JPS6323616B2 - - Google Patents

Info

Publication number
JPS6323616B2
JPS6323616B2 JP59084261A JP8426184A JPS6323616B2 JP S6323616 B2 JPS6323616 B2 JP S6323616B2 JP 59084261 A JP59084261 A JP 59084261A JP 8426184 A JP8426184 A JP 8426184A JP S6323616 B2 JPS6323616 B2 JP S6323616B2
Authority
JP
Japan
Prior art keywords
wafer
vacuum processing
semiconductor
platen
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59084261A
Other languages
Japanese (ja)
Other versions
JPS605540A (en
Inventor
Ansonii Fuaretora Ronarudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of JPS605540A publication Critical patent/JPS605540A/en
Publication of JPS6323616B2 publication Critical patent/JPS6323616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S269/00Work holders
    • Y10S269/903Work holder for electrical circuit assemblages or wiring systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】 本発明は、半導体ウエーフアに対して真空処理
を行なうための装置に関し、特にその半導体ウエ
ーフアの冷却手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for vacuum processing a semiconductor wafer, and particularly to a cooling means for the semiconductor wafer.

例えば集積回路を作るための処理などのような
半導体ウエーフアの処理においては、ウエーフア
を高温に曝すことが必要な時がある。不純物の拡
散、エピタキシヤル層の生長、金属半導体接触部
の焼きなまし等のためには、このような高温が望
ましい。然しながら、規定された限界を越えた不
必要な拡散やエピタキシヤル境界面における不純
物の偏析は望ましくないものであるから、処理中
の多くの時点において、ウエーフアを高温に曝す
ことは望ましくない。またこのような高温におい
ては、中間のフオトレジスト層も影響を受ける。
この問題は、大規模集積回路(LSI)が超大規模
集積回路(VLSI)の製造においては、多数の処
理段階が順次使用されなければならないので、大
きな問題となり、特に処理系列の終りの近くでは
多数の不純物や導電層や絶縁層が配置されてお
り、熱処理によつてこれらの物理的特色を撹乱す
ることは望ましくないので、大きな問題となる。
従つて、処理段階が積極的に高温を必要とする時
にのみ半導体ウエーフアを高温に曝し、そうでな
いときには、高温度になることを防止するために
半導体ウエーフアを冷却できることが望ましい。
In processing semiconductor wafers, such as processing to make integrated circuits, it is sometimes necessary to expose the wafer to high temperatures. Such high temperatures are desirable for diffusion of impurities, growth of epitaxial layers, annealing of metal-semiconductor contacts, etc. However, at many points during processing, it is undesirable to expose the wafer to high temperatures because unnecessary diffusion beyond specified limits and segregation of impurities at epitaxial interfaces are undesirable. The intermediate photoresist layer is also affected at these high temperatures.
This problem becomes a major problem in the manufacture of very large scale integrated circuits (VLSI), where many processing steps must be used sequentially, especially near the end of the processing chain. This poses a major problem because impurities, conductive layers, and insulating layers are disposed therein, and it is undesirable to disturb these physical features by heat treatment.
It is therefore desirable to expose the semiconductor wafer to high temperatures only when a processing step actively requires high temperatures, and to otherwise be able to cool the semiconductor wafer to prevent high temperatures.

例えば、イオン・インプランテーシヨンは、半
導体ウエーフアの中へ不純物を導入するための標
準技術となつている。例えば、ピー・デイー・タ
ウンゼンド(P.D.Townsend)等著の『イオン・
インプランテーシヨン、スパツタリング及びそれ
らの応用(Ion Implantation、Sputtering and
their Application』第262−263頁(1976年)を
参照されたい。不純物は、それらを半導体物質の
結晶格子の中に埋込む手段として加速されたイオ
ンの運動量を利用して、半導体ウエーフアの容積
の中に導入される。衝突するイオンの運動エネル
ギーが滲透の深さを決定する。その滲透の深さ
は、通常、不純物が永久的に固定される適切な深
さとなるように選ばれる。然しながら、低エネル
ギー事前被着機などにおけるように、必要により
熱拡散がイオン・インプランテーシヨンに附随し
て使用されることがあるが、この場合にはそれに
続く熱拡散は既知の時間温度特性を持つた特殊な
処理段階となる。
For example, ion implantation has become a standard technique for introducing impurities into semiconductor wafers. For example, "Ion..." by PDT Townsend et al.
Ion Implantation, Sputtering and their applications
262-263 (1976). Impurities are introduced into the volume of the semiconductor wafer using the momentum of the accelerated ions as a means of embedding them within the crystal lattice of the semiconductor material. The kinetic energy of the colliding ions determines the depth of penetration. The depth of penetration is usually selected to provide a suitable depth at which impurities are permanently fixed. However, thermal diffusion may optionally be used in conjunction with ion implantation, such as in low-energy predeposition machines, where the subsequent thermal diffusion has a known time-temperature characteristic. This is a special processing step.

加速されたイオンが半導体ウエーフアに衝突し
その容積中へ進行するにつれて、原子衝突により
熱が発生される。この熱は、エネルギー・レベル
が増大されるにつれて著しくなる。又高い材料処
理量を持つことが商業上の応用において経済的理
由により望ましい事があり、その結果として、ウ
エーフアの半導体物質の構造に物理的損傷を与え
ない限りで出来るだけ高いイオン束が使用され
る。このようにして大量の熱が発生される。上に
記したように、この熱は望ましくないものであ
る。
As the accelerated ions strike the semiconductor wafer and travel into its volume, heat is generated by the atomic bombardment. This heat becomes significant as the energy level is increased. It may also be desirable for economic reasons in commercial applications to have high material throughput, so that ion fluxes as high as possible are used without causing physical damage to the structure of the semiconductor material of the wafer. Ru. In this way a large amount of heat is generated. As noted above, this heat is undesirable.

イオン・インプランテーシヨンを行われている
半導体ウエーフアを冷却するための従来の試みに
は、イオンビーム又はウエーフアの何れか一方或
いはそれら両方を走査することによつて断続的露
出を行うこと(それにより材料処理量を制限する
こと)、半導体ウエーフアがその上に乗るように
グリース又は油を被着された積極的に冷却される
金属板を設けること、並びに、積極的に冷却され
る板の上の僅かに圧縮可能な表面に対してウエー
フアを押しつけて保持するために静電気力を加え
ることなどが含まれる〔エル・デイー・ボリンジ
ヤ著『半導体製造過程のためのイオン・フライス
削り(Ion Milling for Semiconductor
Production Processes)』ソリツド・ステイト・
テクノロジー(Solid State Tecknology)1977
年11月号を参照されたい〕。これらの従来の技術
及び装置は、高イオン束又は高エネルギー・レベ
ルに当面する時には全面的に有効ではないという
事が解つた。
Previous attempts to cool semiconductor wafers undergoing ion implantation include intermittent exposure by scanning either the ion beam or the wafer, or both. limiting material throughput), providing an actively cooled metal plate coated with grease or oil on which the semiconductor wafer rests; (Ion Milling for Semiconductor Manufacturing Processes, by L.D. Bollinger).
Solid State Production Processes)
Technology (Solid State Tecknology) 1977
Please refer to the November issue]. It has been found that these conventional techniques and devices are not completely effective when faced with high ion fluxes or high energy levels.

