JP2014027191A - Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film - Google Patents

Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film Download PDF

Info

Publication number
JP2014027191A
JP2014027191A JP2012167922A JP2012167922A JP2014027191A JP 2014027191 A JP2014027191 A JP 2014027191A JP 2012167922 A JP2012167922 A JP 2012167922A JP 2012167922 A JP2012167922 A JP 2012167922A JP 2014027191 A JP2014027191 A JP 2014027191A
Authority
JP
Japan
Prior art keywords
reaction chamber
photo
cvd film
film
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012167922A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mine
利之 峰
Masashige Fujimori
正成 藤森
Eiji Matsuzaki
永二 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012167922A priority Critical patent/JP2014027191A/en
Priority to TW102121717A priority patent/TW201404926A/en
Priority to CN201310323455.2A priority patent/CN103572262A/en
Priority to KR1020130089855A priority patent/KR20140016198A/en
Publication of JP2014027191A publication Critical patent/JP2014027191A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing apparatus of a photo-CVD film capable of facilitating further improvement of uniformity of film thickness.SOLUTION: A manufacturing of a phot-CVD film includes (a) step of introducing material gas of the photo-CVD film to a reaction chamber that deposits the photo-CVD film and setting the reaction chamber at a predetermined pressure, (b) step of terminating the introduction of the material gas to the reaction chamber and emission of the material gas from the reaction chamber and radiating light to the reaction chamber, and (c) step of terminating the irradiation and emitting the material gas from the reaction chamber, and steps (a) to (C) are repeated multiple times.

Description

本発明は光CVD膜の製造方法、及び光CVD膜の製造装置に関する。   The present invention relates to a photo-CVD film manufacturing method and a photo-CVD film manufacturing apparatus.

有機エレクトロルミネッセンス(以下有機EL)素子は、低電力、自発光、高速応答など数多くのメリットを有しており、フラットパネルディスプレイ(FPD)や照明機器への応用に向けた開発が進められている。また、樹脂基板(樹脂フィルム含む)などのフレキシブル基板を用いることで、曲がる、軽い、割れない等の新たな付加価値が創生されており、有機EL素子のフレキシブル機器への応用も検討されている。   Organic electroluminescence (hereinafter referred to as organic EL) elements have many advantages such as low power, self-emission, and high-speed response, and are being developed for application to flat panel displays (FPDs) and lighting equipment. . In addition, by using flexible substrates such as resin substrates (including resin films), new added values such as bending, lightness, and no cracking have been created, and application of organic EL elements to flexible devices is also being considered. Yes.

有機EL素子は水分や酸素に接すると発光効率の低下や寿命劣化が起こるため、製造過程から水分や酸素を排除する必要がある。一方、樹脂基板などのフレキシブル基板では、水分の吸収に伴う寸法変動を抑制する必要がある。以上の理由から、有機EL素子は、その樹脂基板の表裏にバリア膜を形成している。ここで、バリア膜とは、外部から有機EL素子や樹脂基板に進入する水分や酸素を防止する膜を示しており、水分や酸素の拡散を抑制するために、膜密度が大きい薄膜が用いられる。バリア膜の具体的な材料としては、シリコン窒化膜(以下、「Si窒化膜」)やアルミナ膜等が用いられる。   Since organic EL devices come into contact with moisture and oxygen, the luminous efficiency decreases and the lifetime deteriorates. Therefore, it is necessary to exclude moisture and oxygen from the manufacturing process. On the other hand, in a flexible substrate such as a resin substrate, it is necessary to suppress dimensional variations associated with moisture absorption. For the above reasons, the organic EL element has barrier films formed on the front and back of the resin substrate. Here, the barrier film refers to a film that prevents moisture and oxygen from entering the organic EL element and the resin substrate from the outside, and a thin film having a high film density is used to suppress diffusion of moisture and oxygen. . As a specific material of the barrier film, a silicon nitride film (hereinafter, “Si nitride film”), an alumina film, or the like is used.

有機EL素子の封止膜には、水分、酸素の拡散防止は勿論であるが、(1)低温成膜(有機EL劣化防止)、(2)低ダメージ(有機EL劣化防止)、(3)低応力、低ヤング率(剥がれ防止)、(4)高透過率(輝度劣化防止)等が求められる。これに対し、上述したバリア膜の各材料は、膜が硬く(ヤング率が大きい)、膜応力も大きいため、厚い膜を用いると膜剥がれやクラックが発生する課題がある。   The sealing film of the organic EL element, of course, prevents diffusion of moisture and oxygen, but (1) low temperature film formation (prevents organic EL deterioration), (2) low damage (prevents organic EL deterioration), (3) Low stress, low Young's modulus (preventing peeling), (4) high transmittance (preventing luminance deterioration), etc. are required. On the other hand, each material of the barrier film described above has a problem that film peeling or cracking occurs when a thick film is used because the film is hard (Young's modulus is large) and the film stress is large.

そこで、有機EL素子の封止膜の構造として最も注目されているのが、積層薄膜構造である。これは、目的が異なる複数の薄膜を複数層形成した構造であり、バリア膜と、バリア膜の応力を緩和する薄膜(バッファ膜)とを複数積層した構造が知られている。バッファ膜に要求される項目は、下地の平坦化や表面に付着した異物の影響を抑制するために埋め込み性能に優れていること、および、膜が軟らかく(ヤング率が小さい)膜応力が小さいことである。バッファ膜の具体的な材料としては、炭素を含んだシリコン酸化膜等がある。   Therefore, the multilayer thin film structure has been attracting the most attention as the structure of the sealing film of the organic EL element. This is a structure in which a plurality of thin films having different purposes are formed, and a structure in which a plurality of barrier films and a plurality of thin films (buffer films) that relieve the stress of the barrier film are stacked is known. Items required for the buffer film are excellent embedding performance in order to suppress the influence of foreign matter adhering to the surface and surface flatness, and the film must be soft (low Young's modulus) and low in film stress. It is. Specific examples of the buffer film include a silicon oxide film containing carbon.

