JP5115161B2 - Piezoelectric thin film element - Google Patents

Piezoelectric thin film element Download PDF

Info

Publication number
JP5115161B2
JP5115161B2 JP2007305802A JP2007305802A JP5115161B2 JP 5115161 B2 JP5115161 B2 JP 5115161B2 JP 2007305802 A JP2007305802 A JP 2007305802A JP 2007305802 A JP2007305802 A JP 2007305802A JP 5115161 B2 JP5115161 B2 JP 5115161B2
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
piezoelectric
substrate
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007305802A
Other languages
Japanese (ja)
Other versions
JP2008160092A (en
Inventor
史人 岡
憲治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007305802A priority Critical patent/JP5115161B2/en
Publication of JP2008160092A publication Critical patent/JP2008160092A/en
Application granted granted Critical
Publication of JP5115161B2 publication Critical patent/JP5115161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、優れた圧電特性を有するアルカリニオブ酸化物の誘電体薄膜からなる圧電薄膜及び圧電薄膜素子に関する。   The present invention relates to a piezoelectric thin film comprising a dielectric thin film of alkali niobium oxide having excellent piezoelectric characteristics and a piezoelectric thin film element.

圧電材料は種々の目的に応じて様々な圧電素子に加工され、素子に電圧を加えることによって変形を生じさせるアクチュエータや、素子に圧力を加え、その変形に応じて電圧を発生させるセンサなどの機能性電子部品として広く利用されている。   Piezoelectric materials are processed into various piezoelectric elements according to various purposes, and functions such as an actuator that causes deformation by applying voltage to the element, and a sensor that applies pressure to the element and generates voltage according to the deformation Widely used as a sexual electronic component.

アクチュエータやセンサの用途に利用される圧電材料としては、優れた圧電特性を有する鉛系材料の強誘電体材料、特にPZTと呼ばれるPb(Zr1−xTi)O系のペロブスカイト型強誘電体材料がこれまで広く用いられており、このような強誘電体材料は通常個々の元素からなる材料の酸化物粉末を焼結することにより作製される。 As the piezoelectric material used in the actuator and sensor applications, excellent ferroelectric material lead-based material having piezoelectric properties, Pb (Zr 1-x Ti x) O 3 based perovskite ferroelectric particularly called PZT Body materials have been widely used so far, and such ferroelectric materials are usually produced by sintering oxide powders of materials composed of individual elements.

一方、近年はアクチュエータ等の圧電素子をより小型化することが求められており、このことから半導体集積回路を作製する際等に用いられるフォトリソグラフィー技術を用いて圧電素子を作製する必要が生じている。この場合には強誘電体材料も微細に加工する必要性から膜厚が数ミクロンから数十ミクロンの薄膜形状にすることが要求される。このような場合には、前記により作製した焼結体からこれを薄膜形状に加工することは、経済的、工業的見地からみて現実的な方法とは言えず、適当な基板上に薄膜を形成する方法が用いられる。   On the other hand, in recent years, there has been a demand for further miniaturization of piezoelectric elements such as actuators, which has necessitated the need to fabricate piezoelectric elements using photolithography technology used when fabricating semiconductor integrated circuits. Yes. In this case, the ferroelectric material is also required to be formed into a thin film shape with a thickness of several microns to several tens of microns because of the necessity of fine processing. In such a case, it is not a realistic method from the economical and industrial point of view to process this into a thin film shape from the sintered body produced as described above, and a thin film is formed on an appropriate substrate. Is used.

基板上に薄膜を形成する方法としては、例えば特許文献1に記載されているようなスパッタリング法や、PLD(レーザーアブレーション法)、ゾルゲル法等が知られている。
特開2002−151754号公報
As a method for forming a thin film on a substrate, for example, a sputtering method as described in Patent Document 1, a PLD (laser ablation method), a sol-gel method, and the like are known.
JP 2002-151754 A

PZTからなる圧電薄膜は、酸化鉛(PbO)を60〜70重量%程度含有しているので、生態学的見地および公害防止の面から好ましくない。そこで環境への配慮から鉛を含有しない圧電薄膜の開発が望まれている。   A piezoelectric thin film made of PZT contains lead oxide (PbO) in an amount of about 60 to 70% by weight, which is not preferable from the viewpoint of ecology and pollution prevention. Therefore, development of a piezoelectric thin film that does not contain lead is desired in consideration of the environment.

現在様々な鉛を含有しない圧電材料が研究されているが、その中に一般式:(NaLi)NbO(0≦x≦1、0≦y≦1、0≦z<1、x+y+z=1)で表されるニオブ酸リチウムカリウムナトリウムがある。本圧電材料はPZTに匹敵する圧電特性を有することから、鉛を含有しない圧電材料のなかでも実現可能な有力候補として期待されており、本材料の薄膜形成技術が精力的に開発されている。 Currently, various lead-free piezoelectric materials have been studied, among which general formulas: (Na x K y Li z ) NbO 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z <1) X + y + z = 1), which is represented by lithium potassium sodium niobate. Since this piezoelectric material has piezoelectric characteristics comparable to PZT, it is expected as a promising candidate that can be realized among piezoelectric materials that do not contain lead, and a thin film forming technique for this material has been vigorously developed.

