JPS63234627A - Output circuit - Google Patents

Output circuit

Info

Publication number
JPS63234627A
JPS63234627A JP62069603A JP6960387A JPS63234627A JP S63234627 A JPS63234627 A JP S63234627A JP 62069603 A JP62069603 A JP 62069603A JP 6960387 A JP6960387 A JP 6960387A JP S63234627 A JPS63234627 A JP S63234627A
Authority
JP
Japan
Prior art keywords
electrified
conductive
mos
mos transistor
logic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069603A
Other languages
Japanese (ja)
Inventor
Koichi Kikuchi
菊地 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62069603A priority Critical patent/JPS63234627A/en
Publication of JPS63234627A publication Critical patent/JPS63234627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the chip size by devising the titled circuit such that a 2nd MOS transistor(TR) is not electrified when a 1st MOS TR is electrified and a logic circuit is electrified and the 2nd MOS TR is electrified when the 1st MOS TR is electrified and the logic circuit is not electrified. CONSTITUTION:A MOS TR 7 is electrified at a half period of a clock signal PHIand an output terminal OUT 1 goes to a high level. When any of control signals E1-E3 at a high level or all of them are at a low level at the remaining half period of the clock signal PHI, for example, when the control signal E1 is at a high level, the logic circuit 2 is electrified the output OUT1 goes to a low level because of the conduction of the MOS TR 1 and the MOS TR 7 is not electrified. When the control signals E1-E3 are all at a low level, all the logic circuits 2,4,6 are not electrified. Thus, the output terminal OUT1 goes to a high level although the MOS TRs 1,3,5 are electrified and the logic circuit 8 electrify the MOS TR 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロプロセッサに使用されるバスドライバ
回路等の出力回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an output circuit such as a bus driver circuit used in a microprocessor.

〔従来の技術〕[Conventional technology]

従来、この種の出力回路は、トライステートバッファ回
路の出力を並列にパスラインに接続する回路となってい
た。
Conventionally, this type of output circuit has been a circuit in which the output of a tristate buffer circuit is connected in parallel to a pass line.

第4図を参照して説明すると、3つのトライステートバ
ッファ回路(第4図の1〜5と6〜10と11〜15)
が並列にパスラインに接続され3つのトライステートの
出力のうち1つだけかパスラインから出力端子に出力さ
れる。
To explain with reference to Fig. 4, there are three tri-state buffer circuits (1 to 5, 6 to 10, and 11 to 15 in Fig. 4).
are connected to the pass line in parallel, and only one of the three tristate outputs is output from the pass line to the output terminal.

動作のタイミングチャートを第6図に示す。制御信号E
l、E2.E3のいずれか1つかハイレベルとなる。た
とえばElかハイレベルのとき入力データ信号D1が出
力端子0UT2に出力される。同様に制御信号E2に対
して入力データ信号D2.制御信号E3に対して入力デ
ータ信号D3が対応する。第4図の場合トランジスタの
数は36個である。
A timing chart of the operation is shown in FIG. Control signal E
l, E2. Either one of E3 becomes high level. For example, when El is at a high level, the input data signal D1 is output to the output terminal 0UT2. Similarly, for control signal E2, input data signal D2. Input data signal D3 corresponds to control signal E3. In the case of FIG. 4, the number of transistors is 36.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

上述した従来の出力回路は、トライステートバッファ回
路か複雑であるため、トランジスタ数及び規模(LSI
化した場合の面積)が大きいという欠点がある。
The conventional output circuit described above is a tri-state buffer circuit or is complex, so the number of transistors and size (LSI
The disadvantage is that the surface area (when the surface area becomes large) is large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の出力回路は、クロック信号をゲート入力とする
第1のMOSトランジスタとデータ入力信号と制御信号
の論理により導通、非導通となる論理回路とが直列に接
続された回路を複数個並列に接続し、一方を出力端子に
、他方を電源の一方の端子に接続し、第2のMOSトラ
ンジスタを該出力端子と該電源の他方の端子に接続し、
該クロック信号に依り該第1のMOS)−ランジスタが
非導通のとき該第2のMOSトランジスタを導通とし、
該第1のMOSトランジスタが導通でかつ該論理回路が
導通のとき該第2のMOSトランジスタは非導通、また
該第1のMOSトランジスタが導通でかつ該論理回路が
非導通のとき該第2のMOSトランジスタは導通である
ように構成したことを特徴とする。
The output circuit of the present invention has a plurality of parallel circuits in which a first MOS transistor whose gate input is a clock signal and a logic circuit which becomes conductive or non-conductive depending on the logic of the data input signal and the control signal are connected in series. one terminal is connected to the output terminal, the other terminal is connected to one terminal of the power supply, and a second MOS transistor is connected to the output terminal and the other terminal of the power supply,
The clock signal causes the second MOS transistor to conduct when the first MOS transistor is non-conductive;
When the first MOS transistor is conductive and the logic circuit is conductive, the second MOS transistor is non-conductive, and when the first MOS transistor is conductive and the logic circuit is non-conductive, the second MOS transistor is conductive. The MOS transistor is characterized in that it is configured to be conductive.

〔実施例〕〔Example〕

次に本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の実施例の回路図である。第1図の実施
例はM O、S トランジスタ1,3.5と、そのMO
Sトランジスタに各々直列に接続される論理回路2,4
.6とが並列に出力端子OUT 1とグランドに接続さ
れMOSトランジスタ7が電源VDDと出力端子0UT
Iに接続され論理回路8に依りMOSトランジスタフの
ゲートか駆動される構成となっている。
FIG. 1 is a circuit diagram of an embodiment of the present invention. The embodiment of FIG.
Logic circuits 2 and 4 each connected in series to the S transistor
.. 6 is connected in parallel to the output terminal OUT 1 and the ground, and the MOS transistor 7 is connected to the power supply VDD and the output terminal 0UT.
It is connected to I and the gate of the MOS transistor is driven by the logic circuit 8.

クロック信号Φの半周期で7のMOSトランジスタが導
通となり、出力端子0UT1はハイレベルとなる。
Seven MOS transistors become conductive during a half cycle of the clock signal Φ, and the output terminal 0UT1 becomes high level.

クロック信号Φの残る半周期ては制御信号E1、E2.
E3どれか1つかハイレベルまたは全てロウレベルとす
ると、例えば制御信号E1がハイレベルのとき論理回路
2を導通状態とし、MOSトランジスタ1の導通のため
0UTIの出力はロウレベルとなり、Mo51〜ランジ
スタフは非導通となる。また制御信号El、E2.E3
の制御信号が全てロウレベルの時、論理回路2,4.6
は全て非導通状態となる。このため出力端子0UT1は
、MOSトランジスタ1,3.5が導通であるがハイレ
ベルとなり、論理回路8に依りMOSトランジスタ7を
導通とする。
In the remaining half period of the clock signal Φ, the control signals E1, E2 .
If any one of E3 is set to high level or all of them are set to low level, for example, when the control signal E1 is at high level, the logic circuit 2 becomes conductive, the MOS transistor 1 becomes conductive, the output of 0UTI becomes low level, and Mo51 to Langisthu are non-conductive. becomes. In addition, control signals El, E2 . E3
When the control signals of are all low level, logic circuits 2, 4.6
are all non-conducting. Therefore, the output terminal 0UT1 becomes high level although the MOS transistors 1 and 3.5 are conductive, and the logic circuit 8 makes the MOS transistor 7 conductive.

即ち第5図に示す様に、クロックΦの半周期では0UT
1の出力端子はハイレベルとなるが、残りの半周期では
制御信号El、E2.E3に依り入力データ信号DI、
D2.D3が出力端子0UT1に出力される。
That is, as shown in Fig. 5, 0UT in half period of clock Φ
1 becomes high level, but in the remaining half cycle, the control signals El, E2 . Input data signal DI,
D2. D3 is output to the output terminal 0UT1.

次に本発明の第1の実施例について第2図で説明する。Next, a first embodiment of the present invention will be described with reference to FIG.

第2図は第1図の論理回路2,4.6を2個のMOSト
ランジスタの直列回路(第2図の2.3と5,6と8,
9)で実現し、第1図の論理回路8を2人力NORとイ
ンバータ(第2図11.12)で実現した例である。動
作は第1図と同じである。第2図のトランジスタの数は
16個である。
Figure 2 shows the logic circuits 2 and 4.6 in Figure 1 as a series circuit of two MOS transistors (2.3 and 5, 6 and 8 in Figure 2,
9), and this is an example in which the logic circuit 8 of FIG. 1 is realized using a two-man NOR and an inverter (FIG. 2, 11 and 12). The operation is the same as in FIG. The number of transistors in FIG. 2 is 16.

同様に本発明の第2の実施例について第3図で説明する
。第3図は第1の論理回路2,4.6を2人力NAND
とインバータ(第3図の7.10と8,11と9.12
)で実現し、第1図の論理回路8を2人力NORとイン
バータ(第3図の14.15)で実現した例である。動
作は第1図と同じである。第3図のトランジスタの数は
31個である。
Similarly, a second embodiment of the present invention will be explained with reference to FIG. Figure 3 shows the first logic circuit 2, 4.6, which is a two-man NAND
and inverter (7.10 and 8, 11 and 9.12 in Figure 3)
), and this is an example in which the logic circuit 8 in FIG. 1 is realized by a two-man NOR and an inverter (14.15 in FIG. 3). The operation is the same as in FIG. The number of transistors in FIG. 3 is 31.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はトランジスタの数の少い出
力回路を実現出来る効果がある。本発明を半導体集積回
路で実施すれば、トランジスタ数が少ないことに依る回
路規模の削減からのチップサイズの縮小化が図れる。
As explained above, the present invention has the effect of realizing an output circuit with a small number of transistors. If the present invention is implemented in a semiconductor integrated circuit, the chip size can be reduced by reducing the circuit scale due to the small number of transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ本発明の実施例の回
路図、第4図は従来例の回路図、第5図6一 は第4図の動作を説明するためのタイムチャート、第6
図は第1図の動作を示すタイムチャートである。 1.3,5.7・・・MOSトランジスタ、2゜4.6
.8・・・論理回路、1〜10・・・MOSトランジス
タ、11・・・2人力N0R112・・・インバータ。
1, 2, and 3 are circuit diagrams of embodiments of the present invention, FIG. 4 is a circuit diagram of a conventional example, and FIG. 5 is a time chart for explaining the operation of FIG. 4. , 6th
The figure is a time chart showing the operation of FIG. 1. 1.3, 5.7...MOS transistor, 2°4.6
.. 8...Logic circuit, 1-10...MOS transistor, 11...2 human power N0R112...inverter.

Claims (1)

【特許請求の範囲】[Claims] クロック信号をゲート入力とする第1のMOSトランジ
スタとデータ入力信号と制御信号の論理により導通、非
導通となる論理回路とが直列に接続された回路を複数個
並列に接続し、一方を出力端子に、他方を電源の一方の
端子に接続し、第2のMOSトランジスタを該出力端子
と該電源の他方の端子に接続し、該クロック信号に依り
該第1のMOSトランジスタが非導通のとき該第2のM
OSトランジスタを導通とし、該第1のMOSトランジ
スタが導通でかつ該論理回路が導通のとき該第2のMO
Sトランジスタは非導通、また該第1のMOSトランジ
スタが導通でかつ該論理回路が非導通のとき該第2のM
OSトランジスタは導通であるように構成したことを特
徴とする出力回路。
A plurality of circuits in which a first MOS transistor whose gate input is a clock signal and a logic circuit which becomes conductive or non-conductive depending on the logic of the data input signal and the control signal are connected in series are connected in parallel, and one of the circuits is connected in parallel. and a second MOS transistor is connected to the output terminal and the other terminal of the power supply, and when the first MOS transistor is non-conductive according to the clock signal, the second MOS transistor is connected to one terminal of the power supply. second M
When the OS transistor is conductive and the first MOS transistor is conductive and the logic circuit is conductive, the second MOS transistor is conductive.
The S transistor is non-conductive, and when the first MOS transistor is conductive and the logic circuit is non-conductive, the second MMOS transistor is non-conductive.
An output circuit characterized in that an OS transistor is configured to be conductive.
JP62069603A 1987-03-23 1987-03-23 Output circuit Pending JPS63234627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069603A JPS63234627A (en) 1987-03-23 1987-03-23 Output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069603A JPS63234627A (en) 1987-03-23 1987-03-23 Output circuit

Publications (1)

Publication Number Publication Date
JPS63234627A true JPS63234627A (en) 1988-09-29

Family

ID=13407578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069603A Pending JPS63234627A (en) 1987-03-23 1987-03-23 Output circuit

Country Status (1)

Country Link
JP (1) JPS63234627A (en)

Similar Documents

Publication Publication Date Title
JP2583521B2 (en) Semiconductor integrated circuit
JPH07231246A (en) Latch circuit
JPS63234627A (en) Output circuit
EP0302764B1 (en) Circuit for comparing magnitudes of binary signals
JP2830244B2 (en) Tri-state buffer circuit
JPH0431630Y2 (en)
JPS596627A (en) Semiconductor integrated circuit device
JP2595074B2 (en) Semiconductor integrated circuit device
JP2735268B2 (en) LSI output buffer
JP2855796B2 (en) Semiconductor output circuit
JPS62231521A (en) Semiconductor integrated circuit
JPS60114028A (en) Logical circuit
JPH01202920A (en) Logic circuit
JP2752778B2 (en) Semiconductor integrated circuit
JPH05300007A (en) Two-input or circuit
JPH03207118A (en) Semiconductor integrated circuit
JP2600481B2 (en) Semiconductor integrated circuit
JP2619386B2 (en) Semiconductor integrated circuit device
JPH0344109A (en) Output buffer
JPH05300006A (en) Two-input and circuit
JPH0232786B2 (en)
JPH04132310A (en) Tri-state buffer
JPH02254816A (en) Through-current prevention type output circuit
JPS63263943A (en) Data bus circuit
GB2105936A (en) Multistage semiconductor integrated circuit arrangement