JP2009049355A - Piezoelectric thin film element - Google Patents

Piezoelectric thin film element Download PDF

Info

Publication number
JP2009049355A
JP2009049355A JP2007321590A JP2007321590A JP2009049355A JP 2009049355 A JP2009049355 A JP 2009049355A JP 2007321590 A JP2007321590 A JP 2007321590A JP 2007321590 A JP2007321590 A JP 2007321590A JP 2009049355 A JP2009049355 A JP 2009049355A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
piezoelectric thin
plane
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007321590A
Other languages
Japanese (ja)
Other versions
JP5157411B2 (en
Inventor
Kenji Shibata
憲治 柴田
Fumito Oka
史人 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007321590A priority Critical patent/JP5157411B2/en
Publication of JP2009049355A publication Critical patent/JP2009049355A/en
Application granted granted Critical
Publication of JP5157411B2 publication Critical patent/JP5157411B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piozoelectric thin film element containing a potassium sodium niobate thin film having excellent piezoelectric characteristics. <P>SOLUTION: The piozoelectric thin film element includes: on a substrate 1; a lower electrode 2; a KNbO<SB>3</SB>thin film 3; a piezoelectric thin film 4 formed of potassium sodium niobate of perovskite structure (expressed by (K<SB>x</SB>Na<SB>1-x</SB>)NbO<SB>3</SB>(0<x<1)), which has a film thickness of 0.2 μm to 10 μm and a specific inductive capacity in the range of 50 or more and 200 or less; and an upper electrode 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電薄膜としてニオブ酸カリウムナトリウムを用いた圧電薄膜素子に関する。   The present invention relates to a piezoelectric thin film element using potassium sodium niobate as a piezoelectric thin film.

圧電体は、種々の目的に応じて様々な圧電素子に加工され、圧電素子に電圧を加えて生じる変形を利用して種々の動作を行うアクチュエータや、それとは逆に圧電素子の変形によって発生する電圧から各種の物理量を検出するセンサなどの機能性電子部品として広く利用されている。   Piezoelectric bodies are processed into various piezoelectric elements according to various purposes, and are generated by actuators that perform various operations using deformation generated by applying voltage to the piezoelectric elements, and conversely, they are generated by deformation of piezoelectric elements. Widely used as functional electronic components such as sensors for detecting various physical quantities from voltage.

アクチュエータやセンサの用途に利用されている圧電体としては、優れた圧電特性を有する鉛系材料の強誘電体、特にPZTと呼ばれるPb(Zr1−xTi)O系のペロブスカイト型強誘電体が広く用いられている。これら強誘電体は、通常、個々の元素からなる酸化物粉末を焼結することによって形成される。 As the piezoelectric bodies are used in the actuator and sensor applications, excellent ferroelectric lead-based material having piezoelectric properties, Pb (Zr 1-x Ti x) O 3 based perovskite ferroelectric particularly called PZT The body is widely used. These ferroelectrics are usually formed by sintering oxide powders composed of individual elements.

ところで、最近は各種電子部品の小型化・高性能化が進み、アクチュエータ等の圧電素子においても一層の小型化・高性能化が求められている。しかしながら、焼結法を中心とする製造方法により作製した圧電材料は、その厚みを薄くするにつれて、特に10μm程度の薄膜になると、材料を構成する結晶粒の大きさに近づくため、個々の結晶粒の特性の影響が無視できなくなり、特性のばらつきや劣化が顕著になるといった問題が発生する。   Recently, various electronic components have been miniaturized and improved in performance, and piezoelectric elements such as actuators are required to be further reduced in size and performance. However, the piezoelectric material produced by the manufacturing method centering on the sintering method approaches the size of the crystal grains constituting the material as the thickness of the piezoelectric material is reduced, especially when it becomes a thin film of about 10 μm. The influence of the characteristic cannot be ignored, and there arises a problem that the dispersion and deterioration of the characteristic become remarkable.

これを回避するために、焼結法に代わって薄膜形成技術を応用した圧電材料の形成法が近年盛んに研究されるようになってきた。薄膜形成技術としては、例えばスパッタリング法や、PLD(レーザーアブレーション)法、ゾルゲル法等があり、RFスパッタリング法で形成したPZT薄膜が高精細高速インクジェットプリンタのヘッド用アクチュエータとして実用化されている(例えば、特許文献1参照)。   In order to avoid this, a method for forming a piezoelectric material using a thin film forming technique instead of the sintering method has been actively studied in recent years. Thin film formation techniques include, for example, sputtering, PLD (laser ablation), sol-gel, etc., and PZT thin films formed by RF sputtering have been put into practical use as head actuators for high-definition high-speed inkjet printers (for example, , See Patent Document 1).

一方、PZTから成る圧電焼結体や圧電薄膜は、鉛を60〜70重量%程度含有しているため、生態学的見地および公害防止の面から好ましくない。そこで、環境への配慮から、鉛を含有しない圧電材料の開発が望まれている。
現在、様々な非鉛圧電材料が研究されているが、その中にニオブ酸カリウムナトリウム(一般式:(KNa1−x)NbO(0<x<1))がある。ニオブ酸カリウムナトリウムは、ペロブスカイト構造を有する材料であり、非鉛の材料としては比較的良好な圧電特性を示すため、非鉛圧電材料の有力な候補として期待されている。ニオブ酸カリウムナトリウム焼結体は、(KNa1−x)NbOにおいて組成比x=0.5付近で優れた圧電特性を有する。
On the other hand, a piezoelectric sintered body or a piezoelectric thin film made of PZT is not preferable from the viewpoint of ecological viewpoint and pollution prevention because it contains about 60 to 70% by weight of lead. Therefore, development of a piezoelectric material that does not contain lead is desired in consideration of the environment.
Currently, various lead-free piezoelectric materials have been studied, among which potassium sodium niobate (general formula: (K x Na 1-x ) NbO 3 (0 <x <1)). Potassium sodium niobate is a material having a perovskite structure and exhibits relatively good piezoelectric properties as a lead-free material, and is therefore expected as a promising candidate for lead-free piezoelectric materials. The potassium sodium niobate sintered body has excellent piezoelectric characteristics in the composition ratio x = 0.5 in (K x Na 1-x ) NbO 3 .