それ故、本発明の一目的は、真空処理がなされ
ている半導体ウエーフアの有効な冷却を行い得る
ようにするための装置を提供することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an apparatus for effectively cooling a semiconductor wafer undergoing vacuum processing.

本発明の他の一目的は、熱エネルギーの急速な
消散を行わせるために凸面弯曲状プラテンに被着
された熱伝導性の柔軟な物質に対して半導体ウエ
ーフアを機械的に押しつける装置を提供すること
である。
Another object of the present invention is to provide an apparatus for mechanically pressing a semiconductor wafer against a thermally conductive flexible material deposited on a convex curved platen to provide rapid dissipation of thermal energy. That's true.

本発明の更に別の一目的は、半導体ウエーフア
の如何なる表面の凹凸にも影響されることなく良
好な熱の移送を行う処の、半導体ウエーフアを冷
却する装置を提供することである。
Yet another object of the present invention is to provide an apparatus for cooling a semiconductor wafer, which provides good heat transfer without being affected by any surface irregularities of the semiconductor wafer.

イオン・インプランテーシヨン室又はエツチン
グ室などの真空処理室の中において真空処理の
間、半導体ウエーフアに対して積極的な冷却を行
うための装置は、熱伝導性物質の層又は物質体が
表面に設けられている凸面状プラテンを具備す
る。さらに具体的には、柔軟で熱伝導性の物質の
被膜をその表面に被着された凸面弯曲状プラテン
を組込んだハウジング、並びに、凸面弯曲状プラ
テンに対して摺動可能な関係を保つてそのハウジ
ング内に取付けられた押しつけリングであつて、
その押しつけリングの移動が、押しつけリングと
凸面弯曲状プラテンとが半導体ウエーフアを受入
れるためのスロツトを設定する受入れ位置と、押
しつけリングがその円周上の縁端で半導体ウエー
フアに接触することにより半導体ウエーフアが凸
面弯曲状プラテンに対してしつかりと押しつけら
れる固定位置との間で行われる押しつけリング、
を具備する。固定位置おいては、ウエーフアはそ
の後側が凸面弯曲状プラテンの輪郭と同形とな
る。熱エネルギーを前記プラテンから移送して除
くために、積極的冷却機構が設けられている。
An apparatus for actively cooling a semiconductor wafer during vacuum processing in a vacuum processing chamber, such as an ion implantation chamber or an etching chamber, is used in a vacuum processing chamber such as an ion implantation chamber or an etching chamber. A convex platen is provided. More specifically, the housing incorporates a convex curved platen having a coating of a flexible, thermally conductive material deposited on its surface and in slidable relationship with the convex curved platen. a pressing ring mounted within the housing;
Movement of the push ring causes the push ring and the convex curved platen to form a slot for receiving the semiconductor wafer, and the push ring contacts the semiconductor wafer with its circumferential edge to secure the semiconductor wafer. a pressing ring between a fixed position where the ring is firmly pressed against the convex curved platen;
Equipped with. In the fixed position, the wafer conforms to the contour of the convex curved platen on its rear side. An active cooling mechanism is provided to transfer thermal energy away from the platen.

高エネルギー・レベル又は高イオン束密度での
イオン・ボンバードは熱を発生するようになり、
それは積極的冷却を必要とすることが解つた。前
に述べたように、冷却の必要性は、フオト・レジ
ストを保護して分解しないようにする必要性と、
不必要な拡散を避けたいという要望から生じた。
このような積極的な冷却は、良好な熱移送特性を
持つ接触がウエーフアの後側に対してなされる場
合にのみ可能であり、ウエーフアの前側は必然的
に衝突するイオン・ビーム又はエツチングに曝さ
れたまゝにしておかねばならず、またウエーフア
の周縁からは適切な熱の移送は行われない。半導
体表面に存在する、時には『弓形曲り
(bowing)』とも呼ばれる、表面の凹凸のために、
良好な熱移送特性を持つ平面状接触を得ることは
困難であるという事が認められている。弓形曲り
即ち表面の凹みは1インチ(25.4mm)の1000分の
5の程度の深さになることがある。その結果、剛
性を持つた平板状接触部材は弓形に曲つた領域の
周囲部分とのみ接触し、伝導ではなく放射と対流
のみによる熱の移送が生ずる。柔軟な接触物質を
用いても、平板状の形態が弓形に曲つた領域の全
輪郭と完全に一致して接触することは最も困難で
あることが解つた。
Ion bombardment at high energy levels or high ion flux densities begins to generate heat,
It was found that active cooling was required. As mentioned earlier, the need for cooling is compounded by the need to protect the photoresist from decomposition;
It arose from a desire to avoid unnecessary proliferation.
Such active cooling is only possible if contact with good heat transfer properties is made to the back side of the wafer, and the front side of the wafer is necessarily exposed to the impinging ion beam or etching. There is no adequate heat transfer from the periphery of the wafer. Due to surface irregularities, sometimes called "bowing", that exist on semiconductor surfaces,
It has been recognized that it is difficult to obtain planar contacts with good heat transfer properties. The bow or surface depression can be as deep as 5/1000ths of an inch (25.4 mm). As a result, the rigid plate-like contact member contacts only the peripheral portion of the arcuate region, and heat transfer occurs only by radiation and convection rather than conduction. Even with flexible contact materials, it has been found that it is most difficult for the plate-like features to contact the entire contour of the arcuate region in perfect alignment.