しかしながら、これまでスパッタリング法等の薄膜形成法により、ニオブ酸リチウムカリウムナトリウムの優れた圧電特性を有する圧電薄膜を安定して得ることができたという報告はない。   However, there is no report that a piezoelectric thin film having excellent piezoelectric characteristics of lithium potassium sodium niobate can be stably obtained by a thin film forming method such as sputtering.

酸化物粉末の焼結体からなるバルク材においては、優れた圧電特性を有するニオブ酸リチウムカリウムナトリウムとして、ナトリウムとカリウムの組成比を0.5近傍に調整する必要があることが知られており、この条件を満たすときに本材料は優れた圧電特性を有するペロブスカイト構造の結晶構造となる。また同時に結晶面が(001)方向に優勢配向した多結晶膜であることも優れた圧電特性を有するのに必要であることが知られている。   In bulk materials made of sintered oxide powder, it is known that the composition ratio of sodium and potassium needs to be adjusted to around 0.5 as lithium potassium sodium niobate having excellent piezoelectric properties. When this condition is satisfied, the material has a perovskite crystal structure having excellent piezoelectric characteristics. At the same time, it is known that a polycrystalline film whose crystal plane is predominantly oriented in the (001) direction is necessary for having excellent piezoelectric characteristics.

しかしながら、前記薄膜形成法により基板上に前記組成比の薄膜を形成しようとすると、特に基板上に種結晶が生成される成膜初期段階において、カリウムの結晶格子位置にナトリウムが入り難く、前記した0.5近傍の組成比の成膜が困難である上、成膜条件が最適条件からわずかにずれただけでも基板上に形成された薄膜のナトリウムとカリウムの組成比が0.5から乖離してしまい、ペロブスカイト構造の結晶構造にならないという問題がある。また、ペロブスカイト構造の結晶構造が実現できたとしても、結晶面が(001)方向以外の方向に配向した多結晶膜となってしまうことが多く、再現性や安定性に極めて乏しいという問題があった。   However, when a thin film having the above composition ratio is formed on the substrate by the thin film formation method, sodium is difficult to enter at the crystal lattice position of potassium, particularly in the initial stage of film formation in which a seed crystal is generated on the substrate. It is difficult to form a film with a composition ratio of around 0.5, and the composition ratio of sodium and potassium in the thin film formed on the substrate deviates from 0.5 even if the film formation conditions slightly deviate from the optimum conditions. Thus, there is a problem that the crystal structure does not become a perovskite structure. Even if a perovskite crystal structure can be realized, the crystal plane often becomes a polycrystalline film oriented in a direction other than the (001) direction, and there is a problem that reproducibility and stability are extremely poor. It was.

そこで本発明の目的は、上記課題を解決し、ペロブスカイト構造の結晶構造を有し、かつ結晶面が(001)方向に優勢配向したニオブ酸リチウムカリウムナトリウムによる多結晶膜からなり、優れた圧電特性と共にその再現性や安定性に優れた圧電薄膜素子を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and is composed of a polycrystalline film made of lithium potassium sodium niobate having a perovskite crystal structure and a crystal plane preferentially oriented in the (001) direction, and has excellent piezoelectric characteristics. Another object is to provide a piezoelectric thin film element excellent in reproducibility and stability.

上記目的を達成するために本発明は、基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるニオブ酸酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるニオブ酸化物であって、そのナトリウム組成比が0<x2<x1の関係を有する下地誘電体薄膜を挿入したものである。 In order to achieve the above object, the present invention provides a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially disposed on a substrate, wherein the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ). A dielectric thin film of niobate oxide represented by NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1) between the piezoelectric thin film and the lower electrode A niobium oxide represented by the general formula (Na x2 K y2 Li z2 ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1), A base dielectric thin film having a composition ratio of 0 <x2 <x1 is inserted.

なお、ここでいう薄膜とは、スパッタリング法のような物理的な薄膜形成法あるいはCVD(化学的気相成長)法のような化学的な薄膜形成法によって板状の支持体(基板)上に被着された、一般に数十ミクロン以下の薄膜をいう。   The term “thin film” as used herein refers to a plate-like support (substrate) formed by a physical thin film formation method such as sputtering or a chemical thin film formation method such as CVD (chemical vapor deposition). A thin film of generally several tens of microns or less deposited.