なお、従来技術には、PZTの圧電薄膜における耐電圧性を向上させるために、PZT薄膜の比誘電率を規定したものがある(例えば、特許文献2参照)。また、ニオブ酸系化合物の圧電薄膜素子については、十分な圧電特性を得るために、ペロブスカイト型結晶構造の配向度について検討したものがある(例えば、特許文献3参照)。   In the prior art, there is one in which the relative dielectric constant of the PZT thin film is defined in order to improve the voltage resistance of the PZT piezoelectric thin film (see, for example, Patent Document 2). In addition, as for a niobic acid compound piezoelectric thin film element, in order to obtain sufficient piezoelectric characteristics, there has been studied the degree of orientation of a perovskite crystal structure (for example, see Patent Document 3).

特開平11−135850号公報Japanese Patent Laid-Open No. 11-135850 特開2001−284670号公報JP 2001-284670 A 特開2007−19302号公報JP 2007-19302 A

しかしながら、現状においては、ニオブ酸カリウムナトリウム薄膜では、PZT等の焼結体のような優れた圧電特性は実現されていない。また、各基板上に作製される圧電薄膜素子には、圧電特性にばらつきがあるが、簡易に圧電特性の良否を検査・検出することができなかった。   However, at present, excellent piezoelectric properties such as a sintered body such as PZT have not been realized with a potassium sodium niobate thin film. In addition, piezoelectric thin film elements fabricated on each substrate have variations in piezoelectric characteristics, but it has not been possible to easily inspect and detect the quality of piezoelectric characteristics.

本発明は、上記課題を解決し、優れた圧電特性を有するニオブ酸カリウムナトリウム薄膜を用いた圧電薄膜素子を提供することにある。   An object of the present invention is to solve the above-described problems and provide a piezoelectric thin film element using a potassium sodium niobate thin film having excellent piezoelectric characteristics.

本発明の第一の態様は、基板上に、下部電極と、膜厚が0.2μm以上10μm以下であり、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造の圧電薄膜と、上部電極とを有する圧電薄膜素子において、前記圧電薄膜の比誘電率が、50以上200以下の範囲にあることを特徴とする。 A first aspect of the present invention is a substrate having a lower electrode and a film thickness of 0.2 μm or more and 10 μm or less, represented by a general formula (K x Na 1-x ) NbO 3 (0 <x <1). In the piezoelectric thin film element having a perovskite-structured piezoelectric thin film and an upper electrode, the piezoelectric thin film has a relative dielectric constant in the range of 50 to 200.

本発明の第二の態様は、第一の態様に記載の発明において、前記下部電極と前記圧電薄膜との間に、KNbO薄膜が形成されていることを特徴とする。 According to a second aspect of the present invention, in the invention according to the first aspect, a KNbO 3 thin film is formed between the lower electrode and the piezoelectric thin film.

本発明の第三の態様は、第一又は第二の態様に記載の発明において、前記基板がSi基板またはMgO基板であり、前記下部電極がPt電極であることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect, the substrate is a Si substrate or a MgO substrate, and the lower electrode is a Pt electrode.

本発明の第四の態様は、第二又は第三の態様に記載の発明において、前記下部電極、前記圧電薄膜、及び前記KNbO薄膜がRFマグネトロンスパッタリング法により形成されていること特徴とする。 According to a fourth aspect of the present invention, in the invention described in the second or third aspect, the lower electrode, the piezoelectric thin film, and the KNbO 3 thin film are formed by an RF magnetron sputtering method.

本発明によれば、優れた圧電特性を有するニオブ酸カリウムナトリウム薄膜を用いた圧電薄膜素子が得られる。   According to the present invention, a piezoelectric thin film element using a potassium sodium niobate thin film having excellent piezoelectric characteristics can be obtained.

本発明者らは、薄膜のニオブ酸カリウムナトリウムで優れた圧電特性が得られない原因を探るために、様々なスパッタ成膜条件でニオブ酸カリウムナトリウム薄膜を形成して圧電特性などを評価したところ、ニオブ酸カリウムナトリウム薄膜の比誘電率と圧電定数とに相関があり、比誘電率を200以下にすると、圧電定数が急激に約3倍も大きくなることが分かった(図5参照)。比誘電率が50〜200の範囲では、圧電定数はほぼ一定であって、優れた圧電特性のニオブ酸カリウムナトリウム薄膜が得られた。
この結果を踏まえて、本発明は、ニオブ酸カリウムナトリウム薄膜の比誘電率が50から200の範囲になるように形成することで、優れた圧電特性を持つニオブ酸カリウムナトリウム薄膜を実現することを主旨とする。
本発明者らの検討結果によれば、一般的なスパッタリング法でニオブ酸カリウムナトリウム薄膜を形成する場合は、50〜200の比誘電率を有するニオブ酸カリウムナトリウム薄膜は、例えば、薄膜中の(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向割合を高めることによって得られる。
The present inventors evaluated the piezoelectric characteristics and the like by forming a potassium sodium niobate thin film under various sputter deposition conditions in order to find out why the thin film of potassium sodium niobate does not provide excellent piezoelectric characteristics. It has been found that there is a correlation between the relative dielectric constant of the sodium potassium niobate thin film and the piezoelectric constant, and when the relative dielectric constant is set to 200 or less, the piezoelectric constant increases abruptly about three times (see FIG. 5). When the relative dielectric constant was in the range of 50 to 200, the piezoelectric constant was substantially constant, and a potassium sodium niobate thin film having excellent piezoelectric characteristics was obtained.
Based on this result, the present invention realizes a potassium sodium niobate thin film having excellent piezoelectric characteristics by forming so that the relative dielectric constant of the potassium sodium niobate thin film is in the range of 50 to 200. The main purpose.
According to the examination results of the present inventors, when a potassium sodium niobate thin film is formed by a general sputtering method, a potassium sodium niobate thin film having a relative dielectric constant of 50 to 200 is, for example, ( It can be obtained by increasing the orientation ratio of at least one of the (001) plane orientation, (100) plane orientation, and (010) plane orientation.