本発明の装置は、柔軟な熱伝導性の層又は物質
体で被覆された凸面弯曲状プラテンの上にウエー
フアを置き、それから押しつけリングとプラテン
との間でウエーフアをその外周縁部で機械的に押
しつけることによつて、半導体ウエーフアの後側
と、良好な熱移送特性を持つ接触を実現する。半
導体ウエーフアは200ミクロン乃至400ミクロンの
程度の厚さを持つ薄いものであり、その弾性限界
まで曲げることが出来る。従つて半導体ウエーフ
アは曲面状プラテンと同形になるように弯曲す
る。プラテンの曲率半径は、ウエーフアの中に張
力を発生することにより自然に生じた弓形の曲り
を滑らかにするために充分な程小さい値に選ば
れ、これはこのようにして滑らかになつた輪郭と
柔軟な物質との間の完全に一致した接触を可能に
する。又その曲率半径は、衝突するイオン・ビー
ムの入射角が、典型的なものでは2 1/2度である
特定された量より多く垂直入射から外れないため
に充分な程大きい値に選ばれている。3インチ
(76.2mm)ウエーフアについては、中心から縁端
までの間で1インチ(25.4mm)の1000分の15即ち
0.381mmの偏差を生ずるような変形が満足すべき
曲率を生ずるものと認められた。
The apparatus of the invention places the wafer on a convex curved platen coated with a flexible thermally conductive layer or body, and then mechanically holds the wafer at its outer edge between a pressure ring and the platen. By pressing, contact with the back side of the semiconductor wafer is achieved with good heat transfer properties. Semiconductor wafers are thin, on the order of 200 microns to 400 microns thick, and can be bent to their elastic limits. Therefore, the semiconductor wafer is curved to have the same shape as the curved platen. The radius of curvature of the platen is chosen to be small enough to smooth out the bowing that occurs naturally by creating tension in the wafer, and this results in a smooth profile. Allows perfectly consistent contact between flexible materials. The radius of curvature is also selected to be sufficiently large that the angle of incidence of the impinging ion beam does not deviate from normal incidence by more than a specified amount, typically 2 1/2 degrees. There is. For a 3 inch (76.2 mm) wafer, 15/1000 of an inch (25.4 mm) from center to edge
A deformation resulting in a deviation of 0.381 mm was found to yield a satisfactory curvature.

プラテンについて柔軟な熱伝導性の被覆を使用
することは、ウエーフアが張力を作用されている
時にウエーフアの中になお残つている弓形の曲り
を吸収するために望ましい。ウエーフアの隣接す
る領域にそれぞれ加えられる力が急激でなく徐々
に変化してこのような隣接する領域の間の境界に
おいて弾性限界を越える可能性を少くするよう
に、例えば、或る程度ウエーフアと形の一致する
表面によつて、ウエーフアの種々の部分に異る力
を加えれば最も良い。被覆の厚さは緩衝作用が得
られる程度に充分厚くすべきであるが、熱の移送
に対する著しい障壁となる程に厚くすべきではな
い。エマーソン・アンド・カミング・インコーポ
レイテツド(Emerson & Cumming、Inc.)
から発売されているエコシル(Eccosil)4952(米
国登録商標)などのような熱伝導性シリコン・ゴ
ムを使用する場合には、最適の厚みは1インチ
(25.4mm)の1000分の9即ち0.229mmであると判定
された。その物質は発売元により明らかにされて
いる標準の技術により被着される。
The use of a flexible thermally conductive coating on the platen is desirable to accommodate any bowing still remaining in the wafer when it is under tension. For example, the wafer may be shaped to some degree so that the forces applied to each adjacent region of the wafer vary gradually rather than abruptly, reducing the possibility of exceeding elastic limits at the boundaries between such adjacent regions. It is best to apply different forces to different parts of the wafer depending on the matching surfaces of the wafer. The thickness of the coating should be thick enough to provide a cushioning effect, but not so thick that it becomes a significant barrier to heat transfer. Emerson & Cumming, Inc.
When using a thermally conductive silicone rubber such as Eccosil 4952 (registered trademark) sold by Eccosil, the optimal thickness is 9/1000ths of an inch (25.4 mm) or 0.229 mm. It was determined that The material is applied by standard techniques as disclosed by the vendor.

動作順序の全体が第1A図、第1B図及び第1
C図を参照することにより解る。これらの図はイ
オン・インプランテーシヨン室の内部に装備され
たウエーフア冷却装置10を例示する。非固定位
置では、ウエーフア冷却装置10は第1A図に示
されているように入つて来る半導体ウエーフア1
3を受入れる位置に置かれ、そのウエーフア13
は典型的な方法としては重力作用によりスロツト
11の中へ導入される。装置10は、典型的な位
置としては第1B図の垂直位置である処の、作用
イオン・ビームの入射路に対して垂直な位置ま
で、支持ロツド12によつて矢印により示される
ように回転される。位置ぎめ過程の間では、第2
図について後に説明されるように、ウエーフア1
3は押しつけリングによつて位置を固定され、凸
面弯曲状プラテンに向つて張力を掛けられながら
曲げられる。ウエーフアはそれから、インプラン
テーシヨン又はエツチングが行われる間、積極的
に冷却される。インプランテーシヨン等が完了し
た後、ウエーフア冷却装置10は第1C図に示さ
れた位置まで支持ロツド12によつて矢印により
示されるように回転されて、ウエーフアが重力作
用によるか又は後に説明するような排出ピン機構
によつて、排出されることが出来るようにする。
装置10が排出位置まで回転される時に、押しつ
けリングとプラテンとは係合状態を解かれ、ウエ
ーフア13はスロツト11から自由に滑り出すこ
とが出来る。
The entire operating sequence is shown in Figure 1A, Figure 1B, and Figure 1.
This can be understood by referring to Figure C. These figures illustrate a wafer cooling system 10 installed inside an ion implantation chamber. In the unfixed position, the wafer cooling device 10 cools the incoming semiconductor wafer 1 as shown in FIG. 1A.
3 and its wafer 13
is typically introduced into slot 11 by gravity. Apparatus 10 is rotated as indicated by the arrow by support rod 12 to a position perpendicular to the input path of the working ion beam, typically the vertical position of FIG. 1B. Ru. During the positioning process, the second
Wafer 1
3 is fixed in position by a force ring and bent under tension towards the convex curved platen. The wafer is then actively cooled during implantation or etching. After the implantation or the like is completed, the wafer cooler 10 is rotated as indicated by the arrow by the support rod 12 to the position shown in FIG. It is possible to eject the liquid by means of an ejection pin mechanism such as the above.
When the apparatus 10 is rotated to the ejection position, the push ring and platen are disengaged and the wafer 13 is free to slide out of the slot 11.