また、上記目的を達成するために本発明は、基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるニオブ酸酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるアルカリニオブ酸化物であって、そのナトリウム組成比がx2=0である下地誘電体薄膜を挿入したものである。 In order to achieve the above object, the present invention provides a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially arranged on a substrate, wherein the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1), and the piezoelectric thin film, the lower electrode, And an alkali niobium oxide represented by the general formula (Na x2 K y2 Li z2 ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1) The base dielectric thin film whose sodium composition ratio is x2 = 0 is inserted.

また、上記目的を達成するために本発明は、基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるニオブ酸酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるアルカリニオブ酸化物であって、そのナトリウム組成が下部電極から上部電極に向かって0≦x2≦x1の関係を満たしながら階段状あるいは連続的に増加するようにされた下地誘電体薄膜を挿入したものである。 In order to achieve the above object, the present invention provides a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially arranged on a substrate, wherein the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1), and the piezoelectric thin film, the lower electrode, And an alkali niobium oxide represented by the general formula (Na x2 K y2 Li z2 ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1) The base dielectric thin film in which the sodium composition is increased stepwise or continuously while satisfying the relationship of 0 ≦ x2 ≦ x1 from the lower electrode to the upper electrode is inserted.

また、上記目的を達成するために本発明は、基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記基板がSi基板若しくはガラス基板からなり、前記圧電薄膜がペロブスカイト構造の結晶構造を有し、かつその結晶面が(100)面、(010)面または(001)面のいずれかに優勢配向したものである。   In order to achieve the above object, the present invention provides a piezoelectric thin film element configured by sequentially arranging a lower electrode, a piezoelectric thin film, and an upper electrode on a substrate, wherein the substrate comprises a Si substrate or a glass substrate, The piezoelectric thin film has a crystal structure of a perovskite structure, and the crystal plane is preferentially oriented to any of the (100) plane, (010) plane, or (001) plane.

また、前記下部電極及び上記電極としては、Pt単層、Pt/Tiの積層、Pt/Irの積層の他、Ti、Ru、Ir、Srまたはこれらの酸化物の単層若しくは積層によって構成されるのが好ましい。   The lower electrode and the electrode are composed of a single layer or a stack of Ti, Ru, Ir, Sr, or an oxide thereof, in addition to a single layer of Pt, a stack of Pt / Ti, and a stack of Pt / Ir. Is preferred.

ここで、ニオブ酸リチウムカリウムナトリウム中には、少量の添加物を混入させても、同様の効果が期待できる。   Here, even if a small amount of an additive is mixed in lithium potassium sodium niobate, the same effect can be expected.

また、本発明の圧電薄膜素子は、インクジェットプリンタ、スキャナー、ジャイロ、超音波発生装置、超音波センサ、圧力センサ、速度センサ、加速度センサに用いることができる。   Moreover, the piezoelectric thin film element of the present invention can be used for an inkjet printer, a scanner, a gyroscope, an ultrasonic generator, an ultrasonic sensor, a pressure sensor, a speed sensor, and an acceleration sensor.

本発明の圧電薄膜素子によれば、一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるアルカリニオブ酸化物の誘電体薄膜からなる圧電薄膜と下部電極の間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるニオブ酸化物であって、そのナトリウム組成比が0<x2<x1の関係を有する下地誘電体薄膜が挿入されていることにより、この下地誘電体薄膜においては結晶構造を乱す原因となるナトリウムの組成割合が相対的に低いことから、結晶面が(100)面、(010)面または(001)面のいずれかに優勢配向した多結晶膜を容易に得ることができ、そして前記圧電薄膜はこの下地誘電体薄膜の結晶性を引き継いで成長し形成されるために、結晶面が(100)面、(010)面または(001)面のいずれかに優勢配向したニオブ酸リチウムカリウムナトリウムによる多結晶膜からなり、優れた圧電特性と共にその再現性や安定性に優れた圧電薄膜素子を得ることができる。 According to the piezoelectric thin film element of the present invention, the alkali represented by the general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1) Between the piezoelectric thin film made of a dielectric thin film of niobium oxide and the lower electrode, the general formula (Na x2 K y2 Li z2 ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1), and a base dielectric thin film having a sodium composition ratio of 0 <x2 <x1 is inserted, whereby the base dielectric thin film has a crystalline structure. Since the composition ratio of sodium that causes disturbance is relatively low, it is possible to easily obtain a polycrystalline film in which the crystal plane is preferentially oriented to any of the (100) plane, (010) plane, or (001) plane. And said Since the piezoelectric thin film is formed by inheriting the crystallinity of the underlying dielectric thin film, the lithium potassium niobate with the crystal plane preferentially oriented to either the (100) plane, the (010) plane, or the (001) plane. A piezoelectric thin film element composed of a polycrystalline film made of sodium and having excellent piezoelectric characteristics and reproducibility and stability can be obtained.

