JPH11228226A - Piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition

Info

Publication number
JPH11228226A
JPH11228226A JP10035714A JP3571498A JPH11228226A JP H11228226 A JPH11228226 A JP H11228226A JP 10035714 A JP10035714 A JP 10035714A JP 3571498 A JP3571498 A JP 3571498A JP H11228226 A JPH11228226 A JP H11228226A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
resonance frequency
dielectric constant
metal atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10035714A
Other languages
Japanese (ja)
Other versions
JP3282576B2 (en
Inventor
Masahiko Kimura
雅彦 木村
Akira Ando
陽 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03571498A priority Critical patent/JP3282576B2/en
Priority to TW088102453A priority patent/TW563265B/en
Priority to KR1019990005394A priority patent/KR100282599B1/en
Priority to US09/252,576 priority patent/US6083415A/en
Priority to DE19964233A priority patent/DE19964233C2/en
Priority to DE19906836A priority patent/DE19906836C2/en
Priority to CN99102464A priority patent/CN1087721C/en
Publication of JPH11228226A publication Critical patent/JPH11228226A/en
Application granted granted Critical
Publication of JP3282576B2 publication Critical patent/JP3282576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric ceramic composition consisting mainly of potassium sodium lithium niobate, having a dielectric constant of <=180 and the resonance frequency coefficient of thickness vibration of >=3,000 Hz.m so as to be suitable for using in high frequency region, and also having such favorable property as to be <=100 ppm in the temperature coefficient of resonance frequency. SOLUTION: This piezoelectric ceramic composition consists mainly of a composition of the formula: (1-n) (K1-x-y Nax Liy )m (Nb1-z Taz )O3 -nM1M2M3O3 (wherein, M1 is a trivalent metal atom such as Bi; M2 is a monovalent metal atom such as K, Na or Li; M3 is a tetravalent metal atom such as Ti, Zr, Sn or Hf; (x)<=0.9; 0.02<=(y)<=0.3; 0.75<=(x+y); 0<=(z)<=0.3; 0.98<=(m)<=1.0; 0<(n)<=0.05).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧電磁器組成物
に関するもので、特に、圧電セラミックフィルタ、圧電
セラミック発振子などの圧電セラミック素子のための材
料として有用な圧電磁器組成物に関するものである。
The present invention relates to a piezoelectric ceramic composition, and more particularly to a piezoelectric ceramic composition useful as a material for a piezoelectric ceramic element such as a piezoelectric ceramic filter or a piezoelectric ceramic oscillator.

【0002】[0002]

【従来の技術】圧電セラミックフィルタなどの圧電セラ
ミック素子に用いられる圧電磁器組成物として、チタン
酸ジルコン酸鉛(Pb(Tix Zr1-x )O3 )を主成
分とする圧電磁器組成物が広く用いられている。このよ
うなチタン酸ジルコン酸鉛を主成分とする圧電磁器組成
物は、通常、比誘電率が1000〜2000程度と比較
的大きい。このため、たとえば100MHzを超えるよ
うな高周波の領域では、インピーダンスの低下がもたら
され、それゆえ、このような高周波領域での使用が困難
である。
2. Description of the Related Art As a piezoelectric ceramic composition used for the piezoelectric ceramic element such as a piezoelectric ceramic filter, piezoelectric ceramic composition composed mainly of lead zirconate titanate (Pb (Ti x Zr 1- x) O 3) Widely used. Such a piezoelectric ceramic composition containing lead zirconate titanate as a main component usually has a relatively large relative dielectric constant of about 1,000 to 2,000. Therefore, for example, in a high-frequency region exceeding 100 MHz, the impedance is reduced, and it is difficult to use in such a high-frequency region.