図1に、本発明の一実施形態に係る圧電薄膜素子の断面図を示す。本実施形態の圧電薄膜素子は、図1に示すように、基板1上に、下部電極2と、ニオブ酸カリウム(KNbO)薄膜3と、ペロブスカイト構造のニオブ酸カリウムナトリウム((KNa1−x)NbO(0<x<1))で、膜厚が0.2μm〜10μm、且つ比誘電率が50以上200以下の範囲にある圧電薄膜4と、上部電極5とが順次形成されている。 FIG. 1 shows a cross-sectional view of a piezoelectric thin film element according to an embodiment of the present invention. As shown in FIG. 1, the piezoelectric thin film element of this embodiment includes a lower electrode 2, a potassium niobate (KNbO 3 ) thin film 3, and a potassium sodium niobate having a perovskite structure ((K x Na 1). in -x) NbO 3 (0 <x <1)), thickness 0.2Myuemu~10myuemu, and the ratio between the piezoelectric thin film 4 having a dielectric constant in the range of 50 to 200, and the upper electrode 5 are sequentially formed ing.

KNbO薄膜3、圧電薄膜4の形成方法としては、スパッタリング法、CVD法、PLD法、ゾルゲル法などが考えられるが、本実施形態では、RFマグネトロンスパッタリング法を用いて形成した。また、本実施形態では、下部電極2もRFマグネトロンスパッタリング法により形成した。
また、ニオブ酸カリウムナトリウムの圧電薄膜4に少量の添加物(例えば、原子数濃度8%以下のLi)を混入してもよい。この場合も、圧電特性の向上が期待できる。
As a method for forming the KNbO 3 thin film 3 and the piezoelectric thin film 4, a sputtering method, a CVD method, a PLD method, a sol-gel method, and the like are conceivable. In the present embodiment, the lower electrode 2 is also formed by the RF magnetron sputtering method.
A small amount of additive (for example, Li having an atomic number concentration of 8% or less) may be mixed in the piezoelectric thin film 4 of potassium sodium niobate. Also in this case, improvement in piezoelectric characteristics can be expected.

基板1はSi基板またはMgO基板を用い、下部電極2はPt電極とするのが好ましい。圧電膜の成長には、下地層となる電極材料が重要になる。Si基板上に形成したPt(白金)は、自己配向性のため(111)面方位に配向した単結晶のPt膜となり、また、MgO(100)基板上に形成したPtは、(100)面方位に配向した多結晶膜ではあるが各結晶粒が基板1の面内方向に規則的に揃ったPt膜となる。このため、これらPt膜の下部電極2上に形成されるニオブ酸カリウムやニオブ酸カリウムナトリウムの圧電膜も(100)面方位に強く配向し、多結晶膜ではあっても各結晶粒は面内方向に規則性があり、圧電特性に優れ且つ均一な膜となる。   The substrate 1 is preferably a Si substrate or a MgO substrate, and the lower electrode 2 is preferably a Pt electrode. For the growth of the piezoelectric film, an electrode material as an underlayer is important. The Pt (platinum) formed on the Si substrate becomes a single crystal Pt film oriented in the (111) plane orientation due to self-orientation, and the Pt formed on the MgO (100) substrate is a (100) plane. Although it is a polycrystalline film oriented in the orientation, each crystal grain becomes a Pt film regularly aligned in the in-plane direction of the substrate 1. Therefore, the piezoelectric films of potassium niobate and potassium sodium niobate formed on the lower electrode 2 of the Pt film are also strongly oriented in the (100) plane orientation, and each crystal grain is in-plane even if it is a polycrystalline film. The film has regularity in the direction, and is excellent in piezoelectric characteristics and uniform.

下部電極2上のKNbO薄膜3は、(001)面方位に配向しやすい。このため、下地膜であるKNbO薄膜3上に形成されるニオブ酸カリウムナトリウムの圧電薄膜4は、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合が高くなる。(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合が高いニオブ酸カリウムナトリウムの圧電薄膜4は、比誘電率が低くなる。 The KNbO 3 thin film 3 on the lower electrode 2 is easily oriented in the (001) plane orientation. For this reason, the piezoelectric thin film 4 of potassium sodium niobate formed on the KNbO 3 thin film 3 that is the base film has at least one of (001) plane orientation, (100) plane orientation, and (010) plane orientation. The ratio of the orientation of the plane orientation becomes high. The piezoelectric thin film 4 of potassium sodium niobate having a high proportion of the orientation of one or more of the (001) plane orientation, the (100) plane orientation, and the (010) plane orientation has a low dielectric constant.

スパッタリング成膜条件を様々に変更してニオブ酸カリウムナトリウム薄膜を形成し、それら薄膜の比誘電率と圧電定数との関係を調べた。結果を図5に示す。図5に示すように、比誘電率200を境界として圧電定数d31が大きく変化している。比誘電率が200を超える範囲では(従来方法で作製したニオブ酸カリウムナトリウム圧電薄膜では比誘電率は400程度)、圧電定数d31は概ね20〜40[−pm/V]であるが、比誘電率200以下では圧電定数d31が80[−pm/V]以上と格段に大きくなる。
なお、本発明者らはRFマグネトロンスパッタリング法を用い、スパッタリング成膜条件を変更してニオブ酸カリウムナトリウム薄膜を種々形成したが、比誘電率が50以下のニオブ酸カリウムナトリウム薄膜を成膜することができなかった。
Various kinds of sputtering film formation conditions were changed to form potassium sodium niobate thin films, and the relationship between the relative permittivity of these thin films and the piezoelectric constant was investigated. The results are shown in FIG. As shown in FIG. 5, the piezoelectric constant d 31 greatly changes with the relative dielectric constant 200 as a boundary. In the range where the relative dielectric constant exceeds 200 (the relative dielectric constant is about 400 for the potassium sodium niobate piezoelectric thin film manufactured by the conventional method), the piezoelectric constant d 31 is approximately 20 to 40 [−pm / V]. the piezoelectric constant d 31 becomes remarkably and 80 [-pm / V] or more large dielectric constant of 200 or less.
In addition, although the present inventors changed the sputtering film-forming conditions and formed various potassium sodium niobate thin films using the RF magnetron sputtering method, forming a potassium sodium niobate thin film having a relative dielectric constant of 50 or less. I could not.