このウエーフア冷却装置の機械的特色は、第3
図の線2―2に沿つて画かれた第2図の断面図
と、第3図及び第4図とに詳細に図示されてい
る。ハウジング部材40は、可動ロツド34を収
容するように孔をあけられている。可動ロツド3
4は底板35と押しつけリング36との間に取付
けられている。スプリング27がハウジング40
の底面と底板35との間に圧縮状態で保持されて
いる。ハウジング40に対して相対的な底板35
の移動は、第4図に示されている直線状軸受38
を用いて行われる。底板35に取付けられた2つ
のカムの内の一方であるカム26(第4図には両
方のカムが図示されている)は、その行程の高位
点において、押しつけリング36が受入れ又は排
出位置に達するようにさせ、それらの位置では押
しつけリング36はスロツト11の上方に持上げ
られてその中に保持されたウエーフアが解放され
るようにする。カム26の行程の低位点において
は、スプリング27が伸張して押しつけリング3
6を、スロツト11の中に置かれたウエーフア3
2の円周上の縁端を押しつけるその固定位置ま
で、引き下げる。この位置では、ウエーフア32
の後側が、凸面弯曲状プラテン30の表面に被着
された柔軟な熱伝導性物質の被膜又は物質体31
と実質的に同形になる。
The mechanical feature of this wafer cooling device is the third
This is illustrated in detail in the cross-sectional view of FIG. 2, taken along line 2--2, and in FIGS. 3 and 4. Housing member 40 is bored to accommodate movable rod 34. Movable rod 3
4 is attached between the bottom plate 35 and the pressing ring 36. The spring 27 is the housing 40
It is held in a compressed state between the bottom surface of and the bottom plate 35. Bottom plate 35 relative to housing 40
The movement of the linear bearing 38 shown in FIG.
This is done using Cam 26, one of the two cams mounted on bottom plate 35 (both cams shown in FIG. 4), is at the high point of its stroke when push ring 36 is in the receiving or ejecting position. In these positions the pressure ring 36 is lifted above the slot 11 so that the wafer held therein is released. At the low point of the stroke of the cam 26, the spring 27 is expanded and the pressure ring 3
6, the wafer 3 placed in the slot 11
2 to its fixed position where it presses against the circumferential edge. In this position, the wafer 32
The rear side is a flexible thermally conductive material coating or material body 31 applied to the surface of the convex curved platen 30.
becomes substantially isomorphic.

装置10の積極的冷却は、ハウジング40の内
部の内空胴28によつて構成される液体溜の中へ
液体フレオン29を流すことによつて行われる。
フレオンは支持ロツド12の内部の導入口39を
通して供給され、ハウジング40の内部のチヤン
ネル41を通して液体溜28に流される。やはり
支持ロツド12の内部にある同軸の排出口(図示
されていない)が、フレオンに対してその装置か
らの排出路を提供する。液体フレオンの温度と流
量とは、ウエーフアの温度を制御するために変化
させることが出来る。代表的な値としては、ウエ
ーフア32の表面温度を140℃より低く維持する
ことが望ましい。
Active cooling of device 10 is achieved by flowing liquid Freon 29 into a liquid reservoir defined by internal cavity 28 inside housing 40 .
Freon is supplied through an inlet 39 inside the support rod 12 and flows into the liquid reservoir 28 through a channel 41 inside the housing 40. A coaxial outlet (not shown), also within support rod 12, provides an exit path for freon from the device. The temperature and flow rate of the liquid Freon can be varied to control the temperature of the wafer. As a typical value, it is desirable to maintain the surface temperature of the wafer 32 below 140°C.

第2図の点線描写と第3図の正面図とに見られ
るように、一連の軌道パターン24が、半導体ウ
エーフアを装填及び排出するためのスロツト11
の内部の軌道を設定する。終端バンパー42は、
押しつけの前に、ウエーフアに対して最終停止位
置を定める。ウエーフアが挿入の間に損傷しない
ように、これらバンパーはシリコン・ゴム化合物
で構成されている。
As seen in the dotted line depiction in FIG. 2 and the front view in FIG.
Set the internal orbit of . The terminal bumper 42 is
Before pressing, determine the final stopping position for the wafer. These bumpers are constructed of a silicone rubber compound so that the wafers are not damaged during insertion.

第1A図乃至第1C図に関して先に説明したよ
うに、ウエーフア冷却装置10の中へのウエーフ
アの装填及び同装置からのウエーフアの排出は、
重力作用によつて生ずるようになつている。半導
体ウエーフアと柔軟な熱伝導性表面31との間の
摩擦を避けるため、ウエーフアの装填及び排出の
間、1対の低摩擦案内レールが使用され、これら
の案内レールは金属又は低摩擦プラスチツクで構
成されている。第2図に見られるように、案内レ
ール33は、ウエーフアが位置を固定されるよう
になるまで、柔軟な熱伝導性被膜31の上方にウ
エーフアを保持する。案内レール33は可動ロツ
ド34に取付けられているから、それら案内レー
ルは可動ロツドの動きと共に上下に動き、押しつ
けリング36が固定位置に来る時には、柔軟な熱
伝導性被膜31の表面より下方に行つて、熱伝導
性被膜31と凸面弯曲状プラテン自体との中に形
成された凹みの中に入る。時によつては、ウエー
フアは案内レール33に沿つて滑らかにはすべら
ず、その組立体からすべり出るのに必要以上に長
い時間がかゝることがある。その場合には、排出
ピン22がウエーフアを案内レール33に沿つて
押して、スロツト11から押し出す。排出ピン2
2は、停止部材44と停止部材45との間を車2
0を用いて移動する可動組立体19に取付けられ
ている。可動組立体19がその中を移動する軌道
は、遮蔽体23によつてイオン・ビームから遮蔽
されている。
As previously discussed with respect to FIGS. 1A-1C, loading wafers into and ejecting wafers from the wafer cooling system 10 includes:
It seems to be caused by the action of gravity. To avoid friction between the semiconductor wafer and the flexible thermally conductive surface 31, a pair of low-friction guide rails are used during loading and unloading of the wafer, these guide rails being constructed of metal or low-friction plastic. has been done. As seen in FIG. 2, the guide rail 33 holds the wafer above the flexible thermally conductive coating 31 until the wafer is fixed in position. Since the guide rails 33 are attached to the movable rods 34, they move up and down with the movement of the movable rods, so that when the pressure ring 36 is in the fixed position, it is below the surface of the flexible thermally conductive coating 31. It then enters a recess formed in the thermally conductive coating 31 and the convex curved platen itself. At times, the wafer does not slide smoothly along the guide rail 33 and may take longer than necessary to slide out of the assembly. In that case, the ejection pin 22 pushes the wafer along the guide rail 33 and out of the slot 11. Ejection pin 2
2, the vehicle 2 is moved between the stop member 44 and the stop member 45.
It is attached to a movable assembly 19 that moves using 0. The trajectory within which the movable assembly 19 moves is shielded from the ion beam by a shield 23.