【0003】これに対して、チタン酸鉛(PbTi
3 )を主成分とする圧電磁器組成物は、比誘電率が2
00程度であり、上述したチタン酸ジルコン酸鉛を主成
分とする圧電磁器組成物に比べて小さいため、より高周
波の領域での使用が可能な圧電磁器組成物として知られ
ている。しかしながら、さらなる高周波領域での使用を
考えた場合、比誘電率はさらに小さいことが望ましい。
On the other hand, lead titanate (PbTi
The piezoelectric ceramic composition mainly composed of O 3 ) has a relative dielectric constant of 2
Since it is about 00, which is smaller than the piezoelectric ceramic composition containing lead zirconate titanate as a main component, it is known as a piezoelectric ceramic composition that can be used in a higher frequency range. However, considering use in a further high frequency region, it is desirable that the relative dielectric constant is even smaller.

【0004】また、チタン酸ジルコン酸鉛あるいはチタ
ン酸鉛を主成分とする圧電磁器組成物は、厚み振動の共
振周波数定数が2000〜2500Hz・m程度と小さ
く、このため、振動子を形成する場合に薄片加工上の問
題から使用周波数帯に制限が生じる。これに対して、組
成式:(K1-x-y Nax Liy )NbO3 等で表される
ニオブ酸カリウムナトリウムリチウムを主成分とする圧
電磁器組成物の中には、比誘電率が100程度とチタン
酸鉛と比較しても小さく、また、厚み振動の共振周波数
定数も3000〜3500Hz・m程度と大きく、高周
波領域での使用を考えた場合に、チタン酸ジルコン酸鉛
あるいはチタン酸鉛に比べて有利な特性を有する材料が
存在することが知られている。
Further, the lead zirconate titanate or the piezoelectric ceramic composition containing lead titanate as a main component has a resonance frequency constant of thickness vibration as small as about 2,000 to 2,500 Hz.m. In addition, the frequency band used is limited due to the problem of flake processing. In contrast, some piezoelectric ceramic compositions containing potassium sodium lithium niobate as a main component represented by a composition formula (K 1 -xy Na x Li y ) NbO 3 have a relative dielectric constant of about 100. In addition, the resonance frequency constant of the thickness vibration is as large as about 3000 to 3500 Hz · m, and when considered for use in a high frequency region, it is preferable to use lead zirconate titanate or lead titanate. It is known that some materials have properties that are relatively advantageous.

【0005】しかしながら、上述のニオブ酸カリウムナ
トリウムリチウムを主成分とする圧電磁器組成物は、圧
電セラミックフィルタ、圧電セラミック発振子用の材料
として重要な特性である、厚み振動における共振周波数
の温度係数fr−TCが150〜300ppm程度と大
きいため、チタン酸ジルコン酸鉛、チタン酸鉛等に比較
すると、広く実用化されるに至っていない。
However, the piezoelectric ceramic composition containing potassium sodium lithium niobate as a main component has a temperature coefficient fr of resonance frequency in thickness vibration, which is an important characteristic as a material for a piezoelectric ceramic filter and a piezoelectric ceramic oscillator. Since TC is as large as about 150 to 300 ppm, it has not yet been widely used as compared with lead zirconate titanate, lead titanate and the like.

【0006】なお、上述した厚み振動における共振周波
数の温度係数fr−TCは、以下の式により算出したも
のである。 fr−TC=frmax −frmin /(fr20・100) 上記式において、frmax は、−20℃から80℃まで
の範囲での厚み振動における共振周波数の最大値、fr
min は、−20℃から80℃までの範囲での厚み振動に
おける共振周波数の最小値、fr20は、20℃での厚み
振動における共振周波数である。
[0006] The temperature coefficient fr-TC of the resonance frequency in the thickness vibration described above is calculated by the following equation. fr-TC = fr max -fr min / (fr 20 · 100) In the above equation, fr max is the maximum value of the resonance frequency in the thickness vibration in the range of −20 ° C. to 80 ° C., fr
min is the minimum value of the resonance frequency in the thickness vibration in the range of −20 ° C. to 80 ° C., and fr 20 is the resonance frequency in the thickness vibration at 20 ° C.

