. Therefore, depending on the purpose, CaTiO 3 and Ta 2 O
The mixing ratio of 5 can be changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼成温度1350℃にて製造された〔xMgT
iO3 ・(1−x)CaTiO3 +3重量%Ta
2 5 〕磁器組成物において、xとQuとの関係を示す
グラフである。
FIG. 1 [xMgT produced at a firing temperature of 1350 ° C.
iO 3 · (1-x) CaTiO 3 +3 wt% Ta
2 O 5 ] In a porcelain composition, it is a graph showing the relationship between x and Qu.

【図2】図1にて示す磁器組成物において、xとεr
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between x and ε r in the porcelain composition shown in FIG.

【図3】図1にて示す磁器組成物において、xとτfと
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between x and τf in the porcelain composition shown in FIG.

【図4】各焼成温度により焼成されて製造された〔0.
93MgTiO3 ・0.07CaTiO3 +(2〜4)
重量%Ta2 5 〕磁器組成物において、Ta2 5
とQuとの関係を示すグラフである。
FIG. 4 is manufactured by firing at each firing temperature [0.
93MgTiO 3 · 0.07CaTiO 3 + (2-4)
5 is a graph showing the relationship between the amount of Ta 2 O 5 and Qu in a wt% Ta 2 O 5 ] porcelain composition.

【図5】図4にて示す磁器組成物において、Ta2 5
量とεr との関係を示すグラフである。
FIG. 5 shows Ta 2 O 5 in the porcelain composition shown in FIG.
It is a graph which shows the relationship between quantity and ε r .

【図6】図4にて示す磁器組成物において、Ta2 5
量とτf との関係を示すグラフである。
FIG. 6 shows Ta 2 O 5 in the porcelain composition shown in FIG.
Is a graph showing the relationship between the amount and tau f.

【図7】〔0.93MgTiO3 ・0.07CaTiO
3 +(0〜4)重量%Ta2 5〕磁器組成物におい
て、焼成温度とQuとの関係を示すグラフである。
FIG. 7 [0.93MgTiO 3 .0.07CaTiO 3
3 + (0 to 4) wt% Ta 2 O 5 ] A ceramic composition showing a relationship between firing temperature and Qu.

【図8】図7にて示す磁器組成物において、焼成温度と
εr との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the firing temperature and ε r in the porcelain composition shown in FIG.

【図9】図7にて示す磁器組成物において、焼成温度と
τfとの関係を示すグラフである。
9 is a graph showing the relationship between firing temperature and τf in the porcelain composition shown in FIG.

【図10】図7にて示す磁器組成物において、焼成温度
と焼結密度との関係を示すグラフである。
10 is a graph showing the relationship between the firing temperature and the sintered density in the porcelain composition shown in FIG.

【図11】〔0.93MgTiO3 ・0.07CaTi
3 +3重量%Ta2 5 、焼成温度;1300℃〕磁
器組成物のX線回折結果を示すグラフである。
FIG. 11 [0.93MgTiO 3 .0.07CaTi
O 3 +3 wt% Ta 2 O 5 , firing temperature: 1300 ° C.] A graph showing the X-ray diffraction results of the porcelain composition.

【図12】〔0.93MgTiO3 ・0.07CaTi
3 +3重量%Ta2 5 、焼成温度;1350℃〕磁
器組成物のX線回折結果を示すグラフである。
FIG. 12 [0.93MgTiO 3 .0.07CaTi
O 3 +3 wt% Ta 2 O 5 , firing temperature: 1350 ° C.] A graph showing the X-ray diffraction results of the porcelain composition.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 xMgTiO3 ・(1−x)CaTiO
3 〔但し、0.923≦x≦0.940〕で示される組
成を主成分とし、これに上記xMgTiO3・(1−
x)CaTiO3 100重量部に対して2〜4重量部の
Ta2 5 を添加含有させたことを特徴とするマイクロ
波誘電体磁器組成物。
1. xMgTiO 3. (1-x) CaTiO
3 [however, the composition represented by 0.923 ≦ x ≦ 0.940] is the main component, and the above xMgTiO 3 · (1-
x) A microwave dielectric ceramic composition containing 2 to 4 parts by weight of Ta 2 O 5 added to 100 parts by weight of CaTiO 3 .
JP4266534A 1992-08-03 1992-09-09 Microwave dielectric porcelain composition Pending JPH0692727A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4266534A JPH0692727A (en) 1992-09-09 1992-09-09 Microwave dielectric porcelain composition
US08/101,252 US5340784A (en) 1992-08-03 1993-08-02 Microwave dielectric ceramic composition
DE69311768T DE69311768T2 (en) 1992-08-03 1993-08-03 Dielectric ceramic composition for microwaves
EP93112424A EP0582274B1 (en) 1992-08-03 1993-08-03 Microwave dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266534A JPH0692727A (en) 1992-09-09 1992-09-09 Microwave dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH0692727A true JPH0692727A (en) 1994-04-05

Family

ID=17432209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266534A Pending JPH0692727A (en) 1992-08-03 1992-09-09 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0692727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835681B2 (en) 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835681B2 (en) 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device

Similar Documents

Publication Publication Date Title
JPH04285046A (en) Dielectric porcelain composition
JP2974829B2 (en) Microwave dielectric porcelain composition
EP0533162B1 (en) BaO-xTiO2 dielectric ceramic composition
JP3436770B2 (en) Method for producing microwave dielectric porcelain composition
JP3162208B2 (en) Microwave dielectric porcelain composition
JP3027031B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3179916B2 (en) Microwave dielectric porcelain composition
JPH07201223A (en) Microwave dielectric porcelain composite, and its manufacture
JPH0692727A (en) Microwave dielectric porcelain composition
JP3212704B2 (en) Microwave dielectric porcelain composition
JP5134819B2 (en) High frequency dielectric ceramics
JP3311928B2 (en) Alumina sintered body for high frequency
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JP3179901B2 (en) Microwave dielectric porcelain composition
JP2000143336A (en) Dielectric ceramic composition, its production and dielectric resonator and dielectric filter produced by using the composition
JP3301651B2 (en) Microwave dielectric porcelain composition
JP2974823B2 (en) Microwave dielectric porcelain composition
JP4484297B2 (en) Dielectric porcelain composition
JPH06199567A (en) Microwave dielectric porcelain composition
JPH0952760A (en) Dielectric ceramic composition
JP3242243B2 (en) Microwave dielectric porcelain composition
JPH06275126A (en) Dielectric ceramic composition
JPH06325620A (en) Dielectric ceramic composition
JPH07187771A (en) Dielectric porcelain composition
JP3243890B2 (en) Dielectric porcelain composition