以下、添付図面を参照して本発明の実施形態について詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、基板1上に、導電性を有する下部電極2、下地誘電体薄膜3、圧電薄膜4、及び導電性を有する上部電極5を一体に形成した圧電薄膜素子6を示す。前記圧電薄膜4は、一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるニオブ酸リチウムカリウムナトリウムの誘電体薄膜からなり、前記下地誘電体薄膜3は、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるニオブ酸リチウムカリウムナトリウムであって、そのナトリウム組成が0<x2<x1の関係を有する誘電体薄膜からなる。 FIG. 1 shows a piezoelectric thin film element 6 in which a conductive lower electrode 2, a base dielectric thin film 3, a piezoelectric thin film 4, and a conductive upper electrode 5 are integrally formed on a substrate 1. The piezoelectric thin film 4 is a lithium potassium sodium niobate represented by the general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1). The base dielectric thin film 3 has the general formula (Na x2 K y2 Li z2 ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1) Lithium potassium sodium niobate represented by the following formula, and the sodium composition is a dielectric thin film having a relationship of 0 <x2 <x1.

基板1としては、安価なSi基板やガラス基板が用いられるが、この他に酸化マグネシウム基板、ステンレス基板、銅基板、アルミニウム基板を用いることもできる。また基板1が導電性である場合には、その表面に絶縁膜を形成してもよい。   As the substrate 1, an inexpensive Si substrate or glass substrate is used, but in addition to this, a magnesium oxide substrate, a stainless steel substrate, a copper substrate, or an aluminum substrate can also be used. When the substrate 1 is conductive, an insulating film may be formed on the surface.

このような構成とすることによって、上記圧電薄膜素子は、薄膜にして優れた圧電特性を発揮し、しかも鉛を含有していないニオブ酸リチウムカリウムナトリウムの誘電体薄膜を用いたものであることから、生態学的見地及び公害防止の点からも非常に有用である。   By adopting such a configuration, the piezoelectric thin film element exhibits excellent piezoelectric characteristics as a thin film, and uses a dielectric thin film of lithium potassium sodium niobate that does not contain lead. It is also very useful from the point of view of ecology and pollution prevention.

本発明の実施例1として、図1に示す構造の圧電薄膜素子6を作製した。   As Example 1 of the present invention, a piezoelectric thin film element 6 having the structure shown in FIG. 1 was produced.

すなわち、結晶面が(001)面、厚さ0.5mm、20×20mmの正方形の表面酸化膜付きSi基板1上に、薄膜形成法としてスパッタリング法を用いることにより厚さ200nmのPt/Tiの積層からなる下部電極2を作製した。   That is, by using a sputtering method as a thin film formation method on a Si substrate 1 with a square surface oxide film having a (001) plane, a thickness of 0.5 mm, and a 20 × 20 mm crystal plane, a Pt / Ti layer having a thickness of 200 nm is used. A lower electrode 2 made of a laminate was produced.

Tiの成膜条件は、基板温度300℃、放電パワー200W、導入ガスAr雰囲気、圧力1Pa、成膜時間3分とし、Ptの成膜条件は、基板温度300℃、放電パワー200W、導入ガスAr雰囲気、圧力1Pa、成膜時間15分とした。   The Ti film formation conditions are a substrate temperature of 300 ° C., a discharge power of 200 W, an introduction gas Ar atmosphere, a pressure of 1 Pa, and a film formation time of 3 minutes. The Pt film formation conditions are a substrate temperature of 300 ° C., a discharge power of 200 W, and an introduction gas Ar. The atmosphere, the pressure was 1 Pa, and the film formation time was 15 minutes.

この下部電極2の上に(Na0.200.80Li0.00)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる下地誘電体薄膜3をスパッタリング法により作製した。成膜条件は基板温度650℃、放電パワー75W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間30分とした。 An underlying dielectric thin film 3 made of lithium potassium sodium niobate represented by (Na 0.20 K 0.80 Li 0.00 ) NbO 3 was formed on the lower electrode 2 by sputtering. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 75 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 30 minutes.

引き続きスパッタリング法により(Na0.480.52Li0.00)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる圧電薄膜4を作製した。成膜条件は基板温度650℃、放電パワー125W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間3時間30分とした。 Subsequently, a piezoelectric thin film 4 made of lithium potassium sodium niobate represented by (Na 0.48 K 0.52 Li 0.00 ) NbO 3 was produced by a sputtering method. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 125 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 3 hours 30 minutes.

本実施例の圧電薄膜の結晶構造の良否を評価するため、上部電極を作製していないこの構造の試料でX線回折測定(2θ−ωスキャン)を行った。そのX線回折パターンを図5に示す。横軸はX線を照射する方向が基板表面(圧電薄膜の表面)となす角度(°)の2倍を表し、縦軸はその角度でのX線回折の1秒あたりのカウント数(回/秒)を表す。   In order to evaluate the quality of the crystal structure of the piezoelectric thin film of this example, X-ray diffraction measurement (2θ-ω scan) was performed on a sample of this structure in which the upper electrode was not manufactured. The X-ray diffraction pattern is shown in FIG. The horizontal axis represents twice the angle (°) between the X-ray irradiation direction and the substrate surface (the surface of the piezoelectric thin film), and the vertical axis represents the number of counts per second (times / times) of X-ray diffraction at that angle. Seconds).