【0007】[0007]

【発明が解決しようとする課題】この発明は、ニオブ酸
カリウムナトリウムリチウムを主成分とする圧電磁器組
成物が遭遇する上記課題を解決するためになされたもの
で、共振周波数の温度係数fr−TCが100ppm以
下と良好な特性を示すとともに、比誘電率が180以下
で厚み振動の共振周波数定数が3000Hz・m以上と
高周波領域での使用に適した、圧電磁器組成物を提供し
ようとすることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems encountered by piezoelectric ceramic compositions containing potassium sodium lithium niobate as a main component, and has a temperature coefficient of resonance frequency fr-TC. It is intended to provide a piezoelectric ceramic composition suitable for use in a high frequency region with a resonance frequency constant of 3000 Hz · m or more having a relative dielectric constant of 180 or less and a dielectric constant of 180 ppm or less. The purpose is.

【0008】[0008]

【課題を解決するための手段】この発明は、上述した技
術的課題を解決するため、一般式:(1−n)(K1-
x-y Nax Liy m (Nb1-z Taz )O3 −nM1
M2M3O3 で表される組成物を主成分とする、圧電磁
器組成物であって、上記一般式において,M1は3価の
金属元素からなり、M2は1価の金属元素からなり、M
3は4価の金属元素からなり、また、x、y、z、m、
およびnは、それぞれ、 x≦0.9、 0.02≦y≦0.3、 0.75≦x+y、 0≦z≦0.3、 0.98≦m≦1.0、および 0<n≦0.05 の条件を満たすことを特徴としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems by the general formula: (1-n) (K 1-
xy Na x Li y) m ( Nb 1-z Ta z) O 3 -nM1
As a main component a composition represented by M2M3O 3, a piezoelectric ceramic composition, in the above general formula, M1 is made of trivalent metal elements, M2 consists monovalent metal element, M
3 is a tetravalent metal element, and x, y, z, m,
And n are x ≦ 0.9, 0.02 ≦ y ≦ 0.3, 0.75 ≦ x + y, 0 ≦ z ≦ 0.3, 0.98 ≦ m ≦ 1.0, and 0 <n, respectively. It satisfies the condition of ≦ 0.05.

【0009】上述したx、y、z、m、およびnの各範
囲の限定理由は、次のとおりである。xおよびyに関し
て、それぞれ、x≦0.9および0.02≦y≦0.3
と限定するのは、これらの範囲を外れると、良好な焼結
体を得ることができないためである。また、0.75≦
x+yとするのは、0.75>x+yでは、比誘電率が
180より大きくなり、高周波領域での使用に関しての
利点が失われるためである。
The reasons for limiting the ranges of x, y, z, m and n described above are as follows. For x and y, x ≦ 0.9 and 0.02 ≦ y ≦ 0.3, respectively.
The reason for this is that a good sintered body cannot be obtained if it is out of these ranges. Also, 0.75 ≦
The reason for setting x + y is that when 0.75> x + y, the relative dielectric constant becomes larger than 180, and the advantage in use in a high frequency region is lost.

【0010】また、zに関して、0≦z≦0.3とする
のは、この範囲を外れると、キュリー点が200℃以下
に低下し、当該圧電磁器組成物をもって構成された素子
の温度安定性の点で問題が生じるためである。また、m
に関して、0.98≦m≦1.0とするのは、この範囲
を外れると、分極処理が困難になるためである。
With respect to z, 0 ≦ z ≦ 0.3 is set so that when the value is out of this range, the Curie point is lowered to 200 ° C. or less, and the temperature stability of the element constituted by the piezoelectric ceramic composition is reduced. This is because a problem arises in the point. Also, m
The reason why 0.98 ≦ m ≦ 1.0 is that if it is out of this range, the polarization treatment becomes difficult.