従って、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合が高く、比誘電率が50〜200と低いニオブ酸カリウムナトリウムの圧電薄膜4を形成することによって、圧電定数d31が大きく圧電特性に優れた圧電薄膜素子が得られることになる。
また、基板上に圧電薄膜が形成された圧電薄膜素子の圧電定数を求めるためには、従来は、後述するように圧電薄膜素子に電圧を印加したときの圧電変位量を測定しなければならなかった。ところが、本発明によれば、ニオブ酸カリウムナトリウム薄膜を用いた圧電薄膜素子に対し、LCRメータ等を使用して静電容量を測定するだけで、比誘電率を簡単に算出できるため、比誘電率が50〜200にある優れた圧電特性を有する圧電薄膜素子を選別する選別方法としても有用である。
Therefore, the ratio of the orientation of one or more of the (001) plane orientation, the (100) plane orientation, or the (010) plane orientation is high, and the relative permittivity of the sodium potassium niobate is as low as 50 to 200. by forming a piezoelectric thin film 4, so that the piezoelectric thin film element piezoelectric constant d 31 was excellent in large piezoelectric characteristics can be obtained.
Further, in order to obtain the piezoelectric constant of a piezoelectric thin film element in which a piezoelectric thin film is formed on a substrate, conventionally, as described later, it is necessary to measure the amount of piezoelectric displacement when a voltage is applied to the piezoelectric thin film element. It was. However, according to the present invention, the relative dielectric constant can be easily calculated by simply measuring the capacitance of a piezoelectric thin film element using a potassium sodium niobate thin film using an LCR meter or the like. It is also useful as a selection method for selecting piezoelectric thin film elements having excellent piezoelectric characteristics with a rate of 50 to 200.

圧電薄膜4の膜厚は、0.2μm〜10μmとするのがよい。膜厚0.2μm未満では十分な圧電性能を得ることができず、一方、膜厚10μmを超えると圧電薄膜素子の小型化が図れない。
また、KNbO薄膜3の膜厚は、0.1μm程度以下とするのがよい。但し、KNbO薄膜3は、圧電薄膜4の[001]方向の配向割合を高めるための膜であるので、その機能が十分に発揮される程度の膜厚は必要である。
また、(KNa1−x)NbOの圧電薄膜4は、優れた圧電特性を得るために、組成x=0.5付近とするのがよく、更に、圧電薄膜4の組成xは、膜厚方向の組成xの最大値と最小値の差を0.05以下にするなど、組成xの均一化を図るのが好ましい。
The film thickness of the piezoelectric thin film 4 is preferably 0.2 μm to 10 μm. If the film thickness is less than 0.2 μm, sufficient piezoelectric performance cannot be obtained. On the other hand, if the film thickness exceeds 10 μm, the piezoelectric thin film element cannot be miniaturized.
The film thickness of the KNbO 3 thin film 3 is preferably about 0.1 μm or less. However, since the KNbO 3 thin film 3 is a film for increasing the orientation ratio of the piezoelectric thin film 4 in the [001] direction, it is necessary to have a film thickness sufficient to exhibit its function.
Further, the piezoelectric thin film 4 of (K x Na 1-x ) NbO 3 should have a composition x = 0.5 in order to obtain excellent piezoelectric characteristics, and the composition x of the piezoelectric thin film 4 is It is preferable to make the composition x uniform such that the difference between the maximum value and the minimum value of the composition x in the film thickness direction is 0.05 or less.

なお、上記実施形態では、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合を高めるために、下部電極2と圧電薄膜4との間に、KNbO薄膜3を設けたが、これに限らず、スパッタリング成膜条件を調整することにより、圧電薄膜4の(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合を高めることが可能である。具体的には、基板温度、RF放電パワー、導入ガスの組成・圧力、ターゲットの組成、ターゲットと基板との間の距離などを調整する。例えば、ターゲットと基板との間の距離を長くすると、ターゲットからスパッタされて一直線に基板に飛来する原料原子の入射が基板に垂直な方向に揃い、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向の割合が高くなる。 In the above embodiment, the lower electrode 2 and the piezoelectric thin film 4 are used in order to increase the orientation ratio of at least one of (001) plane orientation, (100) plane orientation, and (010) plane orientation. The KNbO 3 thin film 3 is provided between the piezoelectric thin film 4 and the (001) plane orientation, (100) plane orientation, or (010) plane of the piezoelectric thin film 4 by adjusting the sputtering film forming conditions. It is possible to increase the orientation ratio of any one or more plane orientations of the orientation. Specifically, the substrate temperature, RF discharge power, introduced gas composition / pressure, target composition, distance between the target and the substrate, and the like are adjusted. For example, when the distance between the target and the substrate is increased, the incident of source atoms sputtered from the target and flying straight to the substrate is aligned in the direction perpendicular to the substrate, and the (001) plane orientation, (100) plane orientation, Alternatively, the orientation ratio of any one or more of (010) plane orientations is increased.