特許文献1には、このような積層薄膜構造の封止膜が開示されている。封止膜の製造方法としては、プラズマCVD法、光CVD法、スパッタ法、蒸着法等、各種成膜方法が提案されており、その代表例としては、バリア膜とバッファ膜を連続して形成する真空紫外光を用いた光CVD法が挙げられている。   Patent Document 1 discloses a sealing film having such a laminated thin film structure. Various film-forming methods such as plasma CVD, photo-CVD, sputtering, and vapor deposition have been proposed as methods for manufacturing the sealing film, and typical examples include a barrier film and a buffer film formed continuously. The photo-CVD method using vacuum ultraviolet light is mentioned.

光CVD膜の製造装置としては、特許文献2および3がある。特許文献2の製造装置においては、原料ガスは、試料(被処理物)の横方向から導入される。また、特許文献3の製造装置においては、試料上部の透過窓を複数に分割し、各透過窓の間に複数のガス導入口を設けることにより、試料の上方向から原料ガスが導入される。   There are Patent Documents 2 and 3 as apparatuses for producing a photo-CVD film. In the manufacturing apparatus of Patent Document 2, the source gas is introduced from the lateral direction of the sample (object to be processed). Moreover, in the manufacturing apparatus of Patent Document 3, the source gas is introduced from above the sample by dividing the transmission window above the sample into a plurality of parts and providing a plurality of gas inlets between the transmission windows.

特開2005−63850号公報JP 2005-63850 A 特開2005−340702号公報JP-A-2005-340702 特開2012−12628号公報JP2012-12628A

一般的なCVD装置は、原料ガスの導入機構、ガス排気機構、自動圧力制御(APC)機構を備えており、以下のような工程で、光CVD膜を成膜する。(1)真空排気した反応室に、ガス導入バルブを介して一定量の原料ガスを導入する。(2)APCバルブを調整して、圧力センサが所定の圧力になるように設定する。(3)真空紫外光ランプを点灯して光照射による成膜を開始する。(4)所定の時間になったら、真空紫外光ランプを消灯して、反応室を真空排気する。ここで、工程(3)においては、原料ガスを導入しながら反応室のガス圧力が一定になるように排気量を制御する。そのため、反応室にはガスの流れ、すなわち原料ガスの濃度分布が存在する。CVD法における成膜速度は、ガス濃度にも依存性するため、膜厚均一性を向上させるには、ガス濃度分布を均一にする必要がある。特に、光CVD法においては、原料ガスが直接光を吸収することで分解・反応が進むため、成膜速度はガスの流れやガス濃度に大きく依存する傾向を示す。   A general CVD apparatus includes a source gas introduction mechanism, a gas exhaust mechanism, and an automatic pressure control (APC) mechanism, and forms a photo-CVD film in the following steps. (1) A certain amount of source gas is introduced into the evacuated reaction chamber via a gas introduction valve. (2) Adjust the APC valve to set the pressure sensor to a predetermined pressure. (3) The vacuum ultraviolet lamp is turned on to start film formation by light irradiation. (4) When the predetermined time comes, the vacuum ultraviolet lamp is turned off and the reaction chamber is evacuated. Here, in the step (3), the exhaust amount is controlled so that the gas pressure in the reaction chamber becomes constant while introducing the raw material gas. Therefore, a gas flow, that is, a concentration distribution of the source gas exists in the reaction chamber. Since the deposition rate in the CVD method also depends on the gas concentration, it is necessary to make the gas concentration distribution uniform in order to improve the film thickness uniformity. In particular, in the photo-CVD method, since the source gas directly absorbs light and the decomposition and reaction proceed, the film formation rate tends to greatly depend on the gas flow and gas concentration.

このような依存性の具体例を図7に示す。図7は、特許文献2のように横方向にガス導入口がある光CVD膜の製造装置において、直径300mmの試料に光CVD膜を成膜した時の膜厚均一性を示しており、特に、原料ガスの供給量を一定として、反応室のガス圧力だけを変えたときの膜厚均一性を示している。図7から、ガス圧力によって膜厚均一性が大きく変動することが分かる。図8に、ガス圧力を60Paで成膜した時の膜厚分布(%)を示す。数値は試料内の平均膜厚に対する分布を示しており、個々の等高線の間隔が2%の膜厚バラツキに対応する。図の矢印は、試料上の原料ガスの流れ方向を示している。膜厚は、ガス導入側(図8の左下側)から排気側(図8の右上側)に向かって厚くなる傾向を示す。このように、光CVD膜の膜厚は、原料ガスの流れやガス濃度に大きく依存する特徴を示す。   A specific example of such dependency is shown in FIG. FIG. 7 shows the film thickness uniformity when a photo-CVD film is formed on a sample having a diameter of 300 mm in a photo-CVD film manufacturing apparatus having a gas inlet port in the horizontal direction as in Patent Document 2. The film thickness uniformity is shown when only the gas pressure in the reaction chamber is changed while the supply amount of the source gas is constant. From FIG. 7, it can be seen that the film thickness uniformity varies greatly depending on the gas pressure. FIG. 8 shows the film thickness distribution (%) when the gas pressure is 60 Pa. The numerical value shows the distribution with respect to the average film thickness in the sample, and corresponds to the film thickness variation in which the interval between the individual contour lines is 2%. The arrows in the figure indicate the flow direction of the source gas on the sample. The film thickness tends to increase from the gas introduction side (lower left side in FIG. 8) toward the exhaust side (upper right side in FIG. 8). As described above, the film thickness of the photo-CVD film shows a feature that greatly depends on the flow of the source gas and the gas concentration.

このような成膜方法でも、例えば10mm x 10mmクラスのように小さいサイズの試料であれば、ガス圧力の最適化や試料を回転させることで、ある程度は膜厚の均一性を確保する余地もある。しかし、第8世代(2200mm x 2500mm)のフラットパネルのガラス基板のように試料のサイズが大きくなると、圧力の最適化だけで膜厚の均一性を確保することは困難である。また、大型ガラス基板を回転させて成膜することも現実的ではない。   Even in such a film formation method, for example, a sample of a small size such as a 10 mm × 10 mm class, there is room for ensuring a certain degree of film thickness uniformity by optimizing the gas pressure and rotating the sample. . However, when the size of the sample becomes large like an 8th generation (2200 mm × 2500 mm) flat panel glass substrate, it is difficult to ensure film thickness uniformity only by optimizing the pressure. In addition, it is not realistic to form a film by rotating a large glass substrate.