さらに、Ptからなる上部電極5を同様のスパッタリング法により作製した。成膜条件は、基板温度200℃、放電パワー200W、導入ガスAr雰囲気、圧力2.5Pa、成膜時間1分とした。   Further, the upper electrode 5 made of Pt was produced by the same sputtering method. The film formation conditions were a substrate temperature of 200 ° C., a discharge power of 200 W, an introduced gas Ar atmosphere, a pressure of 2.5 Pa, and a film formation time of 1 minute.

その後、この圧電薄膜を含む多層構造から、図9に示すように長さ20mm、幅3mmの短冊形の小片の圧電薄膜素子(試料)7を切り出し、長手方向の一端を除震台8の上に設けたクランプ9で固定することにより、簡易的なユニモルフカンチレバーを作製した。   Thereafter, as shown in FIG. 9, a strip-shaped piezoelectric thin film element (sample) 7 having a length of 20 mm and a width of 3 mm is cut out from the multilayer structure including the piezoelectric thin film, and one end in the longitudinal direction is placed on the vibration isolation table 8. A simple unimorph cantilever was prepared by fixing with a clamp 9 provided on the surface.

この状態で下部電極2と上部電極5との間に電圧を印加し、圧電薄膜素子(試料)7を伸縮させてレバー先端を動作させた。そのときの先端の変位量をレーザードップラー変位計10で測定した。   In this state, a voltage was applied between the lower electrode 2 and the upper electrode 5, and the piezoelectric thin film element (sample) 7 was expanded and contracted to operate the lever tip. The displacement at the tip at that time was measured with a laser Doppler displacement meter 10.

本発明の実施例2として、図2に示す構造の圧電薄膜素子13を作製した。   As Example 2 of the present invention, a piezoelectric thin film element 13 having the structure shown in FIG. 2 was produced.

下部電極2の作製までは実施例1と全く同様に実施し、この上に(Na0.000.98Li0.02)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる下地誘電体薄膜11をスパッタリング法により作製した。成膜条件は基板温度650℃、放電パワー75W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間28分とした。 The process up to the production of the lower electrode 2 was carried out in exactly the same manner as in Example 1, and the underlying dielectric composed of lithium potassium sodium niobate represented by (Na 0.00 K 0.98 Li 0.02 ) NbO 3 thereon. The thin film 11 was produced by a sputtering method. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 75 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 28 minutes.

引き続きスパッタリング法により(Na0.470.51Li0.02)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる圧電薄膜12を作製した。成膜条件は基板温度650℃、放電パワー125W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間3時間20分とした。 Subsequently, a piezoelectric thin film 12 made of lithium potassium sodium niobate represented by (Na 0.47 K 0.51 Li 0.02 ) NbO 3 was produced by a sputtering method. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 125 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 3 hours and 20 minutes.

本実施例の圧電薄膜の結晶構造の良否を評価するため、実施例1と全く同様にX線回折測定を行った。そのX線回折パターンを図6に示す。   In order to evaluate the crystal structure of the piezoelectric thin film of this example, X-ray diffraction measurement was performed in exactly the same manner as in Example 1. The X-ray diffraction pattern is shown in FIG.

さらに、実施例1と全く同様に上部電極5を作製した後、簡易的なユニモルフカンチレバーを作製して動作実験を行った。   Furthermore, after the upper electrode 5 was produced in the same manner as in Example 1, a simple unimorph cantilever was produced and an operation experiment was performed.

本発明の実施例3として、図3に示す構造の圧電薄膜素子17を作製した。   As Example 3 of the present invention, a piezoelectric thin film element 17 having the structure shown in FIG. 3 was produced.

下部電極2の作製までは実施例1と全く同様に実施し、この上に(Na0.100.90Li0.00)NbO、及び(Na0.200.80Li0.00)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる下地誘電体薄膜(a)14及び下地誘電体薄膜(b)15を基板側からこの順序でスパッタリング法により作製した。成膜条件は基板温度650℃、放電パワー75W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間はそれぞれ20分、10分とした。 The process up to the production of the lower electrode 2 was performed in exactly the same manner as in Example 1, and (Na 0.10 K 0.90 Li 0.00 ) NbO 3 and (Na 0.20 K 0.80 Li 0. A base dielectric thin film (a) 14 and a base dielectric thin film (b) 15 made of lithium potassium sodium niobate represented by ( 00 ) NbO 3 were prepared in this order from the substrate side by sputtering. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 75 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and film formation times of 20 minutes and 10 minutes, respectively.