図1に示す上記実施形態に係る圧電薄膜素子の下部電極2及び上部電極5に、少なくとも電圧印加手段を接続することでアクチュエータが得られる。このアクチュエータの圧電薄膜素子に電圧を印加して、圧電薄膜素子を変形することによって各種部材を駆動させることができる。また、本実施形態に係る圧電薄膜素子の下部電極2及び上部電極5に、少なくとも電圧検知手段を接続することでセンサが得られる。このセンサの圧電薄膜素子が何らかの物理量の変化に伴って変形されると、その変形に伴って電圧が発生するので、この電圧を検知することで各種物理量を検知することができる。
アクチュエータは、インクジェットプリンタ、スキャナー、超音波発生装置などに用いられる。また、センサは、ジャイロ、超音波センサ、圧カセンサ、速度・加速度センサなどに用いられる。
また、上記実施形態では、ニオブ酸カリウムナトリウム薄膜を圧電薄膜として応用する場合について説明したが、その他にも、様々な用途への応用、例えば、焦電素子や表面弾性波デバイスヘの応用が考えられる。
An actuator can be obtained by connecting at least a voltage applying means to the lower electrode 2 and the upper electrode 5 of the piezoelectric thin film element according to the embodiment shown in FIG. Various members can be driven by applying a voltage to the piezoelectric thin film element of the actuator to deform the piezoelectric thin film element. Moreover, a sensor is obtained by connecting at least a voltage detection means to the lower electrode 2 and the upper electrode 5 of the piezoelectric thin film element according to the present embodiment. When the piezoelectric thin film element of this sensor is deformed along with any change in physical quantity, a voltage is generated along with the deformation, so that various physical quantities can be detected by detecting this voltage.
The actuator is used in an inkjet printer, a scanner, an ultrasonic generator, and the like. Sensors are used for gyros, ultrasonic sensors, pressure sensors, speed / acceleration sensors, and the like.
Moreover, although the said embodiment demonstrated the case where a potassium sodium niobate thin film was applied as a piezoelectric thin film, the application to various uses, for example, a pyroelectric element and a surface acoustic wave device, can be considered. .

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実施例)
本実施例においては、図1に示す上記実施形態と同一構造の圧電薄膜素子を作製した。
基板1にはSi基板((001)面方位、厚さ0.5mm)を用い、Si基板上にRFマグネトロンスパッタリング法により、白金の下部電極2((111)面単独配向、膜厚0.2μm)を形成した。白金の下部電極2は、基板温度350℃、放電パワー200W、導入ガスAr、圧力2.5Pa、成膜時間10分の条件で成膜した。
次に、下部電極2の上に、KNbO薄膜3(膜厚0.1μm)をRFマグネトロンスパッタリング法で形成した。KNbO薄膜3は、ターゲットにKNbO焼結体を用い、基板温度650℃、放電パワー100W、導入ガスAr、圧力0.4Pa、成膜時間10分で成膜した。
更に、KNbO薄膜3の上に、(K0.5Na0.5)NbOの圧電薄膜4(膜厚2.9μm)をRFマグネトロンスパッタリング法で形成した。(K0.5Na0.5)NbOの圧電薄膜4は、ターゲットに組成比が(K+Na)/Nb=1.0およびK/(K+Na)=0.5の(K0.5Na0.5)NbO焼結体を用い、基板温度650℃、放電パワー100W、導入ガスAr、圧力0.4Pa、成膜時間3時間50分で成膜した。
最後に、(K0.5Na0.5)NbOの圧電薄膜4の上に、RFマグネトロンスパッタリング法により、白金の上部電極(膜厚0.02μm)5を形成した。白金の上部電極5は、基板温度350℃、放電パワー200W、導入ガスAr、圧力2.5Pa、成膜時間1分で成膜した。
(Example)
In this example, a piezoelectric thin film element having the same structure as that of the above embodiment shown in FIG. 1 was produced.
The substrate 1 is a Si substrate ((001) plane orientation, thickness 0.5 mm), and the platinum lower electrode 2 ((111) plane single orientation, film thickness 0.2 μm is formed on the Si substrate by RF magnetron sputtering. ) Was formed. The platinum lower electrode 2 was formed under conditions of a substrate temperature of 350 ° C., a discharge power of 200 W, an introduction gas Ar, a pressure of 2.5 Pa, and a film formation time of 10 minutes.
Next, a KNbO 3 thin film 3 (film thickness: 0.1 μm) was formed on the lower electrode 2 by an RF magnetron sputtering method. The KNbO 3 thin film 3 was formed using a KNbO 3 sintered body as a target, a substrate temperature of 650 ° C., a discharge power of 100 W, an introduction gas Ar, a pressure of 0.4 Pa, and a film formation time of 10 minutes.
Furthermore, a piezoelectric thin film 4 (thickness: 2.9 μm) of (K 0.5 Na 0.5 ) NbO 3 was formed on the KNbO 3 thin film 3 by an RF magnetron sputtering method. The piezoelectric thin film 4 of (K 0.5 Na 0.5 ) NbO 3 has a composition ratio of (K + Na) /Nb=1.0 and K / (K + Na) = 0.5 (K 0.5 Na 0 .5 ) Using a NbO 3 sintered body, a film was formed at a substrate temperature of 650 ° C., a discharge power of 100 W, an introduction gas Ar, a pressure of 0.4 Pa, and a film formation time of 3 hours and 50 minutes.
Finally, a platinum upper electrode (film thickness 0.02 μm) 5 was formed on the (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film 4 by RF magnetron sputtering. The platinum upper electrode 5 was formed at a substrate temperature of 350 ° C., a discharge power of 200 W, an introduction gas Ar, a pressure of 2.5 Pa, and a film formation time of 1 minute.

(比較例)
また、比較例として、図2に示す断面構造の圧電薄膜素子を作製した。
比較例では、実施例におけるKNbO薄膜3を形成せず、また、(K0.5Na0.5)NbOの圧電薄膜6の膜厚を3.0μm(成膜時間4時間)とした点を除き、実施例と全く同様にして図2に示す圧電薄膜素子を作製した。
(Comparative example)
As a comparative example, a piezoelectric thin film element having a cross-sectional structure shown in FIG.
In the comparative example, the KNbO 3 thin film 3 in the example is not formed, and the film thickness of the piezoelectric thin film 6 of (K 0.5 Na 0.5 ) NbO 3 is set to 3.0 μm (film formation time 4 hours). Except for this point, the piezoelectric thin film element shown in FIG.