これに対し、特許文献3の光CVD膜の製造装置は、より大型のガラス基板にも対応しやすい構造となっている。図9に、特許文献3に記載の製造装置による膜厚の場所依存性について、本願発明者が検討した結果を示す。図9は、原料ガスの流れ方向に対する膜厚分布を示した図である。原料ガスは、一定の間隔で配置されたG1〜G5の上部から供給されるものとする。処理室に供給された原料ガスは、光による分解・反応が進むガスの流れ方向に向かって成膜速度は大きくなるが、ガスが消費されると成膜速度は小さくなる。すなわち、成膜される膜厚は、ガス導入部を基点としてガスの流れ方向に正弦波のような分布になる。図9では、奇数番号(G1、G3、G5)のガス導入口による膜厚分布を細い実線で、偶数番号(G2、G4)のガス導入口による膜厚分布を破線で示している。細い線と破線を足し合わせた膜厚が太い実線で示した膜厚で、実際の試料上の膜厚となる。つまり、膜厚分布がガスの流れ方向に対して正弦波形状の分布になるとすれば、その正弦波の半周期の位置にガス導入口を設けると大型ガラス基板においても、ある程度の膜厚均一性を確保できる。図9はガスの流れ方向(X方向)だけのガス導入位置を示したが(1次元表示)、実際にはガスの流れに対して垂直方向(Y軸方向)にもガスの導入位置が必要なので、ガス導入位置は一定の間隔を設けた2次元の配置になる。   On the other hand, the photo-CVD film manufacturing apparatus of Patent Document 3 has a structure that can easily cope with a larger glass substrate. FIG. 9 shows the results of the study by the inventor of the present invention regarding the location dependence of the film thickness by the manufacturing apparatus described in Patent Document 3. FIG. 9 is a diagram showing the film thickness distribution with respect to the flow direction of the source gas. The source gas is assumed to be supplied from the upper part of G1 to G5 arranged at regular intervals. The source gas supplied to the processing chamber has a film forming rate that increases in the gas flow direction in which decomposition and reaction by light proceeds. However, when the gas is consumed, the film forming rate decreases. That is, the film thickness to be formed has a distribution like a sine wave in the gas flow direction with the gas introduction portion as a base point. In FIG. 9, the film thickness distribution by the gas inlets of odd numbers (G1, G3, G5) is indicated by a thin solid line, and the film thickness distribution by the gas inlets of even numbers (G2, G4) is indicated by a broken line. The film thickness obtained by adding the thin line and the broken line is the film thickness indicated by the thick solid line, which is the actual film thickness on the sample. In other words, if the film thickness distribution is a sinusoidal distribution with respect to the gas flow direction, a certain degree of film thickness uniformity can be achieved even on a large glass substrate by providing a gas inlet at the half-cycle position of the sine wave. Can be secured. Although FIG. 9 shows the gas introduction position only in the gas flow direction (X direction) (one-dimensional display), in reality, the gas introduction position is also required in the direction perpendicular to the gas flow (Y axis direction). Therefore, the gas introduction position is a two-dimensional arrangement with a constant interval.

以上で説明した通り、特許文献3のように試料の上方向から原料ガスを導入する光CVD膜の製造装置によれば、特許文献2のように横方向から原料ガスを導入する光CVD膜の製造装置と比較して、膜厚の均一性を向上することが可能となる。しかしながら、特許文献3に示す方法においては、ガス導入口の配置が膜厚均一性を大きく左右することになる。つまり、透過窓と透過窓の間からガスを導入する必要があるため、透過窓の形状、大きさ、配置には制限が設けられる。言い換えれば、特許文献3に係る光CVD膜の成膜装置は、成膜条件をガス導入位置に合わせた範囲でしか検討できない課題がある。   As described above, according to the photo CVD film manufacturing apparatus for introducing the source gas from above the sample as in Patent Document 3, the photo CVD film for introducing the source gas from the lateral direction as in Patent Document 2 is used. Compared with the manufacturing apparatus, it becomes possible to improve the uniformity of the film thickness. However, in the method shown in Patent Document 3, the arrangement of the gas inlets greatly affects the film thickness uniformity. That is, since it is necessary to introduce gas from between the transmission window and the transmission window, there are restrictions on the shape, size, and arrangement of the transmission window. In other words, the photo-CVD film deposition apparatus according to Patent Document 3 has a problem that can be studied only within a range in which the deposition conditions are matched with the gas introduction position.

よって、特許文献2のように横方向から原料ガスを導入するとしても、膜厚の均一性を向上することが可能となり、特許文献3のように試料の上方向から原料ガスを導入するとしても、ガス導入口の配置の制限を緩和する技術が必要となる。以上を踏まえ本願発明の目的は、より膜厚の均一性を向上することが容易となる光CVD膜の製造方法または製造装置を提供することにある。   Therefore, even if the source gas is introduced from the lateral direction as in Patent Document 2, it is possible to improve the uniformity of the film thickness, and even if the source gas is introduced from above the sample as in Patent Document 3. In addition, a technology that relaxes restrictions on the arrangement of gas inlets is required. In light of the above, an object of the present invention is to provide a method or an apparatus for producing a photo-CVD film that makes it easier to improve film thickness uniformity.

本願発明による課題を解決する手段のうち代表的なものを例示すれば、光CVD膜の製造方法であって、(a)光CVD膜を成膜する反応室に光CVD膜の原料ガスを導入し、反応室を所定の圧力にする工程と、(b)工程(a)の後に、原料ガスの反応室への導入、および、原料ガスの前記反応室からの排気を停止し、反応室に光を照射する工程と、(c)工程(b)の後に、前記照射を停止し、その後反応室を排気する工程と、を有し、工程(a)から工程(c)を複数回繰り返すことを特徴とする。   A representative example of means for solving the problems according to the present invention is a method for manufacturing a photo-CVD film, and (a) introducing a source gas of the photo-CVD film into a reaction chamber for forming the photo-CVD film. And (b) after step (a), the introduction of the source gas into the reaction chamber and the exhaust of the source gas from the reaction chamber are stopped, A step of irradiating light, and (c) after step (b), stopping the irradiation and then evacuating the reaction chamber, and repeating steps (a) to (c) a plurality of times. It is characterized by.