第1A図乃至第1C図に関して先に説明したよ
うに、ウエーフア冷却装置10は真空処理の間垂
直位置に保持され、従つて可動組立体19は重力
作用により停止部材45に当つて保持されてい
る。ウエーフア冷却装置10が排出位置まで回転
される時、排出ピン22を備えた摺動可能な組立
体19は、ウエーフアが実際に排出されることを
停止部材44が確実にするまで、その軌道に沿つ
て移動する。通常は、ウエーフアは重力作用によ
りそれ自体で排出される。カム26の移動は、そ
の装置10が取付けられている真空処理室の内側
に取付けられた突出部材(図示されていない)に
対してアーム46が押しつけられる時に、作動さ
れる。装置10が支持ロツド12によつて回転さ
れる間に、アーム46は突出部材と係合し、カム
26をその高位点と低位点との間で強制的に移動
させる。このようにして、第1B図の真空処理位
置では、カム26はその低位置にあり、押しつけ
リング36がウエーフアに対して押しつけられ
る。第1A図の受入れ位置と第1C図の排出位置
では、カム26はその高位位置にあり、スロツト
11の間隔があけられる。カム26の移動の容易
さは第4図に示された制動クラツチ47の設定に
よつて定められ、その制動クラツチ47がカム2
6の回転速度を制御する。その結果として、スプ
リング27によつて加えられる力のために押しつ
けリング36が、ウエーフア冷却装置10の中の
定位置で半導体ウエーフアを押しつぶすようにな
ることはない。
As previously discussed with respect to FIGS. 1A-1C, wafer cooler 10 is held in a vertical position during vacuum processing, so that movable assembly 19 is held against stop member 45 by gravity. . When the wafer cooler 10 is rotated to the ejection position, the slidable assembly 19 with ejection pin 22 is moved along its trajectory until the stop member 44 ensures that the wafer is actually ejected. Move along. Normally, the wafer is evacuated by itself due to the action of gravity. Movement of the cam 26 is actuated when the arm 46 is pressed against a protruding member (not shown) mounted inside the vacuum processing chamber in which the apparatus 10 is mounted. While the device 10 is rotated by the support rod 12, the arm 46 engages the protruding member and forces the cam 26 between its high and low points. Thus, in the vacuum processing position of FIG. 1B, cam 26 is in its lower position and biasing ring 36 is biased against the wafer. In the receiving position of FIG. 1A and the ejecting position of FIG. 1C, the cam 26 is in its elevated position and the slots 11 are spaced apart. The ease of movement of cam 26 is determined by the setting of a brake clutch 47 shown in FIG.
Control the rotation speed of 6. As a result, the force exerted by spring 27 will not cause compression ring 36 to crush the semiconductor wafer in place within wafer cooling apparatus 10.

本発明に使用されるウエーフア冷却組立体の利
点は、第5図及び第6図を参照することにより解
るであろう。第5図には、イオン・インプランテ
ーシヨンの場合の温度とイオン・ビーム電力との
関係が、標準のプラテンA(それ自体の重さで休
止している非冷却金属表面)について、本発明の
プラテンBと比較して図示されている。このグラ
フに示された温度は3インチ(76.2mm)ウエーフ
アの平衡温度である。第6図には、3種の異るイ
オン・ビーム電力について、冷却された3インチ
(76.2mm)ウエーフアの温度上昇が時間の関数と
して示されている。約10秒後に近似的平衡温度に
達する。代表的な数値例としては、ウエーフアは
5秒から約15秒までの時間にわたつてイオン・イ
ンプランテーシヨンを行われ、典型的な許容温度
は140℃であるから、半導体ウエーフアのイオ
ン・インプランテーシヨンにおいて許容し得る温
度上昇特性が得られる。
The advantages of the wafer cooling assembly used in the present invention can be seen with reference to FIGS. 5 and 6. FIG. 5 shows the relationship between temperature and ion beam power for ion implantation for standard platen A (an uncooled metal surface resting under its own weight) and for the present invention. It is illustrated in comparison with platen B of . The temperature shown in this graph is the equilibrium temperature for a 3 inch (76.2 mm) wafer. FIG. 6 shows the temperature rise of a cooled 3 inch (76.2 mm) wafer as a function of time for three different ion beam powers. Approximate equilibrium temperature is reached after about 10 seconds. As a typical numerical example, wafers are ion implanted for times ranging from 5 seconds to about 15 seconds, and the typical allowable temperature is 140°C, so ion implantation of semiconductor wafers is Acceptable temperature rise characteristics are obtained in the plantation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は重力作用による供給で半導体ウエー
フアを受入れる位置にある本発明実施例に用いら
れるプラテン部の側面図、第1B図は半導体ウエ
ーフアを垂直入射イオン・ビームに曝す位置にあ
る本発明のプラテン部の側面図、第1C図はイオ
ン注入された半導体ウエーフアが重力作用によ
り、又は排出ピン機構により排出される位置まで
回転された処の側面図、第2図は第3図の線2―
2に沿つて画かれた側断面図、第3図は本発明の
プラテン部の正面図、第4図は背面図、第5図は
標準のプラテンAについてと、本プラテンBにつ
いて、3インチ(76.2mm)ウエーフアに対する平
衡温度をイオン・ビーム電力の関数として表わし
たグラフ、第6図は本プラテンの中に保持されな
がらイオン・インプランテーシヨンを受ける3イ
ンチ(76.2mm)ウエーフアについての温度上昇時
間のグラフである。 10……ウエーフア冷却装置、11……スロツ
ト、12……支持ロツド、13,32……ウエー
フア、22……排出ピン、26……カム、27…
…スプリング、28……空洞、29……液体フレ
オン、30……凸面状弯曲プラテン、34……可
動ロツド、36……押しつけリング、38……直
線状軸受、40……ハウジング。
FIG. 1A is a side view of the platen portion of the present invention in position to receive a semiconductor wafer by gravity feeding, and FIG. 1B is a side view of the platen portion of the present invention in position to expose the semiconductor wafer to a normal incident ion beam. FIG. 1C is a side view of the ion-implanted semiconductor wafer rotated to a position where it is ejected by gravity or by an ejection pin mechanism; FIG. 2 is a side view taken along line 2-- of FIG.
FIG. 3 is a front view of the platen portion of the present invention, FIG. 4 is a rear view, and FIG. 5 is a side sectional view taken along line 2, FIG. Figure 6 shows the temperature rise for a 3 inch (76.2 mm) wafer undergoing ion implantation while being held in the present platen. It is a graph of time. DESCRIPTION OF SYMBOLS 10... Wafer cooling device, 11... Slot, 12... Support rod, 13, 32... Wafer, 22... Ejection pin, 26... Cam, 27...
... Spring, 28 ... Cavity, 29 ... Liquid freon, 30 ... Convex curved platen, 34 ... Movable rod, 36 ... Pressing ring, 38 ... Linear bearing, 40 ... Housing.

Claims (1)

【特許請求の範囲】 1 半導体ウエーフアに対して真空処理を行うた
めの装置であつて、凸面弯曲状プラテンの外表面
に熱伝導性の柔軟な物質体を設け、該物質体の上
に半導体ウエーフアを密着載置するようにしたこ
とを特徴とする半導体ウエーフアの真空処理装
置。 2 特許請求の範囲第1項記載の半導体ウエーフ
アの真空処理装置であつて、前記の熱伝導性の柔
軟な物質体が熱伝導性シリコンゴムであるところ
の装置。 3 特許請求の範囲第1項記載の半導体ウエーフ
アの真空処理装置であつて、半導体ウエーフアの
円周上の縁端をリングにより前記物質体に押しつ
けることを特徴とする装置。 4 特許請求の範囲第3項記載の半導体ウエーフ
アの真空処理装置であつて、前記プラテンの曲率
が、密着されたウエーフアの中に張力を発生させ
ることにより自然に生じた弓形の曲りを滑らかに
するために充分な程大きい値に選ばれている、と
ころの装置。 5 特許請求の範囲第4項記載の半導体ウエーフ
アの真空処理装置であつて、前記プラテンの曲率
が、衝突するビームの入射角が垂直入射から2
1/2度以上ずれないために充分な程小さい値に選
ばれている、ところの装置。 6 特許請求の範囲第4項記載の半導体ウエーフ
アの真空処理装置であつて、前記曲率が、3イン
チウエーフアについては中心から縁端までの間に
1000分の15インチの偏差を生ずるように選ばれて
いる、ところの装置。
[Scope of Claims] 1. An apparatus for performing vacuum processing on a semiconductor wafer, wherein a thermally conductive flexible material is provided on the outer surface of a convex curved platen, and the semiconductor wafer is placed on the material. A vacuum processing apparatus for semiconductor wafers, characterized in that semiconductor wafers are placed in close contact with each other. 2. A vacuum processing apparatus for semiconductor wafers according to claim 1, wherein the thermally conductive flexible material is a thermally conductive silicone rubber. 3. A vacuum processing apparatus for semiconductor wafers according to claim 1, characterized in that a circumferential edge of the semiconductor wafer is pressed against the material body by a ring. 4. The vacuum processing apparatus for semiconductor wafers according to claim 3, wherein the curvature of the platen smooths out the naturally occurring arched curvature due to the generation of tension in the closely attached wafers. The value is chosen to be large enough for the device. 5. The semiconductor wafer vacuum processing apparatus according to claim 4, wherein the curvature of the platen is such that the incident angle of the colliding beam is 2 from normal incidence.
The value of this device is chosen to be small enough to prevent deviations of more than 1/2 degree. 6. The vacuum processing apparatus for semiconductor wafers according to claim 4, wherein the curvature is between the center and the edge of a 3-inch wafer.
A device selected to produce a deviation of 15 thousandths of an inch.
JP59084261A 1979-03-16 1984-04-27 Vacuum treating device of semiconductor wafer Granted JPS605540A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21362 1979-03-16
US06/021,362 US4282924A (en) 1979-03-16 1979-03-16 Apparatus for mechanically clamping semiconductor wafer against pliable thermally conductive surface

Publications (2)

Publication Number Publication Date
JPS605540A JPS605540A (en) 1985-01-12
JPS6323616B2 true JPS6323616B2 (en) 1988-05-17

Family

ID=21803766

Family Applications (2)

Application Number Title Priority Date Filing Date
JP3171680A Granted JPS55127034A (en) 1979-03-16 1980-03-14 Device for mechanically urging semiconductor wafer to soft thermoconductive surface
JP59084261A Granted JPS605540A (en) 1979-03-16 1984-04-27 Vacuum treating device of semiconductor wafer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP3171680A Granted JPS55127034A (en) 1979-03-16 1980-03-14 Device for mechanically urging semiconductor wafer to soft thermoconductive surface

Country Status (4)

Country Link
US (1) US4282924A (en)
EP (1) EP0016579B1 (en)
JP (2) JPS55127034A (en)
DE (1) DE3064514D1 (en)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282924A (en) * 1979-03-16 1981-08-11 Varian Associates, Inc. Apparatus for mechanically clamping semiconductor wafer against pliable thermally conductive surface
EP0017472A1 (en) * 1979-04-06 1980-10-15 Lintott Engineering Limited Evacuable equipment containing a device for heat transfer and process for the manufacture of semi-conductor components using this equipment
US4680061A (en) * 1979-12-21 1987-07-14 Varian Associates, Inc. Method of thermal treatment of a wafer in an evacuated environment
US4743570A (en) * 1979-12-21 1988-05-10 Varian Associates, Inc. Method of thermal treatment of a wafer in an evacuated environment
US4909314A (en) * 1979-12-21 1990-03-20 Varian Associates, Inc. Apparatus for thermal treatment of a wafer in an evacuated environment
US4417347A (en) * 1981-05-12 1983-11-22 Varian Associates, Inc. Semiconductor processor incorporating blackbody radiation source with constant planar energy flux
US4433247A (en) * 1981-09-28 1984-02-21 Varian Associates, Inc. Beam sharing method and apparatus for ion implantation
GB2109996B (en) * 1981-11-24 1985-08-07 Varian Associates Hydraulically actuated semiconductor wafer clamping and cooling apparatus
DE3148354A1 (en) * 1981-12-07 1983-06-09 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR SPRAYING A METAL
US4512391A (en) * 1982-01-29 1985-04-23 Varian Associates, Inc. Apparatus for thermal treatment of semiconductor wafers by gas conduction incorporating peripheral gas inlet
JPS58169923A (en) * 1982-03-31 1983-10-06 Toshiba Corp Sample fixing jig for ic tester using electron beam
US4634331A (en) * 1982-05-24 1987-01-06 Varian Associates, Inc. Wafer transfer system
US4498833A (en) * 1982-05-24 1985-02-12 Varian Associates, Inc. Wafer orientation system
US4457359A (en) * 1982-05-25 1984-07-03 Varian Associates, Inc. Apparatus for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
US4508161A (en) * 1982-05-25 1985-04-02 Varian Associates, Inc. Method for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
US4535835A (en) * 1982-05-25 1985-08-20 Varian Associates, Inc. Optimum surface contour for conductive heat transfer with a thin flexible workpiece
US4458746A (en) * 1982-05-25 1984-07-10 Varian Associates, Inc. Optimum surface contour for conductive heat transfer with a thin flexible workpiece
US4537244A (en) * 1982-05-25 1985-08-27 Varian Associates, Inc. Method for optimum conductive heat transfer with a thin flexible workpiece
DE3380505D1 (en) * 1982-05-25 1989-10-05 Varian Associates Optimum surface contour for conductive heat transfer with a thin flexible workpiece
JPH0670897B2 (en) * 1982-05-25 1994-09-07 バリアン・アソシエイツ・インコ−ポレイテッド Device for removing heat from thin and flexible articles
JPS5923732U (en) * 1982-08-04 1984-02-14 日本真空技術株式会社 Wafer mounting device in rotary ion implanter
US4542298A (en) * 1983-06-09 1985-09-17 Varian Associates, Inc. Methods and apparatus for gas-assisted thermal transfer with a semiconductor wafer
US5389793A (en) * 1983-08-15 1995-02-14 Applied Materials, Inc. Apparatus and methods for ion implantation
JPS60103829U (en) * 1983-12-20 1985-07-15 日新電機株式会社 Thermal conductive elastic sheet
US4603466A (en) * 1984-02-17 1986-08-05 Gca Corporation Wafer chuck
US4584045A (en) * 1984-02-21 1986-04-22 Plasma-Therm, Inc. Apparatus for conveying a semiconductor wafer
US4527620A (en) * 1984-05-02 1985-07-09 Varian Associates, Inc. Apparatus for controlling thermal transfer in a cyclic vacuum processing system
US4567938A (en) * 1984-05-02 1986-02-04 Varian Associates, Inc. Method and apparatus for controlling thermal transfer in a cyclic vacuum processing system
US4535834A (en) * 1984-05-02 1985-08-20 Varian Associates, Inc. Method and apparatus for controlling thermal transfer in a cyclic vacuum processing system
US4634512A (en) * 1984-08-21 1987-01-06 Komag, Inc. Disk and plug
US4733091A (en) * 1984-09-19 1988-03-22 Applied Materials, Inc. Systems and methods for ion implantation of semiconductor wafers
US4628991A (en) * 1984-11-26 1986-12-16 Trilogy Computer Development Partners, Ltd. Wafer scale integrated circuit testing chuck
US4717829A (en) * 1985-03-14 1988-01-05 Varian Associates, Inc. Platen and beam setup flag assembly for ion implanter
JPH07105345B2 (en) * 1985-08-08 1995-11-13 日電アネルバ株式会社 Substrate processing equipment
DE3766384D1 (en) * 1986-02-25 1991-01-10 Nec Corp LIQUID COOLING SYSTEM FOR INTEGRATED CIRCUIT CHIPS.
US4700077A (en) * 1986-03-05 1987-10-13 Eaton Corporation Ion beam implanter control system
JPS62238653A (en) * 1986-04-09 1987-10-19 Nec Corp Cooling structure
US4724325A (en) * 1986-04-23 1988-02-09 Eaton Corporation Adhesion cooling for an ion implantation system
US4671204A (en) * 1986-05-16 1987-06-09 Varian Associates, Inc. Low compliance seal for gas-enhanced wafer cooling in vacuum
US4891335A (en) * 1986-10-15 1990-01-02 Advantage Production Technology Inc. Semiconductor substrate heater and reactor process and apparatus
US5044314A (en) * 1986-10-15 1991-09-03 Advantage Production Technology, Inc. Semiconductor wafer processing apparatus
US4956046A (en) * 1986-10-15 1990-09-11 Advantage Production Technology, Inc. Semiconductor substrate treating method
US4778559A (en) * 1986-10-15 1988-10-18 Advantage Production Technology Semiconductor substrate heater and reactor process and apparatus
US4842683A (en) * 1986-12-19 1989-06-27 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US4817556A (en) * 1987-05-04 1989-04-04 Varian Associates, Inc. Apparatus for retaining wafers
US5040484A (en) * 1987-05-04 1991-08-20 Varian Associates, Inc. Apparatus for retaining wafers
US4942497A (en) * 1987-07-24 1990-07-17 Nec Corporation Cooling structure for heat generating electronic components mounted on a substrate
CA1283225C (en) * 1987-11-09 1991-04-16 Shinji Mine Cooling system for three-dimensional ic package
CA1327710C (en) * 1987-12-07 1994-03-15 Kazuhiko Umezawa Cooling system for ic package
US4832781A (en) * 1988-01-07 1989-05-23 Varian Associates, Inc. Methods and apparatus for thermal transfer with a semiconductor wafer in vacuum
US4938992A (en) * 1988-01-07 1990-07-03 Varian Associates, Inc. Methods for thermal transfer with a semiconductor
US4997606A (en) * 1988-01-07 1991-03-05 Varian Associates, Inc. Methods and apparatus for fabricating a high purity thermally-conductive polymer layer
CA1303238C (en) * 1988-05-09 1992-06-09 Kazuhiko Umezawa Flat cooling structure of integrated circuit
US4949783A (en) * 1988-05-18 1990-08-21 Veeco Instruments, Inc. Substrate transport and cooling apparatus and method for same
US5262029A (en) * 1988-05-23 1993-11-16 Lam Research Method and system for clamping semiconductor wafers
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
JPH06100408B2 (en) * 1988-09-09 1994-12-12 日本電気株式会社 Cooling system
DE68925403T2 (en) * 1988-09-20 1996-05-30 Nec Corp Cooling structure for electronic components
EP0364619B1 (en) * 1988-10-19 1993-12-29 Ibm Deutschland Gmbh Device for plasma or reactive ion etching, and process for etching thermally poorly conducting substrates
US4944860A (en) * 1988-11-04 1990-07-31 Eaton Corporation Platen assembly for a vacuum processing system
US5042423A (en) * 1988-12-20 1991-08-27 Texas Instruments Incorporated Semiconductor wafer carrier design
DE3938267C2 (en) * 1989-11-17 1997-03-27 Leybold Ag Device for heating substrates
JPH03273663A (en) * 1990-03-23 1991-12-04 Canon Inc Substrate holder
KR940011708B1 (en) * 1990-04-09 1994-12-23 니찌덴 아네루바 가부시끼가이샤 Temperature control device for semiconductor wafer
GB9010833D0 (en) * 1990-05-15 1990-07-04 Electrotech Research Limited Workpiece support
US5452177A (en) 1990-06-08 1995-09-19 Varian Associates, Inc. Electrostatic wafer clamp
USH1145H (en) 1990-09-25 1993-03-02 Sematech, Inc. Rapid temperature response wafer chuck
US5407548A (en) * 1990-10-26 1995-04-18 Leybold Aktiengesellschaft Method for coating a substrate of low resistance to corrosion
FR2671810A1 (en) * 1991-01-18 1992-07-24 Alsthom Cge Alcatel Heating substrate carrier for an enclosure for the vacuum deposition of films
USH1373H (en) * 1992-04-06 1994-11-01 American Telephone And Telegraph Company Wafer handling apparatus and method
AT405224B (en) * 1992-06-05 1999-06-25 Thallner Erich Apparatus for aligning, combining and securing disc- shaped components
US5509464A (en) * 1993-07-30 1996-04-23 Applied Materials, Inc. Method and apparatus for cooling rectangular substrates
US5486080A (en) 1994-06-30 1996-01-23 Diamond Semiconductor Group, Inc. High speed movement of workpieces in vacuum processing
JPH08165571A (en) * 1994-12-08 1996-06-25 Nissin Electric Co Ltd Substrate holder and its production
US5908530A (en) * 1995-05-18 1999-06-01 Obsidian, Inc. Apparatus for chemical mechanical polishing
US6241005B1 (en) 1999-03-30 2001-06-05 Veeco Instruments, Inc. Thermal interface member
US6839217B1 (en) 1999-10-01 2005-01-04 Varian Semiconductor Equipment Associates, Inc. Surface structure and method of making, and electrostatic wafer clamp incorporating surface structure
US6176931B1 (en) 1999-10-29 2001-01-23 International Business Machines Corporation Wafer clamp ring for use in an ionized physical vapor deposition apparatus
JP4592916B2 (en) * 2000-04-25 2010-12-08 東京エレクトロン株式会社 Placement device for workpiece
US6488565B1 (en) 2000-08-29 2002-12-03 Applied Materials, Inc. Apparatus for chemical mechanical planarization having nested load cups
US6686598B1 (en) 2000-09-01 2004-02-03 Varian Semiconductor Equipment Associates, Inc. Wafer clamping apparatus and method
US20040066601A1 (en) * 2002-10-04 2004-04-08 Varian Semiconductor Equipment Associates, Inc. Electrode configuration for retaining cooling gas on electrostatic wafer clamp
US6748293B1 (en) 2003-03-24 2004-06-08 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for high speed object handling
US7000418B2 (en) * 2004-05-14 2006-02-21 Intevac, Inc. Capacitance sensing for substrate cooling
US20060163490A1 (en) * 2005-01-21 2006-07-27 Advanced Ion Beam Technology Inc. Ion implantation cooling system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268770A (en) * 1964-04-02 1966-08-23 Int Rectifier Corp Water cooled semiconductor device assembly
JPS50109596A (en) * 1974-02-06 1975-08-28
US3920233A (en) * 1974-06-11 1975-11-18 Ibm Spherical support and translation device for wafers
JPS5114277A (en) * 1974-07-25 1976-02-04 Matsushita Electric Ind Co Ltd Kahenyoryodaioodono seizohoho
JPS5355981A (en) * 1976-10-30 1978-05-20 Shinetsu Chemical Co Method of heat sinking for electric circuit
US4139051A (en) * 1976-09-07 1979-02-13 Rockwell International Corporation Method and apparatus for thermally stabilizing workpieces
JPS55127034A (en) * 1979-03-16 1980-10-01 Varian Associates Device for mechanically urging semiconductor wafer to soft thermoconductive surface
JPS6031081U (en) * 1983-08-09 1985-03-02 シャープ株式会社 Connection structure between film cell and circuit board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH558428A (en) * 1972-11-23 1975-01-31 Balzers Patent Beteilig Ag TARGET CHANGING DEVICE FOR SPRAYING BY ION.
US3853313A (en) * 1972-11-24 1974-12-10 Ibm Wafer interlocking transport system
JPS588106B2 (en) * 1973-06-12 1983-02-14 バリアン アソシエイツ hogojiyoukencadenoshiyorisouchi
GB1443215A (en) * 1973-11-07 1976-07-21 Mullard Ltd Electrostatically clamping a semiconductor wafer during device manufacture
DE2431507C3 (en) * 1974-07-01 1979-03-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for handling a thin-walled substrate having a surface that is sensitive to touch
IL56224A (en) * 1978-01-16 1982-08-31 Veeco Instr Inc Substrate clamp for use in semiconductor fabrication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268770A (en) * 1964-04-02 1966-08-23 Int Rectifier Corp Water cooled semiconductor device assembly
JPS50109596A (en) * 1974-02-06 1975-08-28
US3920233A (en) * 1974-06-11 1975-11-18 Ibm Spherical support and translation device for wafers
JPS5114277A (en) * 1974-07-25 1976-02-04 Matsushita Electric Ind Co Ltd Kahenyoryodaioodono seizohoho
US4139051A (en) * 1976-09-07 1979-02-13 Rockwell International Corporation Method and apparatus for thermally stabilizing workpieces
JPS5355981A (en) * 1976-10-30 1978-05-20 Shinetsu Chemical Co Method of heat sinking for electric circuit
JPS55127034A (en) * 1979-03-16 1980-10-01 Varian Associates Device for mechanically urging semiconductor wafer to soft thermoconductive surface
JPS6031081U (en) * 1983-08-09 1985-03-02 シャープ株式会社 Connection structure between film cell and circuit board