実施例及び比較例の圧電薄膜素子に対して比誘電率測定と圧電特性評価測定を行った。
図1の実施例及び図2の比較例に示す圧電薄膜素子(用基板)から、長さ20mm×幅2.5mmの短冊形の試料10をそれぞれ切り出した。作製した試料10に、LCRメーターを使って静電容量を測定(周波数1kHz)し、試料10の電極面積と圧電薄膜の厚さを考慮して、実施例及び比較例の圧電薄膜素子の比誘電率を算出した。実施例における圧電薄膜4の比誘電率は180、比較例における圧電薄膜6の比誘電率は400であった。
The dielectric constant measurement and the piezoelectric property evaluation measurement were performed on the piezoelectric thin film elements of the example and the comparative example.
Strip samples 10 each having a length of 20 mm and a width of 2.5 mm were cut out from the piezoelectric thin film elements (substrates) shown in the example of FIG. 1 and the comparative example of FIG. The capacitance of the produced sample 10 was measured using an LCR meter (frequency: 1 kHz), and the dielectric constant of the piezoelectric thin film element of the example and the comparative example was taken into consideration in consideration of the electrode area of the sample 10 and the thickness of the piezoelectric thin film. The rate was calculated. The relative dielectric constant of the piezoelectric thin film 4 in the example was 180, and the relative dielectric constant of the piezoelectric thin film 6 in the comparative example was 400.

次に、圧電特性評価測定を行った。図3(a)に測定方法の概略構成を示す。
図3(a)に示すように、上記試料10の一端をクランプ20に固定し、簡易的なユニモルフカンチレバーを構成した。クランプ20は除震台21上に設置し、震動を除去した。この状態で上部電極1と下部電極5との間に電圧を印加し、圧電薄膜3及び4、圧電薄膜6を伸縮させることで、試料10全体を屈曲動作させ、試料10先端を上下に動作させた。図3(b)には、試料10全体が屈曲し、試料10の先端が上方向に変位した状態を示す。上下動する試料10の先端変位量Δはレーザードップラ変位計22で測定した。
図4には、実施例及び比較例における印加電圧と先端最大変位量との関係を示す。図4より、比較例の圧電薄膜素子に対して、実施例の圧電薄膜素子では、圧電による試料10の先端最大変位量が約3倍になっていることが分かる。
Next, piezoelectric characteristic evaluation measurement was performed. FIG. 3A shows a schematic configuration of the measurement method.
As shown in FIG. 3 (a), one end of the sample 10 was fixed to the clamp 20 to constitute a simple unimorph cantilever. The clamp 20 was installed on the anti-seismic table 21 to remove the vibration. In this state, a voltage is applied between the upper electrode 1 and the lower electrode 5, and the piezoelectric thin films 3 and 4 and the piezoelectric thin film 6 are expanded and contracted, thereby bending the entire sample 10 and moving the tip of the sample 10 up and down. It was. FIG. 3B shows a state in which the entire sample 10 is bent and the tip of the sample 10 is displaced upward. The tip displacement amount Δ of the sample 10 moving up and down was measured with a laser Doppler displacement meter 22.
FIG. 4 shows the relationship between the applied voltage and the maximum tip displacement in the examples and comparative examples. FIG. 4 shows that the maximum displacement of the tip of the sample 10 due to the piezoelectric is about three times that of the piezoelectric thin film element of the example compared to the piezoelectric thin film element of the comparative example.

上記試料10の寸法及び印加電圧と先端最大変位量との関係から、圧電定数d31を計算した。その結果、比較例により作製した圧電薄膜素子の圧電定数d31は30[−pm/V]であったのに対し、本実施例により作製した圧電薄膜素子の圧電定数d31は90[−pm/V]であった。このことから、本発明を用いることで、圧電特性の優れた(KNa1−x)NbOの圧電薄膜を作製できることが確認できた。 The piezoelectric constant d 31 was calculated from the relationship between the size of the sample 10 and the applied voltage and the maximum tip displacement. As a result, the piezoelectric constant d 31 of the piezoelectric thin film element manufactured according to the comparative example was 30 [−pm / V], whereas the piezoelectric constant d 31 of the piezoelectric thin film element manufactured according to the present example was 90 [−pm. / V]. From this, it was confirmed that by using the present invention, a piezoelectric thin film of (K x Na 1-x ) NbO 3 having excellent piezoelectric characteristics can be produced.

また、上部電極5を成膜する前の状態にある実施例及び比較例の圧電薄膜素子に対して、圧電薄膜の配向状態を調べるために、X線回折パターン測定(2θ‐ωスキャン)を行った。図6に実施例のX線回折パターン測定の結果を、図7に比較例のX線回折パターン測定の結果を示す。   In addition, X-ray diffraction pattern measurement (2θ-ω scan) was performed on the piezoelectric thin film elements of the example and the comparative example in the state before forming the upper electrode 5 in order to investigate the orientation state of the piezoelectric thin film. It was. FIG. 6 shows the result of the X-ray diffraction pattern measurement of the example, and FIG. 7 shows the result of the X-ray diffraction pattern measurement of the comparative example.