または、光CVD膜の製造装置であって、基板を設置する反応室と、反応室の外部から光を照射する光源部と、光を反応室へ透過させる透過窓と、反応室へ光CVD膜の原料ガスを導入する第1ガス導入バルブと、反応室に接続され、反応室を排気する第1排気バルブと、第1排気バルブを介して反応室に接続され、反応室を排気する第2排気バルブと、を有することを特徴とする。   Alternatively, a photo-CVD film manufacturing apparatus, a reaction chamber in which a substrate is installed, a light source unit that emits light from outside the reaction chamber, a transmission window that transmits light to the reaction chamber, and a photo-CVD film to the reaction chamber A first gas introduction valve that introduces the source gas, a first exhaust valve that is connected to the reaction chamber and exhausts the reaction chamber, and a second exhaust gas that is connected to the reaction chamber via the first exhaust valve and exhausts the reaction chamber. And an exhaust valve.

または、光CVD膜の製造装置であって、基板を設置する反応室と、反応室の外部から光を照射する光源部と、光を反応室へ透過させる透過窓と、反応室へ光CVD膜の原料ガスを導入する第1ガス導入バルブと、反応室に接続され、反応室を排気する複数の第1排気バルブと、複数の第1排気バルブを介して反応室に接続され、前記複数の第1排気バルブよりも径が大きい第2排気バルブと、を有することを特徴とする。   Alternatively, a photo-CVD film manufacturing apparatus, a reaction chamber in which a substrate is installed, a light source unit that emits light from outside the reaction chamber, a transmission window that transmits light to the reaction chamber, and a photo-CVD film to the reaction chamber A first gas introduction valve for introducing the source gas, a plurality of first exhaust valves connected to the reaction chamber and exhausting the reaction chamber, and connected to the reaction chamber via a plurality of first exhaust valves, And a second exhaust valve having a larger diameter than the first exhaust valve.

本願発明によれば、より膜厚の均一性の向上を容易とした、光CVD膜の製造方法または製造装置を提供しうる。   According to the present invention, it is possible to provide a manufacturing method or a manufacturing apparatus for a photo-CVD film that facilitates the improvement of film thickness uniformity.

実施例1に係る光CVD膜の製造装置を示す図である。1 is a view showing a photo-CVD film manufacturing apparatus according to Example 1. FIG. 実施例1に係る光CVD膜の製造方法を示す図である。6 is a diagram illustrating a method of manufacturing a photo-CVD film according to Example 1. FIG. 光CVD膜の成膜速度の、反応室の圧力に対する依存性を示す図である。It is a figure which shows the dependence of the film-forming speed | rate of a photo-CVD film with respect to the pressure of a reaction chamber. 実施例2に係る光CVD膜の製造装置を示す図である。6 is a view showing a photo-CVD film manufacturing apparatus according to Example 2. FIG. 実施例3に係る光CVD膜の製造装置を示す図である。6 is a view showing a photo-CVD film manufacturing apparatus according to Example 3. FIG. 実施例3に係る光CVD膜の製造方法を示す図である。6 is a view showing a method for producing a photo-CVD film according to Example 3. FIG. 光CVD膜の膜厚均一性に関する課題を説明する図である。It is a figure explaining the subject regarding the film thickness uniformity of a photo-CVD film. 光CVD膜の膜厚分布に関する課題を説明する図である。It is a figure explaining the subject regarding the film thickness distribution of a photo-CVD film. 光CVD膜の膜厚分布に関する課題を説明する図である。It is a figure explaining the subject regarding the film thickness distribution of a photo-CVD film. 実施例1に係る製造方法により製造した光CVD膜の膜厚分布を示す図である。6 is a view showing a film thickness distribution of a photo-CVD film manufactured by the manufacturing method according to Example 1. FIG.

図1は、実施例1に係る光CVD膜の製造装置の概要である。装置は、光CVD膜を成膜する反応室501、試料サセプタ502、試料503、透過窓504、真空紫外光(VUV:Vacuum Ultraviolet)ランプ505、光CVD膜の原料ガスを導入する原料ガス導入バルブ506、反応室圧力センサ507、原料ガスを反応室から排気するための排気配管508、排気バルブ509、自動圧力制御(APC)バルブ(APC:Auto Pressure Control)510、および、真空ポンプ514で構成されており、特許文献2に記載の光CVD膜の製造装置と同様に、原料ガス導入バルブ506が試料503に対して横方向にある。但し、本実施例に係る発明は光CVD膜の製造方法に特徴があるものであり、光CVD膜の製造装置の構成はこれに限定される訳ではない。特許文献3に記載のものと同様、試料503に対して上方向に原料ガス導入バルブを設けた光CVD膜の製造装置と、本実施例に係る光CVD膜の成膜方法とを組み合わせることで、より膜厚の均一性を向上することも可能である。本実施例では、VUVランプ505にXe2エキシマランプ(波長=172nm)を、原料ガスに有機シリコンソースのOMCTS(Octo methyl cyclotetrasiloxane)を用いて成膜を行った。但し、OMCTSを一例として挙げているが、これらは好適例の1つであり、原料ガスは、この原料ガスに限定されるものではない。OMCTSと同様の効果を得るガスとしては、TEOS(Tetra ethoxy silane)と酸素、HMDSO(Hexa methyl disiloxane)等がある。なお、反応室501の壁と透過窓504は、反応物の付着を抑制するために120℃に加熱した。一方、試料サセプタ502の温度は、チラーにより30℃に制御した。 FIG. 1 is an outline of a photo-CVD film manufacturing apparatus according to the first embodiment. The apparatus includes a reaction chamber 501 for forming a photo CVD film, a sample susceptor 502, a sample 503, a transmission window 504, a vacuum ultraviolet light (VUV) lamp 505, and a source gas introduction valve for introducing a source gas of the photo CVD film. 506, reaction chamber pressure sensor 507, exhaust pipe 508 for exhausting source gas from the reaction chamber, exhaust valve 509, automatic pressure control (APC) valve (APC) 510, and vacuum pump 514 As in the optical CVD film manufacturing apparatus described in Patent Document 2, the source gas introduction valve 506 is lateral to the sample 503. However, the invention according to the present embodiment is characterized by the method of manufacturing the photo-CVD film, and the configuration of the photo-CVD film manufacturing apparatus is not limited to this. Similar to the one described in Patent Document 3, by combining the photo CVD film manufacturing apparatus provided with the source gas introduction valve in the upward direction with respect to the sample 503, and the photo CVD film forming method according to this embodiment, It is also possible to improve the uniformity of the film thickness. In this example, a film was formed using a Xe 2 excimer lamp (wavelength = 172 nm) as the VUV lamp 505 and OMCTS (Octo methyl cyclotetrasiloxane) as an organic silicon source as the source gas. However, although OMCTS is mentioned as an example, these are one of the preferred examples, and the source gas is not limited to this source gas. Gases that have the same effect as OMCTS include TEOS (Tetra ethoxy silane) and oxygen, HMDSO (Hexa methyl disiloxane), and the like. Note that the walls of the reaction chamber 501 and the transmission window 504 were heated to 120 ° C. in order to suppress the adhesion of the reactants. On the other hand, the temperature of the sample susceptor 502 was controlled at 30 ° C. by a chiller.