引き続きスパッタリング法により(Na0.480.52Li0.00)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる圧電薄膜16を作製した。成膜条件は基板温度650℃、放電パワー125W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間3時間30分とした。 Subsequently, a piezoelectric thin film 16 made of lithium potassium sodium niobate represented by (Na 0.48 K 0.52 Li 0.00 ) NbO 3 was produced by a sputtering method. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 125 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 3 hours 30 minutes.

本実施例の圧電薄膜の結晶構造の良否を評価するため、実施例1と全く同様にX線回折測定を行った。そのX線回折パターンを図7に示す。   In order to evaluate the crystal structure of the piezoelectric thin film of this example, X-ray diffraction measurement was performed in exactly the same manner as in Example 1. The X-ray diffraction pattern is shown in FIG.

さらに、実施例1と全く同様に上部電極5を作製した後、簡易的なユニモルフカンチレバーを作製して動作実験を行った。   Furthermore, after the upper electrode 5 was produced in the same manner as in Example 1, a simple unimorph cantilever was produced and an operation experiment was performed.

本発明の実施例4として、図4に示す従来例の圧電薄膜素子19を作製した。   As Example 4 of the present invention, a conventional piezoelectric thin film element 19 shown in FIG. 4 was produced.

下部電極2の作製までは実施例1と全く同様に実施し、この上に直接スパッタリング法により(Na0.480.52Li0.00)NbOで表されるニオブ酸リチウムカリウムナトリウムからなる圧電薄膜18を作製した。成膜条件は基板温度650℃、放電パワー125W、導入ガスAr雰囲気、圧力0.4Pa、成膜時間3時間30分とした。 The process up to the production of the lower electrode 2 was carried out in exactly the same manner as in Example 1, and on this, from the lithium potassium sodium niobate represented by (Na 0.48 K 0.52 Li 0.00 ) NbO 3 by the direct sputtering method. A piezoelectric thin film 18 was produced. The film formation conditions were a substrate temperature of 650 ° C., a discharge power of 125 W, an introduced gas Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 3 hours 30 minutes.

本実施例の圧電薄膜の結晶構造の良否を評価するため、実施例1と全く同様にX線回折測定を行った。そのX線回折パターンを図8に示す。   In order to evaluate the crystal structure of the piezoelectric thin film of this example, X-ray diffraction measurement was performed in exactly the same manner as in Example 1. The X-ray diffraction pattern is shown in FIG.

さらに、実施例1と全く同様に上部電極5を作製した後、簡易的なユニモルフカンチレバーを作製して動作実験を行った。   Furthermore, after the upper electrode 5 was produced in the same manner as in Example 1, a simple unimorph cantilever was produced and an operation experiment was performed.

本発明による圧電薄膜の結晶構造の良否について比較する。図8に示すように従来例の圧電薄膜のX線回折パターンは、ニオブ酸リチウムカリウムナトリウムのペロブスカイト構造に起因する回折ピークが非常に小さく、良好なペロブスカイト構造の結晶膜が作製されていないことが分かる。一方、図1から図3に示される本発明による3種類の実施例では、いずれもX線回折分析における2θ−ω測定において、2θが21°と45°付近に回折ピークが明瞭に観察され、良好な結晶構造を有する薄膜が作製できていることが明らかである。
X線回折分析における2θ−ω測定において、2θが21°付近の回折ピークは、ペロブスカイト構造の結晶膜が(100)面、(010)面または(001)面に配向していることを示しており、45°付近のピークは、ペロブスカイト構造の結晶膜が(200)面、(020)面または(002)面に配向していることを示している。
The quality of the crystal structure of the piezoelectric thin film according to the present invention will be compared. As shown in FIG. 8, the X-ray diffraction pattern of the piezoelectric thin film of the conventional example has a very small diffraction peak due to the perovskite structure of lithium potassium sodium niobate, and a crystal film having a good perovskite structure has not been produced. I understand. On the other hand, in the three examples according to the present invention shown in FIG. 1 to FIG. 3, in all the 2θ-ω measurement in the X-ray diffraction analysis, diffraction peaks are clearly observed in the vicinity of 2θ of 21 ° and 45 °, It is clear that a thin film having a good crystal structure has been produced.
In 2θ-ω measurement in X-ray diffraction analysis, the diffraction peak at 2θ of around 21 ° indicates that the crystal film of the perovskite structure is oriented in the (100) plane, (010) plane, or (001) plane. The peak near 45 ° indicates that the crystal film of the perovskite structure is oriented in the (200) plane, the (020) plane, or the (002) plane.