図6に示すように、実施例の圧電薄膜素子においては、(KNa1−x)NbO(KNN)の回折ピークが観察された結晶面は、KNNの(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位と、KNNの(002)面方位、(200)面方位、若しくは(020)面方位のいずれか1種以上の面方位がほとんどであった。このことから、実施例の(KNa1−x)NbO圧電薄膜は、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位に高い割合で配向されていることが分かった。
これに対して、図7に示す比較例の圧電薄膜素子においては、NKKの回折ピークが観察された結晶面は、KNNの(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位と、KNNの(002)面方位、(200)面方位、若しくは(020)面方位のいずれか1種以上の面方位と、NKKの(110)面方位、(101)面方位、若しくは(011)面方位のいずれか1種以上の面方位とがあり、比較例の(KNa1−x)NbO圧電薄膜は、(001)面方位、(100)面方位、若しくは(010)面方位のいずれか1種以上の面方位の配向度が実施例に比べて低いことが分かった。
ここでのKNN結晶(圧電薄膜)の面方位は、X線回折測定(2θ‐ω)での回折パターンにおいて、
2θ=22.011°〜22.890°の回折ピークは、(001)面、(100)面または(010)面とし、
2θ=31.260°〜32.484°の回折ピークは、(110)面、(101)面または(011)面とし、
2θ=44.879°〜46.788°の回折ピークは、(002)面、(200)面または(020)面としている。
回折ピーク角度が上記のように範囲を有するのは、下記2つの理由による。
一つは、基板1とKNN結晶(圧電薄膜)の熱膨張差によって生ずる内部応力の影響や下地(下部電極2)の影響でKNN結晶格子が歪むためである。
もう一つは、Na/(K+Na)組成比によって結晶格子サイズが変化するためである。
As shown in FIG. 6, in the piezoelectric thin film element of the example, the crystal plane in which the diffraction peak of (K x Na 1-x ) NbO 3 (KNN) was observed was the (001) plane orientation of KNN, (100 ) Any one or more of the plane orientations or (010) plane orientations and any one or more of the (002), (200) or (020) plane orientations of KNN Was almost. From this, the (K x Na 1-x ) NbO 3 piezoelectric thin film of the example is high in any one or more of (001) plane orientation, (100) plane orientation, or (010) plane orientation. It was found that they were oriented at a ratio.
On the other hand, in the piezoelectric thin film element of the comparative example shown in FIG. 7, the crystal plane where the NKK diffraction peak was observed is the (001) plane orientation, (100) plane orientation, or (010) plane orientation of KNN. Any one or more plane orientations, any one or more plane orientations of (002) plane orientation, (200) plane orientation, or (020) plane orientation of KNN, and (110) plane orientation of NKK, There are (101) plane orientation and one or more plane orientations of (011) plane orientation, and the (K x Na 1-x ) NbO 3 piezoelectric thin film of the comparative example has a (001) plane orientation, (100 It has been found that the degree of orientation of at least one of the plane orientation and the (010) plane orientation is lower than that of the example.
The plane orientation of the KNN crystal (piezoelectric thin film) here is the diffraction pattern in the X-ray diffraction measurement (2θ-ω).
The diffraction peak at 2θ = 22.011 ° to 22.890 ° is a (001) plane, a (100) plane, or a (010) plane,
The diffraction peak of 2θ = 31.260 ° to 32.484 ° is a (110) plane, a (101) plane, or a (011) plane,
The diffraction peak at 2θ = 44.879 ° to 46.788 ° is taken as the (002) plane, (200) plane, or (020) plane.
The diffraction peak angle has a range as described above for the following two reasons.
One reason is that the KNN crystal lattice is distorted by the influence of internal stress caused by the thermal expansion difference between the substrate 1 and the KNN crystal (piezoelectric thin film) and the influence of the base (lower electrode 2).
Another reason is that the crystal lattice size changes depending on the Na / (K + Na) composition ratio.

本発明の実施形態及び実施例における圧電薄膜素子の断面図である。It is sectional drawing of the piezoelectric thin film element in the embodiment and Example of this invention. 比較例における圧電薄膜素子の断面図である。It is sectional drawing of the piezoelectric thin film element in a comparative example. 圧電特性評価の測定方法を説明する概略構成図である。It is a schematic block diagram explaining the measuring method of piezoelectric property evaluation. 実施例及び比較例の圧電薄膜素子に対する印加電圧と先端最大変位量との関係を示す図である。It is a figure which shows the relationship between the applied voltage with respect to the piezoelectric thin film element of an Example and a comparative example, and a tip maximum displacement amount. 圧電薄膜の圧電定数d31と、比誘電率との関係を示す図である。A piezoelectric constant d 31 of the piezoelectric thin film is a diagram showing the relationship between the relative dielectric constant. 実施例の圧電薄膜素子のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the piezoelectric thin film element of an Example. 比較例の圧電薄膜素子のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the piezoelectric thin film element of a comparative example.

符号の説明Explanation of symbols

1 基板
2 下部電極
3 KNbO薄膜
4 圧電薄膜
5 上部電極
6 圧電薄膜
10 試料
20 クランプ
21 除震台
22 レーザードップラ変位計
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 KNbO 3 Thin film 4 Piezoelectric thin film 5 Upper electrode 6 Piezoelectric thin film 10 Sample 20 Clamp 21 Isolation table 22 Laser Doppler displacement meter

Claims (4)

基板上に、下部電極と、膜厚が0.2μm以上10μm以下であり、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造の圧電薄膜と、上部電極とを有する圧電薄膜素子において、
前記圧電薄膜の比誘電率が、50以上200以下の範囲にあることを特徴とする圧電薄膜素子。
On the substrate, a lower electrode, a piezoelectric thin film having a perovskite structure having a thickness of 0.2 μm or more and 10 μm or less and represented by a general formula (K x Na 1-x ) NbO 3 (0 <x <1), In a piezoelectric thin film element having an upper electrode,
A piezoelectric thin film element, wherein a relative dielectric constant of the piezoelectric thin film is in a range of 50 to 200.
前記下部電極と前記圧電薄膜との間に、KNbO薄膜が形成されていることを特徴とする請求項1に記載の圧電薄膜素子。 2. The piezoelectric thin film element according to claim 1, wherein a KNbO 3 thin film is formed between the lower electrode and the piezoelectric thin film. 前記基板がSi基板またはMgO基板であり、前記下部電極がPt電極であることを特徴とする請求項1または2に記載の圧電薄膜素子。   3. The piezoelectric thin film element according to claim 1, wherein the substrate is a Si substrate or a MgO substrate, and the lower electrode is a Pt electrode. 前記下部電極、前記圧電薄膜、及び前記KNbO薄膜がRFマグネトロンスパッタリング法により形成されていること特徴とする請求項2または3に記載の圧電薄膜素子。 4. The piezoelectric thin film element according to claim 2, wherein the lower electrode, the piezoelectric thin film, and the KNbO 3 thin film are formed by an RF magnetron sputtering method.
JP2007321590A 2007-07-26 2007-12-13 Piezoelectric thin film element Expired - Fee Related JP5157411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321590A JP5157411B2 (en) 2007-07-26 2007-12-13 Piezoelectric thin film element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007194065 2007-07-26
JP2007194065 2007-07-26
JP2007321590A JP5157411B2 (en) 2007-07-26 2007-12-13 Piezoelectric thin film element