上述した通り、光CVD法においては、成膜速度が原料ガスの流れやガス濃度に大きく依存する。逆に言えば、反応室内における原料ガスの導入または排気に起因する流れが無く、ガス濃度分布が均一であれば成膜速度は均一になる。これを実現するには、反応室にガスを閉じ込めた状態で光を照射すればよい。そのためには、反応室内の圧力を所望の圧力にする工程と、原料ガスの流れを停止した状態で所望の時間光照射を行う工程と、真空排気を行う工程を繰り返すことで、光CVD膜を成膜する方法が有効である。   As described above, in the photo-CVD method, the film formation rate greatly depends on the flow of the source gas and the gas concentration. In other words, if there is no flow caused by the introduction or exhaust of the source gas in the reaction chamber and the gas concentration distribution is uniform, the film formation rate becomes uniform. In order to realize this, light may be irradiated in a state where gas is confined in the reaction chamber. For this purpose, by repeating the steps of bringing the pressure in the reaction chamber to a desired pressure, the step of irradiating light for a desired time with the flow of the source gas stopped, and the step of evacuating the photo-CVD film, A film forming method is effective.

以上を踏まえ、実施例1に係る光CVD膜の製造方法を図2に示す。図2に係る光CVD膜の製造方法は、(a)光CVD膜を成膜する反応室に光CVD膜の原料ガスを導入し、反応室を所定の圧力にする工程と、(b)工程(a)の後に、原料ガスの反応室への導入、および、原料ガスの反応室からの排気を停止し、反応室に光を照射する工程と、(c)工程(b)の後に、照射を停止し、その後反応室を排気する工程と、を有し、工程(a)から工程(c)を複数回繰り返すことを特徴とする。   Based on the above, a method for producing a photo-CVD film according to Example 1 is shown in FIG. The method for producing a photo-CVD film according to FIG. 2 includes: (a) introducing a source gas of the photo-CVD film into a reaction chamber for forming the photo-CVD film to bring the reaction chamber to a predetermined pressure; and (b) a process. After (a), introducing the source gas into the reaction chamber, stopping the exhaust of the source gas from the reaction chamber, irradiating the reaction chamber with light, (c) irradiating after step (b) And then evacuating the reaction chamber, and the steps (a) to (c) are repeated a plurality of times.

図10に、本実施例の製造方法によって成膜した光CVD膜の膜厚分布を示す。光照射時のガス圧力は、図8と同様に60Paとした。図10に図示した光CVD膜の膜厚の均一性は、図8と比較して飛躍的に向上している。このように、本実施例に係る光CVD膜の製造方法を行うことで、光CVD膜の膜厚均一性を飛躍的に向上することが可能となる。   FIG. 10 shows the film thickness distribution of the photo-CVD film formed by the manufacturing method of this example. The gas pressure at the time of light irradiation was set to 60 Pa as in FIG. The uniformity of the film thickness of the photo-CVD film shown in FIG. 10 is dramatically improved as compared with FIG. As described above, by performing the method of manufacturing the photo-CVD film according to the present embodiment, it is possible to dramatically improve the film thickness uniformity of the photo-CVD film.

さらに、本実施例に係る製造方法で光CVD膜の成膜を行うと、膜厚均一性が向上する大きな利点だけでなく、原料ガスの導入位置の制限、つまり透過窓の設置制限を緩和できる利点もある。   Furthermore, when the photo-CVD film is formed by the manufacturing method according to this embodiment, not only the great advantage of improving the film thickness uniformity but also the restriction of the introduction position of the source gas, that is, the installation restriction of the transmission window can be relaxed. There are also advantages.

さらに、より好適には、工程(a)における所定の圧力が、光CVD膜の成膜速度が最大になる圧力より低いことをさらなる特徴とする。光CVD法には、ガス種毎に、成膜速度が最大になる反応室の圧力が存在する。図3はこの様子を図示しており、横軸は反応室の圧力、縦軸は光CVD膜の成膜速度である。例えばガス種Aにおいては約70Pa、ガス種Bにおいては約100Paというように、具体的な反応室の圧力は異なるが、それぞれのガス種毎に光CVD膜の成膜速度が最大となる反応室の圧力が存在する点は共通する。これは、光CVD膜の成膜反応において、原料ガス濃度の増大で分解・反応速度が進み、成膜速度が大きくなる成分と、原料ガス中の光吸収が大きくなり、試料基板に到達する光が減少し反応速度が低下する成分が共存するためである。従って、成膜速度が最大値を示す圧力以上で成膜を行うと、原料ガスの使用効率が低下することになる。その結果、反応室内に、成膜反応に使用されなかった原料ガスが残ることとなり、これが透過窓を曇らせ、反応効率を低下させる原因となる。よって、工程(a)における反応室の圧力は、この「光CVD膜の成膜速度が最大となる圧力」よりも低くするのが良い。   More preferably, it is further characterized in that the predetermined pressure in step (a) is lower than the pressure at which the deposition rate of the photo-CVD film is maximized. In the photo-CVD method, there is a reaction chamber pressure at which the deposition rate is maximized for each gas type. FIG. 3 illustrates this state, in which the horizontal axis represents the pressure in the reaction chamber, and the vertical axis represents the deposition rate of the photo-CVD film. For example, about 70 Pa for gas type A and about 100 Pa for gas type B, although the specific reaction chamber pressure is different, the reaction chamber in which the deposition rate of the photo-CVD film is maximized for each gas type. There is a common point in the presence of pressure. This is because, in the film formation reaction of the photo-CVD film, the decomposition / reaction rate progresses as the source gas concentration increases, the component that increases the film formation rate, and the light that reaches the sample substrate increases as the light absorption in the source gas increases. This is because components that reduce the reaction rate and decrease in reaction rate coexist. Therefore, if the film formation is performed at a pressure equal to or higher than the maximum value, the use efficiency of the source gas is lowered. As a result, the raw material gas that has not been used for the film formation reaction remains in the reaction chamber, which causes the permeation window to become cloudy and lowers the reaction efficiency. Therefore, the pressure in the reaction chamber in the step (a) is preferably lower than the “pressure at which the film formation rate of the photo-CVD film is maximized”.