さらに、易的なユニモルフカンチレバーによる動作実験の結果を図10に示す。横軸は圧電素子への印加電圧、縦軸はレーザードップラー変位計で測定した変位量である。従来例と比べて本発明による3種類の実施例においてはいずれも変位量が大きく、良好な圧電特性を示していることが確認できた。   Furthermore, FIG. 10 shows the result of an operation experiment using an easy unimorph cantilever. The horizontal axis represents the voltage applied to the piezoelectric element, and the vertical axis represents the amount of displacement measured with a laser Doppler displacement meter. Compared to the conventional example, in the three types of embodiments according to the present invention, it was confirmed that the displacement amount was large and the piezoelectric property was excellent.

本発明の実施例1に係る圧電薄膜素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the piezoelectric thin film element which concerns on Example 1 of this invention. 本発明の実施例2に係る圧電薄膜素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the piezoelectric thin film element which concerns on Example 2 of this invention. 本発明の実施例3に係る圧電薄膜素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the piezoelectric thin film element which concerns on Example 3 of this invention. 従来例に係る圧電薄膜素子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the piezoelectric thin film element which concerns on a prior art example. 本発明の実施例1に係る圧電薄膜によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray-diffraction pattern by the piezoelectric thin film which concerns on Example 1 of this invention. 本発明の実施例2に係る圧電薄膜によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray-diffraction pattern by the piezoelectric thin film which concerns on Example 2 of this invention. 本発明の実施例3に係る圧電薄膜によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray-diffraction pattern by the piezoelectric thin film which concerns on Example 3 of this invention. 従来例に係る圧電薄膜によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray diffraction pattern by the piezoelectric thin film which concerns on a prior art example. ユニモルフカンチレバーの形状と測定の状態を示す模式図である。It is a schematic diagram which shows the shape and measurement state of a unimorph cantilever. 圧電薄膜素子の印加電圧と圧電変位量との関係を示す特性図である。It is a characteristic view which shows the relationship between the applied voltage of a piezoelectric thin film element, and a piezoelectric displacement amount.

符号の説明Explanation of symbols

1 基板
2 下部電極
3、11 下地誘電体薄膜
4、12、16,18 圧電薄膜
5 上部電極
6、13、17、19 圧電薄膜素子
7 圧電薄膜素子(試料)
8 除震台
9 クランプ
10 レーザードップラー変位計
14 下地誘電体薄膜(a)
15 下地誘電体薄膜(b)
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3, 11 Base dielectric thin film 4, 12, 16, 18 Piezoelectric thin film 5 Upper electrode 6, 13, 17, 19 Piezoelectric thin film element 7 Piezoelectric thin film element (sample)
8 Isolation table 9 Clamp 10 Laser Doppler displacement meter 14 Base dielectric thin film (a)
15 Base dielectric thin film (b)

Claims (4)

基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるアルカリニオブ酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるアルカリニオブ酸化物であって、そのナトリウム組成比が0<x2<x1の関係を有する下地誘電体薄膜が挿入されていることを特徴とする圧電薄膜素子。 In a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially arranged on a substrate, the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1), and a dielectric thin film of an alkali niobium oxide. A general formula (Na x2 K y2 Li z2) is provided between the piezoelectric thin film and the lower electrode. ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1), wherein the sodium composition ratio is 0 <x2 <x1 A piezoelectric thin film element, comprising: a base dielectric thin film having: 基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるアルカリニオブ酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるアルカリニオブ酸化物であって、そのナトリウム組成比がx2=0である下地誘電体薄膜が挿入されていることを特徴とする圧電薄膜素子。 In a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially arranged on a substrate, the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1), and a dielectric thin film of an alkali niobium oxide. A general formula (Na x2 K y2 Li z2) is provided between the piezoelectric thin film and the lower electrode. ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1), an underlying niobium oxide whose sodium composition ratio is x2 = 0 A piezoelectric thin film element having a body thin film inserted therein. 基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記圧電薄膜が一般式(Nax1y1Liz1)NbO(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)で表されるアルカリニオブ酸化物の誘電体薄膜からなり、前記圧電薄膜と前記下部電極との間に、一般式(Nax2y2Liz2)NbO(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)で表されるアルカリニオブ酸化物であって、そのナトリウム組成が下部電極から上部電極に向かって0≦x2≦x1の関係を満たしながら階段状あるいは連続的に増加するようにされた下地誘電体薄膜が挿入されていることを特徴とする圧電薄膜素子。 In a piezoelectric thin film element in which a lower electrode, a piezoelectric thin film, and an upper electrode are sequentially arranged on a substrate, the piezoelectric thin film has a general formula (Na x1 K y1 Li z1 ) NbO 3 (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1, 0 ≦ z1 <1, x1 + y1 + z1 = 1), and a dielectric thin film of an alkali niobium oxide. A general formula (Na x2 K y2 Li z2) is provided between the piezoelectric thin film and the lower electrode. ) NbO 3 (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1, 0 ≦ z2 <1, x2 + y2 + z2 = 1), and its sodium composition is from the lower electrode toward the upper electrode 1. A piezoelectric thin film element comprising a base dielectric thin film inserted so as to increase stepwise or continuously while satisfying a relationship of 0 ≦ x2 ≦ x1. 基板上に下部電極、圧電薄膜、及び上部電極を順次配置して構成された圧電薄膜素子において、前記基板がSi基板若しくはガラス基板からなり、前記圧電薄膜がぺロブスカイト構造の結晶構造を有し、かつその結晶面が(100)面、(010)面または(001)面のいずれかに優勢配向していることを特徴とする請求項1〜3のいずれかに記載の圧電薄膜素子。   In a piezoelectric thin film element configured by sequentially arranging a lower electrode, a piezoelectric thin film, and an upper electrode on a substrate, the substrate is made of a Si substrate or a glass substrate, and the piezoelectric thin film has a crystal structure of a perovskite structure, 4. The piezoelectric thin film element according to claim 1, wherein the crystal plane is preferentially oriented to any one of a (100) plane, a (010) plane, and a (001) plane.
JP2007305802A 2006-11-29 2007-11-27 Piezoelectric thin film element Active JP5115161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305802A JP5115161B2 (en) 2006-11-29 2007-11-27 Piezoelectric thin film element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006321010 2006-11-29
JP2006321010 2006-11-29
JP2007305802A JP5115161B2 (en) 2006-11-29 2007-11-27 Piezoelectric thin film element