【0011】また、nに関して、0<n≦0.05とす
るのは、nが0.05より大きい場合には、キュリー点
が200℃以下に低下し、当該圧電磁器組成物をもって
構成された素子の温度安定性の点で問題が生じるためで
ある。この発明において、好ましくは、上記一般式中の
M1は、Biからなり、また、M2は、K、Na、およ
びLiからなる群から選ばれた少なくとも1種からな
り、また、M3は、Ti、Zr、Sn、およびHfから
なる群から選ばれた少なくとも1種からなる。
[0011] Further, with respect to n, the condition of 0 <n ≦ 0.05 is that when n is larger than 0.05, the Curie point is lowered to 200 ° C. or less and the piezoelectric ceramic composition is constituted. This is because a problem occurs in the temperature stability of the device. In the present invention, preferably, M1 in the above general formula is composed of Bi, M2 is composed of at least one selected from the group consisting of K, Na, and Li, and M3 is composed of Ti, It is composed of at least one selected from the group consisting of Zr, Sn, and Hf.

【0012】[0012]

【実施例】まず、出発原料として、K2 CO3 、Na2
CO3 、Li2 CO3 、Nb2 5 、Ta2 5 、Bi
2 3 、TiO2 、およびZrO2 を用意し、これらの
原料を、一般式:(1−n)(K1-x-y Nax Liy
m (Nb1-z Taz )O3−nM1M2M3O3 におい
て表1および表2に示すような組成となるように秤取し
て、ボールミルを用いて約4時間アルコール中で湿式混
合し、得られた混合物を乾燥した後、700℃〜900
℃の温度で仮焼した。次いで、これら乾燥混合物を粗粉
砕した後、有機バインダを適量加えてボールミルを用い
て4時間湿式粉砕し、40メッシュのふるいを通して粒
度調整を行なった。
EXAMPLE First, K was used as a starting material.TwoCOThree, NaTwo
COThree, LiTwoCOThree, NbTwoO Five, TaTwoOFive, Bi
TwoOThree, TiOTwo, And ZrOTwoPrepare these
The raw material is represented by the general formula: (1-n) (K1-xyNaxLiy)
m(Nb1-zTaz) OThree-NM1M2M3OThreesmell
And weigh them so that they have the composition shown in Tables 1 and 2.
And wet mixing in alcohol for about 4 hours using a ball mill.
After drying the obtained mixture,
It was calcined at a temperature of ° C. The dried mixture is then
After crushing, add an appropriate amount of organic binder and use a ball mill
4 hours by wet grinding and granulation through a 40 mesh sieve
The degree was adjusted.

【0013】次に、粒度調整された粉体を1000kg
/cm2 の圧力で直径12mm、厚さ1.2mmの円板
に成形した後、1050℃〜1300℃の温度で、通常
の焼成方法を用いて焼成を行ない、円板状の磁器を得
た。次いで、これら磁器円板の両主面に、通常の方法に
より、銀ペーストを塗布焼付けして銀電極を形成した
後、50℃〜150℃の絶縁オイル中で2〜10kV/
mmの直流電圧を10〜30分間印加して分極処理を施
し、試料となる圧電磁器円板を得た。
Next, the powder whose particle size has been adjusted is 1000 kg.
After molding into a disk having a diameter of 12 mm and a thickness of 1.2 mm at a pressure of / cm 2 , firing was performed at a temperature of 1050 ° C. to 1300 ° C. using a normal firing method to obtain a disk-shaped porcelain. . Next, a silver paste is applied and baked on both main surfaces of these porcelain disks by a usual method to form silver electrodes, and then 2 to 10 kV / in an insulating oil at 50 ° C. to 150 ° C.
A DC voltage of 10 mm was applied for 10 to 30 minutes to perform polarization treatment, and a piezoelectric ceramic disk as a sample was obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】上記表1および表2に示した各試料につい
て、比誘電率、厚み振動における電気機械結合係数
t 、厚み振動における共振周波数定数N、厚み振動に
おける共振周波数の温度係数fr−TC、およびキュリ
ー点を測定した。その結果を表3および表4に示す。
For each of the samples shown in Tables 1 and 2, the relative dielectric constant, the electromechanical coupling coefficient K t in the thickness vibration, the resonance frequency constant N in the thickness vibration, the temperature coefficient fr-TC of the resonance frequency in the thickness vibration, And the Curie point was measured. The results are shown in Tables 3 and 4.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】表1ないし表4において、試料番号に*を
付したものは、この発明の範囲外のものである。表1お
よび表2において、x≦0.9、0.02≦y≦0.
3、0.75≦x+y、0≦z≦0.3、0.98≦m
≦1.0、0<n≦0.05の各条件をすべて満たす試
料、すなわち試料番号に*が付されていないこの発明の
実施例にかかる試料については、表3および表4に示す
ように、すべて、比誘電率が180以下であり、厚み振
動の共振周波数定数が3000Hz・m以上であり、ま
た、共振周波数の温度係数が100ppm以下であり、
さらに、キュリー点が200℃を超える、というように
良好な特性を示している。
In Tables 1 to 4, samples marked with * are out of the scope of the present invention. In Tables 1 and 2, x ≦ 0.9, 0.02 ≦ y ≦ 0.
3, 0.75 ≦ x + y, 0 ≦ z ≦ 0.3, 0.98 ≦ m
As for the samples satisfying all the conditions of ≦ 1.0 and 0 <n ≦ 0.05, that is, the samples according to the examples of the present invention in which * is not added to the sample numbers, as shown in Tables 3 and 4, , All have a relative dielectric constant of 180 or less, a resonance frequency constant of thickness vibration of 3000 Hz · m or more, and a temperature coefficient of resonance frequency of 100 ppm or less,
Furthermore, it shows good characteristics such as a Curie point exceeding 200 ° C.