上述の通り実施例1においては、製造装置の構成は特に限定されない。しかしながら、実施例1に係る光CVD膜の製造方法は、排気側のバルブを多数回、高速で開閉する工程(工程(a)および(c))を伴うため、開閉の際に異物が発生することも考えられる。そこで、製造装置が異物発生の抑制手段を有すれば、膜厚の均一化をより向上しうる。以上を踏まえ実施例2では、膜厚の均一性をより向上しうる光CVD膜の製造装置を説明する。   As described above, in the first embodiment, the configuration of the manufacturing apparatus is not particularly limited. However, the manufacturing method of the photo-CVD film according to Example 1 involves a step (steps (a) and (c)) of opening and closing the exhaust-side valve many times at high speed, and therefore foreign matter is generated during opening and closing. It is also possible. Therefore, if the manufacturing apparatus has a foreign matter generation suppressing means, the uniformity of the film thickness can be further improved. In light of the above, Example 2 describes an apparatus for manufacturing a photo-CVD film that can further improve the uniformity of the film thickness.

図4に、実施例2に係る光CVD膜の製造装置の概要を示す。図4は、大きい排気配管108とAPC(APC:Auto Pressure Control)バルブ110、111を2つ有する光CVD膜の製造装置である。装置構成は、反応室101、試料サセプタ102、試料103、透過ガラス104、真空紫外光(VUV:Vacuum Ultraviolet)ランプ105、原料ガス導入バルブ106、反応室圧力センサ107、排気配管108、排気バルブ109、ファーストAPCバルブ110、セカンドAPCバルブ111、セカンドAPCバルブ用圧力センサ112、窒素ガス導入バルブ113、真空ポンプ114で構成されている。透過窓104の材質は合成石英で、機械的強度を維持できる寸法に分割した。本実施例では、短辺=200mm長辺=1500mmの長方形の透過窓104としている。図4には、透過窓104を3枚並べた構造(短辺方向)を例として挙げているが、使用する試料の大きさに合わせて透過窓104を増やせばよい。例えば、このサイズの透過窓を10枚並べれば、第6世代サイズ(1500mm x 1850mm)のガラス基板に対応できる。透過窓104と透過窓104の間には、透過窓104を保持する補強フレーム115が設置される。補強フレーム115の幅は、機械的強度を十分に維持しつつ光強度分布を均一にする上で、出来るだけ狭い方が好ましい。本実施例では、補強フレーム115の遮光部分の影響を無くすために、試料サセプタ102を2次元方向に稼動できる構造にしている。この稼動幅は、補強フレーム115の幅以上にすることが好ましい。本実施例では、透過窓104の短辺方向に、左右それぞれ50mmの間隔で遊動するようにした。試料サセプタ102を遊動させる方向や遊動幅は、透過窓104の形状や補強フレーム115の幅を考慮した上で最適な値を決めれば良い。   FIG. 4 shows an outline of a photo-CVD film manufacturing apparatus according to the second embodiment. FIG. 4 shows an optical CVD film manufacturing apparatus having two large exhaust pipes 108 and two APC (APC: Auto Pressure Control) valves 110 and 111. The apparatus configuration includes a reaction chamber 101, a sample susceptor 102, a sample 103, a transmission glass 104, a vacuum ultraviolet (VUV) lamp 105, a source gas introduction valve 106, a reaction chamber pressure sensor 107, an exhaust pipe 108, and an exhaust valve 109. The first APC valve 110, the second APC valve 111, the second APC valve pressure sensor 112, the nitrogen gas introduction valve 113, and the vacuum pump 114 are configured. The material of the transmission window 104 was synthetic quartz, which was divided into dimensions capable of maintaining mechanical strength. In this embodiment, the rectangular transmission window 104 has a short side = 200 mm and a long side = 1500 mm. FIG. 4 shows an example of a structure (short side direction) in which three transmission windows 104 are arranged, but the transmission windows 104 may be increased in accordance with the size of the sample to be used. For example, if ten transparent windows of this size are arranged, it is possible to cope with a glass substrate of the sixth generation size (1500 mm x 1850 mm). A reinforcing frame 115 that holds the transmission window 104 is installed between the transmission window 104 and the transmission window 104. The width of the reinforcing frame 115 is preferably as narrow as possible in order to make the light intensity distribution uniform while maintaining sufficient mechanical strength. In the present embodiment, in order to eliminate the influence of the light shielding portion of the reinforcing frame 115, the sample susceptor 102 is configured to operate in a two-dimensional direction. This operating width is preferably greater than or equal to the width of the reinforcing frame 115. In this embodiment, the left and right sides of the transmissive window 104 are moved at intervals of 50 mm in the short side direction. The direction in which the sample susceptor 102 is allowed to move and the width of the movement may be determined in consideration of the shape of the transmission window 104 and the width of the reinforcing frame 115.

ここで、図4の製造装置による光CVD膜の成膜方法を説明する。本構造の特徴は、APCバルブが直列に2段で構成されており、前段のファーストAPCバルブ110は反応室圧力センサ107と、後段のセカンドAPCバルブ111はセカンドAPCバルブ用圧力センサ112と連動するようになっている。ファーストAPCバルブ110とセカンドAPCバルブ111の間の配管には、ガスバルブ113を介して流量を制御した窒素ガスが導入される構造になっている。   Here, a method of forming a photo CVD film by the manufacturing apparatus of FIG. 4 will be described. The feature of this structure is that the APC valve is composed of two stages in series. The first APC valve 110 at the front stage is linked with the reaction chamber pressure sensor 107, and the second APC valve 111 at the rear stage is linked with the pressure sensor 112 for the second APC valve. It is like that. The piping between the first APC valve 110 and the second APC valve 111 has a structure in which nitrogen gas whose flow rate is controlled is introduced via a gas valve 113.