Publications (2)

Publication Number Publication Date
JP2009049355A true JP2009049355A (en) 2009-03-05
JP5157411B2 JP5157411B2 (en) 2013-03-06

Family

ID=40501267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321590A Expired - Fee Related JP5157411B2 (en) 2007-07-26 2007-12-13 Piezoelectric thin film element

Country Status (1)

Country Link
JP (1) JP5157411B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200468A (en) * 2008-01-24 2009-09-03 Hitachi Cable Ltd Piezoelectric thin film device
JP2012139919A (en) * 2010-12-28 2012-07-26 Seiko Epson Corp Method for manufacturing liquid jet head, liquid jetting apparatus, and method for manufacturing piezoelectric element
JP2013004707A (en) * 2011-06-16 2013-01-07 Hitachi Cable Ltd Piezoelectric film element and piezoelectric film device
JP2014224038A (en) * 2013-05-14 2014-12-04 Tdk株式会社 Piezoelectric ceramic and piezoelectric device using the same
US9324931B2 (en) 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device
CN105990514A (en) * 2015-03-20 2016-10-05 精工爱普生株式会社 Piezoelectric element, piezoelectric element applying device, and manufacturing method of piezoelectric element
JP2020109834A (en) * 2018-12-28 2020-07-16 Tdk株式会社 Thin film laminate, thin film element, and laminated substrate
EP3930015A1 (en) * 2020-06-17 2021-12-29 Seiko Epson Corporation Piezoelectric element, piezoelectric element application device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228226A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JPH11228225A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2002338355A (en) * 2001-05-23 2002-11-27 Tdk Corp Piezoelectric ceramic
JP2007042740A (en) * 2005-08-01 2007-02-15 Hitachi Cable Ltd Piezoelectric thin film element
JP2007165553A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Piezoelectric element and its manufacturing method, piezoelectric actuator, and ink-jet recording head
JP2007287918A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Piezoelectric laminate, manufacturing method of same, surface acoustic wave element, thin film piezoelectric resonator, and piezoelectric actuator
JP2008160092A (en) * 2006-11-29 2008-07-10 Hitachi Cable Ltd Piezoelectric thin film element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228226A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JPH11228225A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2002338355A (en) * 2001-05-23 2002-11-27 Tdk Corp Piezoelectric ceramic
JP2007042740A (en) * 2005-08-01 2007-02-15 Hitachi Cable Ltd Piezoelectric thin film element
JP2007165553A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Piezoelectric element and its manufacturing method, piezoelectric actuator, and ink-jet recording head
JP2007287918A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Piezoelectric laminate, manufacturing method of same, surface acoustic wave element, thin film piezoelectric resonator, and piezoelectric actuator
JP2008160092A (en) * 2006-11-29 2008-07-10 Hitachi Cable Ltd Piezoelectric thin film element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200468A (en) * 2008-01-24 2009-09-03 Hitachi Cable Ltd Piezoelectric thin film device
JP2012139919A (en) * 2010-12-28 2012-07-26 Seiko Epson Corp Method for manufacturing liquid jet head, liquid jetting apparatus, and method for manufacturing piezoelectric element
JP2013004707A (en) * 2011-06-16 2013-01-07 Hitachi Cable Ltd Piezoelectric film element and piezoelectric film device
JP2014224038A (en) * 2013-05-14 2014-12-04 Tdk株式会社 Piezoelectric ceramic and piezoelectric device using the same
US9324931B2 (en) 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device
CN105990514A (en) * 2015-03-20 2016-10-05 精工爱普生株式会社 Piezoelectric element, piezoelectric element applying device, and manufacturing method of piezoelectric element
JP2016178253A (en) * 2015-03-20 2016-10-06 セイコーエプソン株式会社 Piezoelectric element, piezoelectric element application device, and manufacturing method of piezoelectric element
JP2020109834A (en) * 2018-12-28 2020-07-16 Tdk株式会社 Thin film laminate, thin film element, and laminated substrate
JP7136057B2 (en) 2018-12-28 2022-09-13 Tdk株式会社 Thin film laminates, thin film elements and laminated substrates
EP3930015A1 (en) * 2020-06-17 2021-12-29 Seiko Epson Corporation Piezoelectric element, piezoelectric element application device

Also Published As

Publication number Publication date
JP5157411B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5157411B2 (en) Piezoelectric thin film element
JP5267082B2 (en) Piezoelectric thin film element and sensor and actuator using the same
JP5272687B2 (en) Piezoelectric thin film element, sensor and actuator using the same
JP5515675B2 (en) Piezoelectric thin film element and piezoelectric thin film device
US7323806B2 (en) Piezoelectric thin film element
JP5071503B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5801364B2 (en) Substrate with piezoelectric thin film and piezoelectric element
JP5181649B2 (en) Piezoelectric element
JP5808262B2 (en) Piezoelectric element and piezoelectric device
JP2007019302A (en) Piezoelectric thin film element and actuator and sensor using the same
JP4258530B2 (en) Piezoelectric thin film element
JP2008159807A (en) Piezoelectric thin film element, and actuator and sensor manufactured by using piezoelectric thin film element
JP5035374B2 (en) Piezoelectric thin film element and piezoelectric thin film device including the same
WO2012005032A1 (en) Piezoelectric film element and piezoelectric film device
JP2009295786A (en) Piezoelectric thin film element
JP5056139B2 (en) Piezoelectric thin film element
US9620703B2 (en) Piezoelectric thin-film element, piezoelectric sensor and vibration generator
JP5093459B2 (en) Method for manufacturing piezoelectric thin film element
JP5103790B2 (en) Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP2007294593A (en) Element using piezoelectric thin film
CN102844900A (en) Inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power gen
JP5115161B2 (en) Piezoelectric thin film element
JP2010135669A (en) Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material
JP2009049065A (en) Piezoelectric thin-film element
US10483452B2 (en) Piezoelectric film and piezoelectric element including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees