JPS63232416A - Formation of thin-film through photochemical vapor growth - Google Patents

Formation of thin-film through photochemical vapor growth

Info

Publication number
JPS63232416A
JPS63232416A JP6629387A JP6629387A JPS63232416A JP S63232416 A JPS63232416 A JP S63232416A JP 6629387 A JP6629387 A JP 6629387A JP 6629387 A JP6629387 A JP 6629387A JP S63232416 A JPS63232416 A JP S63232416A
Authority
JP
Japan
Prior art keywords
reaction chamber
substrate
vapor growth
light
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6629387A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6629387A priority Critical patent/JPS63232416A/en
Publication of JPS63232416A publication Critical patent/JPS63232416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the vapor growth of a thin-film positively as an excellent film by each conducting the supply of a raw material gas to a reaction chamber, to which a base body to be formed by vapor growth is arranged, optical irradiation and the exhaust of the reaction chamber intermittently and performing the stoppage of optical irradiation and exhaust during the stoppage interval of the supply of the raw gas. CONSTITUTION:The supply of a raw gas to a reaction chamber, to which a base body to be formed by vapor growth is disposed, optical irradiation and the exhaust of the reaction chamber are each conducted intermittently, and the stoppage of optical irradiation and exhaust are performed during the stoppage interval of the supply of the raw gas. Accordingly, deposit species or active species formed by a photo- reaction on the base body to be formed by vapor growth or near it can reach to the base body to be formed by vapor growth, but the generation of deposits or extraneous matters to an optical introduction section is avoided because the species are removed before they diffuse and reach to the optical introduction, thus excellently shaping a thin-film through a photochemical reaction by efficient optical irradiation onto the base body to be formed by vapor growth.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光化学気相成長によるi膜形成方法に関わる
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming an i-film by photochemical vapor deposition.

〔発明の概要〕[Summary of the invention]

本発明は、被気相成長基体が配置される反応室への原料
ガスの供給と、光照射と、反応室内からの排気とをそれ
ぞれ間歇的に行い、原料ガスの供給の停止区間中に光照
射停止と排気とを行うようにして、反応室内の特に光導
入部への付着物の発生を回避するようにしてこの付着物
による被気相成長基体上への光照射が阻害されることに
よる光化学反応の低下を回避して気相成長′a膜の膜質
の向上をはかる。
In the present invention, the supply of raw material gas to the reaction chamber in which the substrate to be vaporized is placed, the irradiation with light, and the evacuation from the reaction chamber are performed intermittently, and the light is supplied during the period when the supply of the raw material gas is stopped. The irradiation is stopped and the air is evacuated to avoid the formation of deposits in the reaction chamber, especially on the light introduction part, and the deposits obstruct the light irradiation onto the vapor phase growth substrate. The purpose is to improve the film quality of the vapor phase grown 'a' film by avoiding deterioration in photochemical reactions.

〔従来の技術〕[Conventional technology]

例えば半導体製造過程において、しばしばシリコン薄膜
、酸化シリコン薄膜、窒化膜等の形成工程を伴う。これ
ら薄膜は、化学的気相成長法(以゛下CVD法という)
による形成が広く行われる。
For example, a semiconductor manufacturing process often involves forming a silicon thin film, a silicon oxide thin film, a nitride film, and the like. These thin films are produced using chemical vapor deposition method (hereinafter referred to as CVD method).
Formation is widely practiced.