まず、ガス導入バルブ106を開けて反応室に原料ガスを導入すると同時に、反応室圧力センサ107とセカンドAPCバルブ用圧力センサ112が同じ圧力になるように信号を出す。その際、窒素ガス用バルブ113を開けて所定流量の窒素ガスが導入される。次に、反応室101内が所定の圧力になったらガス導入バルブ106を閉止して、光照射を開始する。この時、ファーストAPCバルブ110の前後は同じ圧力になるよう制御しているので、反応室内のガスの流れは停止する。所定の時間成膜したら、窒素ガス用バルブ113を閉止し、ファーストAPCバルブ110とセカンドAPCバルブ111を全開にして反応室101の真空引きを行う。この操作を繰り返すことで、光CVD膜の成膜を行う。図4には、APCバルブを2段の直列接続で示したが、目的に応じて段数を増やすことも無論可能である。   First, the gas introduction valve 106 is opened to introduce the source gas into the reaction chamber, and at the same time, a signal is output so that the reaction chamber pressure sensor 107 and the second APC valve pressure sensor 112 have the same pressure. At that time, the nitrogen gas valve 113 is opened to introduce a predetermined flow of nitrogen gas. Next, when the inside of the reaction chamber 101 reaches a predetermined pressure, the gas introduction valve 106 is closed and light irradiation is started. At this time, since the front and back of the first APC valve 110 are controlled to have the same pressure, the gas flow in the reaction chamber stops. After the film formation for a predetermined time, the nitrogen gas valve 113 is closed, the first APC valve 110 and the second APC valve 111 are fully opened, and the reaction chamber 101 is evacuated. By repeating this operation, a photo-CVD film is formed. Although the APC valve is shown in FIG. 4 as two stages connected in series, it is of course possible to increase the number of stages according to the purpose.

このように、本実施例に係る光CVD膜の製造装置は、基板を設置する反応室(101)と、反応室の外部から光を照射する光源部(真空紫外光ランプ105)と、前記光を反応室へ透過させる透過窓(104)と、反応室へ光CVD膜の原料ガスを導入する第1ガス導入バルブ(106)と、反応室に接続され、反応室を排気する第1排気バルブ(110)と、第1排気バルブを介して反応室に接続され、反応室を排気する第2排気バルブ(111)と、を有することを特徴とする。   As described above, the photo-CVD film manufacturing apparatus according to this example includes a reaction chamber (101) in which a substrate is installed, a light source unit (vacuum ultraviolet light lamp 105) that emits light from outside the reaction chamber, and the light. A permeation window (104) that allows the reaction chamber to permeate, a first gas introduction valve (106) that introduces a source gas of the photo-CVD film into the reaction chamber, and a first exhaust valve that is connected to the reaction chamber and exhausts the reaction chamber (110) and a second exhaust valve (111) connected to the reaction chamber via the first exhaust valve and exhausting the reaction chamber.

以下、係る製造装置による効果を説明する。上述の通り、排気バルブを開閉すると、開閉の際に異物が発生する。特に、基板サイズが第8世代クラスの大型製造装置では、より大きな排気能力が必要となり、排気系のコンダクタンスを小さくする必要がある。排気系のコンダクタンスを小さくする方法はいくつかあるが、最も一般的な方法は排気配管や排気系のメインバルブを大きくする方法である。しかし、係る大きな排気バルブを急激に多数回開閉すると、異物が発生する量もより多くなる。   Hereinafter, effects of the manufacturing apparatus will be described. As described above, when the exhaust valve is opened and closed, foreign matter is generated during opening and closing. In particular, in a large-scale manufacturing apparatus with a substrate size of the 8th generation class, a larger exhaust capacity is required, and it is necessary to reduce the conductance of the exhaust system. There are several ways to reduce the conductance of the exhaust system, but the most common method is to enlarge the exhaust pipe and the main valve of the exhaust system. However, if such a large exhaust valve is suddenly opened and closed many times, the amount of foreign matter generated is also increased.

よって、より異物の発生を抑えるバルブを採用することが望ましい。係るバルブの例として挙げたのが、本実施例で説明したAPCバルブである。APCバルブは、ダイアフラム型バルブのように急速な開閉を伴わないので、バルブを大きくしても異物の発生を殆ど無くすことができる。但し、APCバルブは排気を完全に閉止することは構造上困難であり、通常の構成では排気ガスを完全に停止させることが難しい。   Therefore, it is desirable to employ a valve that further suppresses the generation of foreign matter. An example of such a valve is the APC valve described in this embodiment. Since the APC valve does not rapidly open and close like the diaphragm type valve, the generation of foreign matter can be almost eliminated even if the valve is enlarged. However, it is difficult to completely close the exhaust of the APC valve, and it is difficult to completely stop the exhaust gas in a normal configuration.

これに対し、本実施例に係る製造装置によれば、第1排気バルブと第2排気バルブの組み合わせにより、反応室内のガスの流れを実質的に止めることが可能となる。そのため、第1および第2排気バルブに、より異物の発生しにくいバルブ(例えばAPCバルブ)を採用することが可能となり、実施例1で説明した製造装置と比較して、より異物の発生を抑制することが可能となる。本実施例に係る製造装置で重要な点は、光CVD膜の膜厚均一性が原料ガスの導入位置に全く依存しないため、ガスバルブの設置場所の自由度が大きくなること、及び膜厚均一性が飛躍的に向上することである。また、完全にガスを閉止することが困難なAPCバルブを直列に2段以上設置することで、反応室の実質的なガスの流れを止めることができる。このため 、APCバルブの動作だけで排気側の高速開閉動作が可能となるので、大型装置を用いてもスループット低下の抑制、異物発生の抑制を実現できる。   On the other hand, according to the manufacturing apparatus according to the present embodiment, the gas flow in the reaction chamber can be substantially stopped by the combination of the first exhaust valve and the second exhaust valve. Therefore, it is possible to employ a valve (for example, an APC valve) that is less likely to generate foreign substances for the first and second exhaust valves, and to suppress the generation of foreign substances more than the manufacturing apparatus described in the first embodiment. It becomes possible to do. The important points in the manufacturing apparatus according to the present embodiment are that the film thickness uniformity of the photo-CVD film does not depend at all on the introduction position of the source gas, so that the degree of freedom of the installation location of the gas valve is increased, and the film thickness uniformity. Is a dramatic improvement. In addition, it is possible to stop the substantial gas flow in the reaction chamber by installing two or more APC valves in series, which are difficult to completely close the gas. For this reason, since the exhaust-side high-speed opening / closing operation can be performed only by the operation of the APC valve, it is possible to suppress the decrease in throughput and the generation of foreign matter even when a large apparatus is used.