Also Published As

Publication number Publication date
JPS55127034A (en) 1980-10-01
JPS605540A (en) 1985-01-12
EP0016579B1 (en) 1983-08-10
DE3064514D1 (en) 1983-09-15
JPS6257066B2 (en) 1987-11-28
EP0016579A1 (en) 1980-10-01
US4282924A (en) 1981-08-11

Similar Documents

Publication Publication Date Title
JPS6323616B2 (en)
US4508161A (en) Method for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
US4457359A (en) Apparatus for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
US4567938A (en) Method and apparatus for controlling thermal transfer in a cyclic vacuum processing system
US4671204A (en) Low compliance seal for gas-enhanced wafer cooling in vacuum
US4535834A (en) Method and apparatus for controlling thermal transfer in a cyclic vacuum processing system
US4794217A (en) Induction system for rapid heat treatment of semiconductor wafers
EP0025670B2 (en) Method and apparatus for conducting heat to or from an article being treated under vacuum
US4832781A (en) Methods and apparatus for thermal transfer with a semiconductor wafer in vacuum
US4474831A (en) Method for reflow of phosphosilicate glass
JPH01319934A (en) Method of quick heat treatment of semiconductor wafer using electromagnetic radiation application
US4514636A (en) Ion treatment apparatus
JP5616883B2 (en) Technology to change the temperature of the platen
US6686598B1 (en) Wafer clamping apparatus and method
JP5310977B2 (en) Contaminant reducing structure and method for ion implanters
JPH0740520Y2 (en) Platen for ion implantation
JPS58137225A (en) Substrate loading/unloading mechanism
JP2005228674A (en) Ion injection device
EP0185366A2 (en) Method of forming resist pattern
JPS63193450A (en) Sample holding device
JP2005332844A (en) Membrane mask, pattern processing method using the same, and method of manufacturing membrane mask
JPS62271420A (en) Treatment equipment for semiconductor substrate
JPH09306415A (en) Board retainer
Larsen Improved cooling on the Varian VIISta series ion implanters
JP2000105467A (en) Ultraviolet curing method of photoresist film and ultraviolet curing device