このCVD法としては、常圧下もしくは減圧下において
原料ガスを被気相成長基体表面において熱分解して目的
とする薄膜を被気相成長基体すなわち例えばウェファ上
に被着形成する熱的CVD法あるいは原料ガスをプラズ
マ化するプラズマCVD法が広く用いられている。一方
、半導体ウェファの大口径化に伴い、これの上に薄膜形
成を行う場合半導体ウェファに熱的歪、変形等の発生に
基づく特性変化、不良品の発生、信頼性の低下等を招来
することを回避する上で、その薄膜形成に当ってのウェ
ファすなわち被気相成長基体の加熱温度はできるだけ低
いことが望まれている。ところが、」二連した熱分解C
VD法による場合は、基体温度は400℃〜700℃と
いう高い温度を必要とし、特に半導体装置の製造過程に
おいて例えば低融点の成金底層の被着後にCVD法によ
る薄膜形成例えばシリコン多結晶の形成を行なおうとす
る場合には電捲金属層に溶融ないしは軟化を来すという
不都合を招来する。これに比しプラズマCVD法では、
基体温度を200℃〜300℃程度に低くすることがで
きるものの、この場合プラズマによる被気相成長基体す
なわち半導体ウェファへの衝撃による照射損傷を来すと
いう不都合がある。
This CVD method includes a thermal CVD method in which a target thin film is deposited on a vapor phase growth substrate, such as a wafer, by thermally decomposing a source gas on the surface of a vapor phase growth substrate under normal pressure or reduced pressure; The plasma CVD method, which converts raw material gas into plasma, is widely used. On the other hand, as semiconductor wafers become larger in diameter, forming thin films on them may lead to changes in characteristics due to thermal strain and deformation of the semiconductor wafer, the generation of defective products, and a decrease in reliability. In order to avoid this, it is desirable that the heating temperature of the wafer, that is, the substrate to be vapor-phase grown, be as low as possible when forming the thin film. However, ``double thermal decomposition C
In the case of the VD method, a high substrate temperature of 400°C to 700°C is required, and in particular, in the manufacturing process of semiconductor devices, for example, thin film formation, such as the formation of silicon polycrystals, by the CVD method is performed after depositing a low-melting-point deposited bottom layer. If this is attempted, the electric-wound metal layer may melt or soften, resulting in the inconvenience. In contrast, in the plasma CVD method,
Although the substrate temperature can be lowered to about 200 DEG C. to 300 DEG C., in this case there is a disadvantage that the substrate subjected to vapor phase growth, that is, the semiconductor wafer, is damaged by irradiation due to the impact caused by the plasma.

これに対して原料ガスに光エネルギーを与えてその気相
成長を行う光化学CVD法(セミコンダクタ・ワールド
(SeIItconductor Werld ) 1
98筑9’P105〜110参照)は、低温下での気相
成長が可能であり、また照射損傷の招来を来すことがな
いことから脚光を浴びるに至っている。
On the other hand, the photochemical CVD method (Semiconductor World) 1 performs vapor phase growth by applying light energy to the raw material gas.
98 Chiku 9' P105-110) has been attracting attention because it can be grown in a vapor phase at low temperatures and does not cause damage due to irradiation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように光化学CVD法による場合、低温例えば
300℃以下の例え″ば200℃での薄膜の気相成長が
可能となり、被気相成長基体が大口径半導体ウェファで
ある場合においても熱的変形あるいは歪みの発生を効果
的に回避できるという利点を有するものの、この場合そ
の反応室内の壁面、例えば光源の配置部、もしくは反応
室への光源部からの光導入窓部等の光導入部に反応生成
物の堆積或いは付着が生じると、これが光透過を阻害し
、光化学反応の効率を低下させ、ひいては被気相成長基
体上に生成された薄膜に膜質低下を招来する。
As mentioned above, when photochemical CVD is used, thin films can be grown in vapor phase at low temperatures, such as 300 degrees Celsius or lower, for example, 200 degrees Celsius, and thermal deformation can be achieved even when the substrate to be vapor phase grown is a large diameter semiconductor wafer. Alternatively, although it has the advantage of effectively avoiding the occurrence of distortion, in this case, the reaction occurs on the wall surface of the reaction chamber, for example, the light source placement area, or the light introduction part such as the light introduction window from the light source part to the reaction chamber. When product deposition or adhesion occurs, it obstructs light transmission and reduces the efficiency of photochemical reactions, which in turn leads to deterioration of the quality of the thin film produced on the vapor growth substrate.

例えば光化学反応を行わしめる紫外線、或いはレーザー
光照射を被気相成長基体表面ないしはその近傍で集光さ
せるようにするときは、被気相成長基体表面への生成物
の発生が効率良く行われ、他部での生成物の堆石ゴない
しは付着が可成り回避される。このことは熱分解による
薄膜形成法においてレーザービームを用いて特開昭56
−45759号公開公報にも開示されているところであ
る。しかじながら、上述した光化学反応において、紫外
線、或いはレーザー光の集光を基体表面で行うようにし
ても、実際上は、此処で生じた堆積種ないしは活性種が
時間経過と共に反応室内で広がって反応室の壁面、光導
入部に達して、此処に堆積物ないしは付着物を発生させ
るという現象が生じている。
For example, when ultraviolet rays or laser light irradiation that causes a photochemical reaction is focused on or near the surface of the substrate to be vapor-phase grown, products can be efficiently generated on the surface of the substrate to be vapor-phase-grown, Plaque or adhesion of the product on other parts is to a large extent avoided. This has been demonstrated in Japanese Patent Application Laid-Open No. 56-117 by using a laser beam in a thin film formation method by thermal decomposition.
This is also disclosed in Publication No. 45759. However, in the photochemical reaction described above, even if the ultraviolet rays or laser light is focused on the substrate surface, in reality, the deposited species or active species generated here will spread within the reaction chamber over time. A phenomenon occurs in which the light reaches the wall surface of the reaction chamber and the light introduction part, and deposits or attachments are generated there.

そして、このような不要部分への生成物の堆積ないしは
付着物を排除するための作業は可成り手間を要するもの
であり、特に光導入部については高清浄化が要求される
ことから、その例えば石英ガラスから成る窓ガラスを交
換するなどの方法がとられていて、ガラス窓の交換作業
の煩雑さや、価格が問題となっている。
The work to eliminate the accumulation of products or deposits on such unnecessary parts requires considerable effort, and in particular the light introduction part requires high cleaning. Methods such as replacing the window glass made of glass have been used, but the complexity and cost of replacing the glass windows have become problems.

本発明においては、このような問題点の解決を図り良好
に光の照射を行って確実に薄膜の気相成長を良質の膜と
して形成することができるようにする。
In the present invention, such problems are solved and light irradiation is performed well to ensure that a thin film can be formed as a high-quality film by vapor phase growth.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、上述したように、光導入部に対する
堆積物ないしは付着物の発生は、被気相成長半導体基体
面ないしはその近傍で光反応、例えば光解離により反応
した堆Wi種ないしは活性種が時間と共に反応室の壁面
に到達し、光導入部例えば反応室外からの光を導入する
窓、あるいは反応室内に配置された光源部の壁面に付着
するものであることに対処してこの堆積種ないしは活性
種の光導入部への到達前に反応炉中の排気を逐時行って
解離した堆積種ないしは活性種が光導入部に到達しにく
いようにするものである。
In the present invention, as described above, the generation of deposits or adhesion to the light introducing portion is caused by the presence of Wi species or active species that have reacted by photoreaction, for example, photodissociation, on or near the surface of the semiconductor substrate to be grown in vapor phase. These deposited species or particles reach the walls of the reaction chamber over time and adhere to the light introduction section, such as a window that introduces light from outside the reaction chamber, or the wall surface of a light source placed inside the reaction chamber. Before the active species reach the light introduction part, the reactor is evacuated in order to make it difficult for the dissociated deposited species or active species to reach the light introduction part.

すなわち、本発明は光化学気相成長による薄膜形成方法
において、被気相成長基体が配置される反応室への原料
ガスの供給と、光照射と、反応室の排気とをそれぞれ間
歇的に行い、原料ガスの供給の停止区間中に光照射停止
と排気とを行う。
That is, the present invention provides a method for forming a thin film by photochemical vapor deposition, in which supply of raw material gas to a reaction chamber in which a substrate to be vapor-deposited is disposed, light irradiation, and evacuation of the reaction chamber are performed intermittently, respectively. Light irradiation is stopped and exhaust is performed during the period in which the supply of raw material gas is stopped.

〔作用〕[Effect]

本発明方法によれば間歇的に原料ガスの供給の停止を行
い、その供給の停止区間中に光照射の停止と反応室の排
気とを行うようにしたことにょうて被気相成長基体上も
しくはその近傍で光反応によって生成された堆積種ない
しは活性種が被気相成長基体には到達し得るも、これが
拡散して光導入部に到達する以前にこれが排除されるこ
とから光導入部への堆積物ないしは付着物の発生が回避
されこれによって被気相成長基体上への光照射を効率よ
く行って、その光化学反応による薄膜形成を良好に行う
ことができ、ひいては良質の薄膜形成を所望の膜厚に形
成することができる。
According to the method of the present invention, the supply of raw material gas is stopped intermittently, and the light irradiation is stopped and the reaction chamber is evacuated during the period when the supply is stopped. Although deposited species or activated species generated by photoreaction in the vicinity of the substrate may reach the vapor phase growth substrate, they are diffused and removed before reaching the light introduction section. The generation of deposits or attachments is thereby avoided, and as a result, light irradiation onto the substrate to be vapor-phase grown can be performed efficiently, and thin film formation can be achieved through the photochemical reaction. It can be formed to a film thickness of .

〔実施例〕〔Example〕

第1図を参照して本発明の一実施例を詳細に説明する。 An embodiment of the present invention will be described in detail with reference to FIG.

図において(1)は反応室で、この反応室内に被気相成
長基体(2)、例えば半導体ウェファを載置し、これを
所要の温度例えば300℃以下の200℃に加熱するヒ
ーター等の加熱手段(3)を具備する配置台(4)上に
配置する。(5)は原料ガスの供給口で、原料ガス供給
源(6)に原料ガス供給の供給及びその供給の停止を行
う開閉手段(7)を介して連結される。
In the figure, (1) is a reaction chamber, in which a substrate (2) to be subjected to vapor phase growth, such as a semiconductor wafer, is placed, and a heater or the like is used to heat it to a required temperature, for example, 200°C below 300°C. It is placed on a placement stand (4) comprising means (3). Reference numeral (5) denotes a raw material gas supply port, which is connected to the raw material gas supply source (6) via an opening/closing means (7) for supplying and stopping the supply of raw material gas.

また、(8)は排気口で排気ポンプで連結されて反応室
内の排気がなされる。(9)は紫外光ランプあるいはエ
キシマレーザ−等の光源、(10)は反応室(1)に設
けられた窓で石英ガラ′ス等の光源(9)からの光を透
過する透明板が気密的に封着されて成る。この:g(1
0)は、例えばこれ自体がレンズ系とされるが、光源(
9)からの光路上にレンズ系が配置されて、光源(9)
からの光が被気相成長基体(2)の表面位置ないしはそ
の近傍上に集束するようになされている。
Further, (8) is an exhaust port connected by an exhaust pump to exhaust the inside of the reaction chamber. (9) is a light source such as an ultraviolet lamp or excimer laser, and (10) is a window provided in the reaction chamber (1), which is made of a transparent plate such as quartz glass that transmits the light from the light source (9) and is airtight. It is sealed and sealed. This: g(1
0) is itself considered to be a lens system, but the light source (
A lens system is placed on the optical path from the light source (9).
The light from the vapor phase growth substrate (2) is focused at or near the surface of the substrate (2).

また、窓(10)には、冷却水が供給される冷却パイプ
等の冷却手段(11)が配置されて窓(lO)における
冷却がなされる。
Further, a cooling means (11) such as a cooling pipe to which cooling water is supplied is arranged in the window (10) to cool the window (lO).

このような構成において、例えば多結晶シリコン膜を被
気相成長基体(2)上に気相成長させる場合においては
キャリアガスHzと共に原料ガスの例えばモノシランS
iH+を原料ガス供給口(5)から供給し、かつ被気相
成長基体(2)を例えば200℃に加熱手段(3)によ
って加熱する。そして一方光源(9)からの光の照射を
行う。このようにすれば、特に基体(2)の表面もしく
はその近傍で集束された光によって効率よく原料ガスが
光解離すなわち光化学反応をなして基体(2)上にシリ
コン薄膜の成長が行われるものであるが、特に本発明に
おいては第2図にその反応室(1)内における圧力プロ
グラミング図を示すように、時間経過と共に反応室(1
1内を所要の光化学CVDを行うに供する圧力p1に所
定区間τ1保持し、このとき光源(9)からの光照射を
行ってすなわち基体(2)上に薄膜の生成を行うも、次
の区間τ2において、まず光源(9)からの光照射を遮
断し続いて排気口(8)から排気ポンプを動作すること
によって反応室(1)内の排気を行って所要の圧力p2
に減圧する。その後、再び次の区間τ3において排気を
停止し原料ガスの供給をなし、光源(9)からの光照射
と共に原料ガスの供給を行い反応室(1)内を所要の圧
力p1となして基体(2)上への薄膜の気相成長を行う
。このような操作をくり返し行う。
In such a configuration, for example, when a polycrystalline silicon film is vapor-phase grown on the substrate (2) to be vapor-phase grown, a source gas such as monosilane S is used together with a carrier gas Hz.
iH+ is supplied from the raw material gas supply port (5), and the substrate (2) to be subjected to vapor phase growth is heated to, for example, 200° C. by the heating means (3). On the other hand, light is irradiated from the light source (9). In this way, the silicon thin film can be grown on the substrate (2) by photodissociation, that is, a photochemical reaction, of the source gas efficiently by the light focused on or near the surface of the substrate (2). However, especially in the present invention, the pressure programming diagram in the reaction chamber (1) is shown in FIG.
1 is maintained at the pressure p1 for performing the required photochemical CVD for a predetermined period τ1, and at this time, light is irradiated from the light source (9) to form a thin film on the substrate (2). At τ2, first, the light irradiation from the light source (9) is cut off, and then the exhaust pump is operated from the exhaust port (8) to exhaust the inside of the reaction chamber (1) to the required pressure p2.
Reduce the pressure to After that, in the next section τ3, the exhaust is stopped and the raw material gas is supplied, and the raw material gas is supplied with light irradiation from the light source (9), and the inside of the reaction chamber (1) is brought to the required pressure p1, and the substrate ( 2) Perform vapor phase growth of a thin film on top. Repeat these operations.

尚、この気相成長に際しては、基体(2)上に均一な薄
膜生成を行うことができるように基体(2)はこれを回
転させるとか、その表面に沿う方向で互いに直交する2
方向に移動させて行う。
In addition, during this vapor phase growth, the substrate (2) is rotated so that a uniform thin film can be formed on the substrate (2), or two layers perpendicular to each other in the direction along the surface of the substrate (2) are rotated.
This is done by moving in the direction.

上述の方法によるCVDでは、反応室(1)内の窓(1
0)に堆積物の付着がなされず、数千人ないしは数μm
の薄膜形成を光照射に不都合を生じることなく行うこと
ができた。
In the CVD method described above, the window (1) in the reaction chamber (1) is
0), no deposits are attached, several thousand or several μm
It was possible to form a thin film without causing any inconvenience to light irradiation.

尚、上述した例においては、光源(9)を反応室(1)
外に設けた場合であるが、反応室+1)内に設ける場合
においてもの光源の壁面ないしは光源の窓すなわち導入
部における堆積物ないしは付着物の発生を回避すること
ができる。
In the above example, the light source (9) is connected to the reaction chamber (1).
When the light source is installed outside, but when it is installed inside the reaction chamber +1), it is possible to avoid the occurrence of deposits or adhesion on the wall surface of the light source or the window or introduction part of the light source.

尚、上述した例においてはシリコン薄膜の形成に本発明
方法を通用した場合であるが、その他各種薄膜形成に本
発明方法を適用することができる。
In the above example, the method of the present invention is applied to the formation of a silicon thin film, but the method of the present invention can be applied to the formation of various other thin films.

また、光源(9)からの光を基体(2) J:に集束さ
せる光学レンズ系として例えば凹レンズ系と凸レンズ系
との組合せによる複合レンズ系を用い両者間の間隔を変
化させてその基体(2)上での照射位置を移動させると
共にさらに基体(2)の配置台(4)を回転させる機能
を持たしめてその薄膜の気相成長を基体(2)上に均一
に行うようにすることもできる。
Further, as an optical lens system for focusing the light from the light source (9) on the base (2) J:, for example, a compound lens system consisting of a combination of a concave lens system and a convex lens system is used, and the distance between the two is changed. ) It is also possible to provide a function to move the irradiation position on the substrate (2) and further rotate the placement table (4) of the substrate (2) so that the thin film can be vapor-phase grown uniformly on the substrate (2). .

また図示の例では反応室(1)内の下部に被気相成長基
体(2)を配置し、上方から原料ガスの供給を行うよう
にしたものであるが、その配置関係は種々変更すること
ができるものであり、例えば基体(2)を上方に、その
薄膜形成面を下向きに配置して、原料ガス供給部を他部
の例えば下方に配置することもできる。
In addition, in the illustrated example, the vapor phase growth substrate (2) is arranged at the lower part of the reaction chamber (1), and the raw material gas is supplied from above, but the arrangement may be changed in various ways. For example, the substrate (2) can be placed upward, with its thin film forming surface facing downward, and the raw material gas supply section can be placed below other parts, for example.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、光反応を行わしめる光
照射を被気相成長基体(2)上もしくはその近傍Eに行
わしめて基体(2)に薄膜の気相成長をなされるもので
あるが、時間と共にその堆積種ないしは活性種が拡散し
て反応室(1)の光源導入の窓(10)に広がっていく
以前に反応室(1)内から排気がなされて活性種の排除
が一旦なされるようにしたので、窓(10)及び反応室
(1)の壁面に対する堆M1種ないしは付着物の発生が
回避され、したがって基体(2)上に所要の15!厚を
確実に良質の薄膜として生成させることができると共に
この気相成長後に窓を清浄化するための清浄作業が極め
て簡易化され、窓の交換傾度を少くすることが出来て、
作業性の向上が図られる。・′
As described above, according to the present invention, a thin film is vapor-phase grown on the substrate (2) by irradiating light to cause a photoreaction on or in the vicinity E of the substrate (2) to be vapor-phase-grown. However, over time, the deposited species or active species diffuse and before they spread to the light source introduction window (10) of the reaction chamber (1), the reaction chamber (1) is evacuated and the active species are once removed. As a result, the generation of deposits M1 or deposits on the window (10) and the walls of the reaction chamber (1) is avoided, and therefore the required 15% deposits on the substrate (2) are avoided. In addition to being able to reliably produce a thin film of good quality, the cleaning work for cleaning the window after this vapor phase growth is extremely simplified, and the frequency of window replacement can be reduced.
Work efficiency is improved.・′

【図面の簡単な説明】 第1図は本発明方法を実施するYi’Rの一例の構成図
、第2図はその動作の説明図である。 +11は反応室、(2)は被気相成長基体、(3)は加
熱手段、(4)は配置台、(10)は窓、(9)は光源
、(8)は排気口である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an example of Yi'R that implements the method of the present invention, and FIG. 2 is an explanatory diagram of its operation. +11 is a reaction chamber, (2) is a substrate to be subjected to vapor phase growth, (3) is a heating means, (4) is a placement table, (10) is a window, (9) is a light source, and (8) is an exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 光化学気相成長による薄膜形成方法において、被気相成
長基体が配置される反応室への原料ガスの供給と、光照
射と、上記反応室の排気とをそれぞれ間歇的に行い、原
料ガスの供給の停止区間中に光照射停止と排気とを行う
ことを特徴とする光化学気相成長による薄膜形成方法。
In a method for forming a thin film by photochemical vapor deposition, supply of a raw material gas to a reaction chamber in which a substrate to be vapor-deposited is placed, irradiation with light, and exhaust of the reaction chamber are performed intermittently, respectively, and supply of the raw material gas. A method for forming a thin film by photochemical vapor deposition, characterized in that light irradiation is stopped and exhaust is performed during a stop period.
JP6629387A 1987-03-20 1987-03-20 Formation of thin-film through photochemical vapor growth Pending JPS63232416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6629387A JPS63232416A (en) 1987-03-20 1987-03-20 Formation of thin-film through photochemical vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6629387A JPS63232416A (en) 1987-03-20 1987-03-20 Formation of thin-film through photochemical vapor growth

Publications (1)

Publication Number Publication Date
JPS63232416A true JPS63232416A (en) 1988-09-28

Family

ID=13311631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6629387A Pending JPS63232416A (en) 1987-03-20 1987-03-20 Formation of thin-film through photochemical vapor growth

Country Status (1)

Country Link
JP (1) JPS63232416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027191A (en) * 2012-07-30 2014-02-06 Hitachi High-Technologies Corp Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065525A (en) * 1983-09-21 1985-04-15 Toshiba Corp Method of photo chemical vapor deposition and device therefor
JPS6197912A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Cvd equipment
JPS61174380A (en) * 1985-01-30 1986-08-06 Nec Corp Photo cvd thin film forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065525A (en) * 1983-09-21 1985-04-15 Toshiba Corp Method of photo chemical vapor deposition and device therefor
JPS6197912A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Cvd equipment
JPS61174380A (en) * 1985-01-30 1986-08-06 Nec Corp Photo cvd thin film forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027191A (en) * 2012-07-30 2014-02-06 Hitachi High-Technologies Corp Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPS61127121A (en) Formation of thin film
JPS6140035B2 (en)
JPS63232416A (en) Formation of thin-film through photochemical vapor growth
JP4094127B2 (en) Amorphous silicon production equipment
JPS61183921A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH02208925A (en) Formation of semiconductor film
JPS63228718A (en) Photochemical vapor growth equipment
JPS63308910A (en) Manufacture of thin film applying energy beam irradiation and its equipment
JP5026248B2 (en) Method for producing amorphous silicon thin film
JPH0689455B2 (en) Thin film formation method
JP3112521B2 (en) Optical excitation process equipment
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPH01115118A (en) Low pressure cvd system
JPH09139355A (en) Laser annealing apparatus
JPH09301800A (en) Laser annealing device
JPS6118125A (en) Thin film forming apparatus
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPS6246515A (en) Thin film forming method
JPS6394613A (en) Manufacture of polycrystalline thin film
JPS61196528A (en) Thin film forming apparatus
JPH0638402B2 (en) Gas phase reaction vessel
JPH0336272A (en) Photo-cvd device
JPH03237731A (en) Method and apparatus for vapor growth