Publications (2)

Publication Number Publication Date
JP2008160092A JP2008160092A (en) 2008-07-10
JP5115161B2 true JP5115161B2 (en) 2013-01-09

Family

ID=39660620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305802A Active JP5115161B2 (en) 2006-11-29 2007-11-27 Piezoelectric thin film element

Country Status (1)

Country Link
JP (1) JP5115161B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157411B2 (en) * 2007-07-26 2013-03-06 日立電線株式会社 Piezoelectric thin film element
JP5471612B2 (en) * 2009-06-22 2014-04-16 日立金属株式会社 Method for manufacturing piezoelectric thin film element and method for manufacturing piezoelectric thin film device
WO2012020638A1 (en) * 2010-08-12 2012-02-16 株式会社村田製作所 Method for manufacturing piezoelectric thin film element, piezoelectric thin film element, and member for piezoelectric thin film element
JP5668473B2 (en) * 2010-12-29 2015-02-12 セイコーエプソン株式会社 Piezoelectric element and method for manufacturing the same, liquid ejecting head, liquid ejecting apparatus, ultrasonic sensor, and infrared sensor
EP2982942A4 (en) * 2013-03-25 2016-12-07 Woojin Inc High temperature ultrasonic sensor and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086586A (en) * 2001-09-13 2003-03-20 Murata Mfg Co Ltd Orientational ferroelectric thin film element and method for manufacturing the same
JP2007165553A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Piezoelectric element and its manufacturing method, piezoelectric actuator, and ink-jet recording head
JP2007287918A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Piezoelectric laminate, manufacturing method of same, surface acoustic wave element, thin film piezoelectric resonator, and piezoelectric actuator
JP5103790B2 (en) * 2006-05-25 2012-12-19 日立電線株式会社 Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP4258530B2 (en) * 2006-06-05 2009-04-30 日立電線株式会社 Piezoelectric thin film element

Also Published As

Publication number Publication date
JP2008160092A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5515675B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5531635B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5801364B2 (en) Substrate with piezoelectric thin film and piezoelectric element
JP4258530B2 (en) Piezoelectric thin film element
JP5071503B2 (en) Piezoelectric thin film element and piezoelectric thin film device
US7323806B2 (en) Piezoelectric thin film element
EP2846370B1 (en) Piezoelectric element
JP5865410B2 (en) Piezoelectric element, piezoelectric actuator, and ink jet recording head
JP5056914B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP2008159807A (en) Piezoelectric thin film element, and actuator and sensor manufactured by using piezoelectric thin film element
JP5808262B2 (en) Piezoelectric element and piezoelectric device
JP6091281B2 (en) Piezoelectric thin film multilayer substrate
JP2009094449A (en) Piezoelectric element
JP2007019302A (en) Piezoelectric thin film element and actuator and sensor using the same
JP5056139B2 (en) Piezoelectric thin film element
JP5115161B2 (en) Piezoelectric thin film element
JP5103790B2 (en) Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP2008127244A (en) Piezoelectric ceramics and piezoelectric ceramics element
JP2009049355A (en) Piezoelectric thin film element
JP5093459B2 (en) Method for manufacturing piezoelectric thin film element
JP2007294593A (en) Element using piezoelectric thin film
JP2009049065A (en) Piezoelectric thin-film element
JP5743203B2 (en) Piezoelectric film element and piezoelectric film device
JP2010135669A (en) Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material
JP5643472B2 (en) Piezoelectric thin film element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5115161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350