【0020】これに対して、x≦0.9または0.02
≦y≦0.3の条件を満足しない試料1、19および3
2では、焼結不良が生じている。また、0.75≦x+
yを満足しない試料45では、比誘電率が210とな
り、180以下の比誘電率を達成し得ない。また、0≦
z≦0.3を満足しない試料54では、キュリー点が1
65℃となり、200℃を超えるキュリー点を実現し得
ない。
On the other hand, x ≦ 0.9 or 0.02
Samples 1, 19 and 3 that do not satisfy the condition of ≦ y ≦ 0.3
In No. 2, poor sintering occurred. Also, 0.75 ≦ x +
In the case of the sample 45 that does not satisfy y, the relative dielectric constant is 210, and a relative dielectric constant of 180 or less cannot be achieved. Also, 0 ≦
In the sample 54 not satisfying z ≦ 0.3, the Curie point is 1
The temperature is 65 ° C., and a Curie point exceeding 200 ° C. cannot be realized.

【0021】また、0.98≦m≦1.0の条件を満足
しない試料63では、所望の分極を達成し得ない。ま
た、0<n≦0.05の条件を満足しない試料のうち、
nが0.05より大きい試料5、10、14、18、2
3、27、31、36、40、44、49、53、5
8、62、66および69では、キュリー点が200℃
以下に低下している。また、nが0となる試料2、6、
11、15、20、24、28、33、37、41、4
6、50、55および59では、共振周波数の温度係数
が100ppmを大幅に超えている。
Further, the sample 63 which does not satisfy the condition of 0.98 ≦ m ≦ 1.0 cannot achieve the desired polarization. Further, among the samples that do not satisfy the condition of 0 <n ≦ 0.05,
Samples 5, 10, 14, 18, 2 where n is greater than 0.05
3, 27, 31, 36, 40, 44, 49, 53, 5
8, 62, 66 and 69, the Curie point is 200 ° C.
It has dropped below. In addition, samples 2, 6, in which n becomes 0,
11, 15, 20, 24, 28, 33, 37, 41, 4
In 6, 50, 55 and 59, the temperature coefficient of the resonance frequency greatly exceeds 100 ppm.

【0022】以上、この発明を実施例に関連して説明し
たが、この発明の範囲内にある圧電磁器組成物は、この
ような実施例に限定されるものではなく、この発明の趣
旨を逸脱しない範囲で、種々に組成を変えることができ
る。たとえば、上述した実施例では、M1として、Bi
が用いられ、M2として、NaまたはLiが用いられ、
M3として、TiまたはZrが用いられたが、M2につ
いては、その他、Kが用いられても、また、M3につい
ては、Snおよび/またはHfが用いられても、同等の
効果が得られることが確認されている。また、M1につ
いては、その他の3価の金属元素が用いられ、M2につ
いては、その他の1価の金属元素が用いられ、M3につ
いては、その他の4価の金属元素が用いられてもよい。
Although the present invention has been described with reference to the embodiments, the piezoelectric ceramic composition within the scope of the present invention is not limited to such embodiments, but departs from the spirit of the present invention. The composition can be variously changed within a range not to do. For example, in the embodiment described above, M1 is Bi
Is used, and Na or Li is used as M2,
Although Ti or Zr was used as M3, the same effect can be obtained for M2 even when K is used, and when M3 is Sn and / or Hf. Has been confirmed. For M1, another trivalent metal element may be used, for M2, another monovalent metal element may be used, and for M3, another tetravalent metal element may be used.

【0023】[0023]

【発明の効果】以上のように、この発明によれば、比誘
電率が180以下で厚み振動の共振周波数定数が300
0Hz・m以上と高周波領域での使用に適し、また、共
振周波数の温度係数fr−TCが100ppm以下であ
り、キュリー点が200℃を超えるといった良好な特性
を示す、圧電磁器組成物を得ることができ、この圧電磁
器組成物を用いて、圧電セラミックフィルタ、圧電セラ
ミック発振子などの圧電セラミック素子を有利に作製す
ることができる。
As described above, according to the present invention, the relative dielectric constant is 180 or less and the resonance frequency constant of the thickness vibration is 300.
A piezoelectric ceramic composition suitable for use in a high frequency range of 0 Hz · m or more and exhibiting good characteristics such as a resonance frequency temperature coefficient fr-TC of 100 ppm or less and a Curie point exceeding 200 ° C. Using this piezoelectric ceramic composition, a piezoelectric ceramic element such as a piezoelectric ceramic filter or a piezoelectric ceramic oscillator can be advantageously produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式:(1−n)(K1-x-y Nax
y m (Nb1-zTaz )O3 −nM1M2M3O3
で表される組成物を主成分とする、圧電磁器組成物。た
だし、M1は3価の金属元素、M2は1価の金属元素、
M3は4価の金属元素、 x≦0.9 0.02≦y≦0.3 0.75≦x+y 0≦z≦0.3 0.98≦m≦1.0 0<n≦0.05。
1. The general formula: (1-n) (K 1-xy Na x L)
i y ) m (Nb 1 -z T az ) O 3 -nM1M2M3O 3
A piezoelectric ceramic composition comprising a composition represented by the following formula: Here, M1 is a trivalent metal element, M2 is a monovalent metal element,
M3 is a tetravalent metal element, x ≦ 0.9 0.02 ≦ y ≦ 0.3 0.75 ≦ x + y 0 ≦ z ≦ 0.3 0.98 ≦ m ≦ 1.0 0 <n ≦ 0.05 .
【請求項2】 前記M1は、Bi、前記M2は、K、N
a、およびLiからなる群から選ばれた少なくとも1種
であり、前記M3は、Ti、Zr、Sn、およびHfか
らなる群から選ばれた少なくとも1種である、請求項1
に記載の圧電磁器組成物。
2. The M1 is Bi, and the M2 is K, N
and at least one member selected from the group consisting of Ti, Zr, Sn and Hf, wherein M3 is at least one member selected from the group consisting of a and Li.
3. The piezoelectric ceramic composition according to item 1.
JP03571498A 1998-02-18 1998-02-18 Piezoelectric ceramic composition Expired - Lifetime JP3282576B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03571498A JP3282576B2 (en) 1998-02-18 1998-02-18 Piezoelectric ceramic composition
TW088102453A TW563265B (en) 1998-02-18 1999-02-12 Piezoelectric ceramic composition
US09/252,576 US6083415A (en) 1998-02-18 1999-02-18 Piezoelectric ceramic composition
DE19964233A DE19964233C2 (en) 1998-02-18 1999-02-18 Piezoelectric ceramic composition for piezoelectric ceramic filters and oscillators
KR1019990005394A KR100282599B1 (en) 1998-02-18 1999-02-18 Piezoelectric Ceramic Composition
DE19906836A DE19906836C2 (en) 1998-02-18 1999-02-18 Piezoelectric ceramic composition
CN99102464A CN1087721C (en) 1998-02-18 1999-02-23 Piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03571498A JP3282576B2 (en) 1998-02-18 1998-02-18 Piezoelectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH11228226A true JPH11228226A (en) 1999-08-24
JP3282576B2 JP3282576B2 (en) 2002-05-13

Family

ID=12449544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03571498A Expired - Lifetime JP3282576B2 (en) 1998-02-18 1998-02-18 Piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3282576B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342065A (en) * 2000-05-30 2001-12-11 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition
JP2002255641A (en) * 2001-02-27 2002-09-11 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2002338351A (en) * 2001-05-10 2002-11-27 Tdk Corp Piezoelectric ceramic composition, piezoelectric ceramic sintered compact and electronic parts
WO2002102738A1 (en) 2001-06-15 2002-12-27 Tdk Corporation Piezoelectric porcelain and method for preparation thereof
JP2003221276A (en) * 2002-01-31 2003-08-05 Tdk Corp Piezoelectric ceramic and method for producing the same
JP2003327472A (en) * 2001-06-15 2003-11-19 Tdk Corp Piezoelectric ceramic
US6793843B2 (en) 2000-11-21 2004-09-21 Tdk Corporation Piezoelectric ceramic
JP2005244208A (en) * 2004-01-30 2005-09-08 Toko Inc Piezoelectric ceramics and method of fabricating same
US7101491B2 (en) 2002-07-16 2006-09-05 Denso Corporation Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
WO2007049764A1 (en) * 2005-10-27 2007-05-03 Kyocera Corporation Piezoelectric ceramic composition and piezoelectric ceramic
WO2007094115A1 (en) * 2006-02-17 2007-08-23 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition
US7267783B2 (en) 2002-03-20 2007-09-11 Denso Corporation Piezoelectric ceramic composition, its production method, and piezoelectric device and dielectric device
WO2007122948A1 (en) 2006-03-30 2007-11-01 Ngk Insulators, Ltd. Dielectric porcelain composition and electronic component
EP1630149A4 (en) * 2003-05-29 2009-01-21 Ngk Spark Plug Co Piezoelectric ceramic composition and piezoelectric element including the same
JP2009049355A (en) * 2007-07-26 2009-03-05 Hitachi Cable Ltd Piezoelectric thin film element
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
US7754095B2 (en) 2005-04-28 2010-07-13 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP2016066708A (en) * 2014-09-25 2016-04-28 Tdk株式会社 Piezoelectric composition, piezoelectric element, and sputtering target
CN116803949A (en) * 2023-06-27 2023-09-26 清华大学 Sodium niobate-based antiferroelectric ceramic material, preparation method thereof and capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159206B1 (en) 2007-05-16 2019-04-17 National Institute of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric, and pyroelectric elements using the piezoelectric ceramic

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342065A (en) * 2000-05-30 2001-12-11 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition
US6793843B2 (en) 2000-11-21 2004-09-21 Tdk Corporation Piezoelectric ceramic
JP2002255641A (en) * 2001-02-27 2002-09-11 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2002338351A (en) * 2001-05-10 2002-11-27 Tdk Corp Piezoelectric ceramic composition, piezoelectric ceramic sintered compact and electronic parts
EP1405836A1 (en) * 2001-06-15 2004-04-07 TDK Corporation Piezoelectric porcelain and method for preparation thereof
JP2003327472A (en) * 2001-06-15 2003-11-19 Tdk Corp Piezoelectric ceramic
US7309450B2 (en) 2001-06-15 2007-12-18 Tdk Corporation Piezoelectric porcelain and method for preparation thereof
EP1405836A4 (en) * 2001-06-15 2007-05-02 Tdk Corp Piezoelectric porcelain and method for preparation thereof
WO2002102738A1 (en) 2001-06-15 2002-12-27 Tdk Corporation Piezoelectric porcelain and method for preparation thereof
JP2003221276A (en) * 2002-01-31 2003-08-05 Tdk Corp Piezoelectric ceramic and method for producing the same
US7267783B2 (en) 2002-03-20 2007-09-11 Denso Corporation Piezoelectric ceramic composition, its production method, and piezoelectric device and dielectric device
US7101491B2 (en) 2002-07-16 2006-09-05 Denso Corporation Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
EP1630149A4 (en) * 2003-05-29 2009-01-21 Ngk Spark Plug Co Piezoelectric ceramic composition and piezoelectric element including the same
JP2005244208A (en) * 2004-01-30 2005-09-08 Toko Inc Piezoelectric ceramics and method of fabricating same
US7910016B2 (en) 2005-04-28 2011-03-22 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric ceramic electronic component
US7754095B2 (en) 2005-04-28 2010-07-13 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4881315B2 (en) * 2005-10-27 2012-02-22 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric ceramic
WO2007049764A1 (en) * 2005-10-27 2007-05-03 Kyocera Corporation Piezoelectric ceramic composition and piezoelectric ceramic
US7959823B2 (en) 2005-10-27 2011-06-14 Kyocera Corporation Piezoelectric ceramic composition and piezoelectric ceramic
WO2007094115A1 (en) * 2006-02-17 2007-08-23 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition
WO2007122948A1 (en) 2006-03-30 2007-11-01 Ngk Insulators, Ltd. Dielectric porcelain composition and electronic component
US7781360B2 (en) 2006-03-30 2010-08-24 Ngk Insulators, Ltd. Dielectric porcelain composition and electronic component
JP2009049355A (en) * 2007-07-26 2009-03-05 Hitachi Cable Ltd Piezoelectric thin film element
JP2009302445A (en) * 2008-06-17 2009-12-24 Fujifilm Corp Polarization method of piezoelectric substance film, and method of manufacturing piezoelectric element structure
US8567026B2 (en) 2008-06-17 2013-10-29 Fujifilm Corporation Piezoelectric film poling method
JP2016066708A (en) * 2014-09-25 2016-04-28 Tdk株式会社 Piezoelectric composition, piezoelectric element, and sputtering target
CN116803949A (en) * 2023-06-27 2023-09-26 清华大学 Sodium niobate-based antiferroelectric ceramic material, preparation method thereof and capacitor
CN116803949B (en) * 2023-06-27 2024-05-28 清华大学 Sodium niobate-based antiferroelectric ceramic material, preparation method thereof and capacitor

Also Published As

Publication number Publication date
JP3282576B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JP3259677B2 (en) Piezoelectric ceramic composition
JP3282576B2 (en) Piezoelectric ceramic composition
JP3259678B2 (en) Piezoelectric ceramic composition
US6093339A (en) Piezoelectric ceramic composition
US6083415A (en) Piezoelectric ceramic composition
JP3654408B2 (en) Piezoelectric ceramic composition
JP3362473B2 (en) Piezoelectric ceramic composition
JP2001240471A (en) Piezoelectric ceramic composition and piezoelectric resonator
JPH10297969A (en) Piezoelectric ceramic composition
JP2003201176A (en) Piezoelectric ceramic composition and piezoelectric device using the same
JP3771760B2 (en) Piezoelectric ceramic composition
JP2881424B2 (en) Piezoelectric ceramic
JPH0226794B2 (en)
JPH0745882A (en) Piezoelectric element
JP3587557B2 (en) High frequency piezoelectric filter porcelain composition
JPS6211518B2 (en)
JPS6358782B2 (en)
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JPH09124367A (en) Piezoelectric ceramic composition
JP3384598B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH07315924A (en) Piezoelectric porcelain composition
JP3266483B2 (en) Piezoelectric ceramic composition
JPH03115167A (en) Piezoelectric ceramics
JPH0891927A (en) Piezoelectric ceramic composition
JPS60196983A (en) Piezoelectric porcelain composition for ceramic filter element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term