そして、本実施例に係る光CVD膜の製造装置は、第1排気バルブと第2排気バルブの間の領域に窒素ガスを導入する第2ガス導入バルブ(113)を有することをさらなる特徴とする。係る構成によって、当該領域と反応室とを等圧にすることで、反応室内のガスの流れを実質的に停止しうるためである。   The apparatus for producing a photo-CVD film according to this embodiment further includes a second gas introduction valve (113) for introducing nitrogen gas into a region between the first exhaust valve and the second exhaust valve. . This is because the gas flow in the reaction chamber can be substantially stopped by making the region and the reaction chamber have the same pressure.

当該領域および反応室の圧力をモニタするための構成としては、反応室の圧力を測定する第1圧力センサ(107)と、当該領域の圧力を測定する第2圧力センサ(112)とをさらに有し、第2ガス導入バルブが、第2圧力センサの測定値が第1圧力センサの測定値と等しくなるように窒素ガスを導入すれば良い。   The configuration for monitoring the pressure in the region and the reaction chamber further includes a first pressure sensor (107) for measuring the pressure in the reaction chamber and a second pressure sensor (112) for measuring the pressure in the region. Then, the second gas introduction valve may introduce nitrogen gas so that the measured value of the second pressure sensor becomes equal to the measured value of the first pressure sensor.

また、第2排気バルブを、第1圧力センサからの信号によって制御されるように構成することで、より反応室内の圧力を成膜に適した圧力に保つことを容易とする。   Further, by configuring the second exhaust valve to be controlled by a signal from the first pressure sensor, the pressure in the reaction chamber can be more easily maintained at a pressure suitable for film formation.

上述の通り、本実施例に係る光CVD膜の製造装置においては、光CVD膜の膜厚均一性が原料ガスの導入位置に依存しない。そのため、第1ガス導入バルブを基板の横方向に設けることが可能となる。係る配置によれば、特許文献3の光CVD膜の製造装置と比較して、より透過窓やガス導入口の制約条件を低減することが可能となり、装置設計の自由度を向上させることができる。   As described above, in the photo CVD film manufacturing apparatus according to this embodiment, the film thickness uniformity of the photo CVD film does not depend on the introduction position of the source gas. Therefore, the first gas introduction valve can be provided in the lateral direction of the substrate. According to such an arrangement, it is possible to further reduce the constraint conditions of the transmission window and the gas introduction port as compared with the optical CVD film manufacturing apparatus of Patent Document 3, and to improve the degree of freedom in apparatus design. .

なお、図4に示した構造では、原料ガス導入バルブ106は2箇所だけで示しているが、ガス導入バルブ106は多数存在して良い。同様に、ガス排気バルブ109やAPCバルブ110、111、及びポンプも多数存在して良い。また、本実施例では、ダイアフラム型のバルブより異物の発生を抑制するバルブの例としてAPCバルブを挙げたが、係る効果を奏するバルブであれば、他のバルブを採用しても良い。   In the structure shown in FIG. 4, the source gas introduction valve 106 is shown in only two places, but a large number of gas introduction valves 106 may exist. Similarly, a large number of gas exhaust valves 109, APC valves 110 and 111, and pumps may exist. In this embodiment, an APC valve is used as an example of a valve that suppresses the generation of foreign matter from a diaphragm-type valve. However, other valves may be adopted as long as they have such an effect.

実施例3では、膜厚の均一性をより向上しうる光CVD膜の製造装置のうち、実施例2とは異なるものについて、図5および6を用いて説明する。   In Example 3, an optical CVD film manufacturing apparatus that can further improve the uniformity of the film thickness, which is different from Example 2, will be described with reference to FIGS.

図5に、本実施例に係る光CVD膜の製造装置を示す。図5に係る光CVD膜の製造装置は、反応室201、試料サセプタ202、試料203、透過ガラス204、VUVランプ205、原料ガス導入バルブ206、反応室圧力センサ207、複数の排気配管208、複数の排気バルブ209、APCバルブ210、真空ポンプ214で構成されている。ここで、本実施例に係る製造装置の特徴は、反応室201とAPCバルブ210(排気配管208)とを、複数の小さい排気バルブ209を介して接続している点である。本図では、12個の排気バルブ409を並列に接続した例を示している。この12個の排気バルブ409は、全て同時に開閉する構造になっているが、これに限定されない。また、実施例2と同様に、透過窓204の材質は合成石英で、機械的強度を維持できる寸法に分割配置した構造を示しており、補強フレーム215の遮光部分の影響を無くすために、試料サセプタ202を2次元方向に稼動できる構造にしている。   FIG. 5 shows a photo-CVD film manufacturing apparatus according to this example. 5 includes a reaction chamber 201, a sample susceptor 202, a sample 203, a transmission glass 204, a VUV lamp 205, a source gas introduction valve 206, a reaction chamber pressure sensor 207, a plurality of exhaust pipes 208, a plurality of Exhaust valve 209, APC valve 210, and vacuum pump 214. Here, the feature of the manufacturing apparatus according to the present embodiment is that the reaction chamber 201 and the APC valve 210 (exhaust pipe 208) are connected via a plurality of small exhaust valves 209. This figure shows an example in which twelve exhaust valves 409 are connected in parallel. The twelve exhaust valves 409 are configured to open and close at the same time, but are not limited thereto. Similarly to the second embodiment, the material of the transmission window 204 is synthetic quartz, and shows a structure in which the mechanical strength is maintained and is divided and arranged. In order to eliminate the influence of the light shielding portion of the reinforcing frame 215, a sample is shown. The susceptor 202 is structured to operate in a two-dimensional direction.

本実施例でも、VUVランプ205にXe2エキシマランプ(波長=172nm)を、原料ガスに有機シリコンソースのOMCTSを用いて成膜を行った。反応室201の壁と透過窓204は120℃に、試料サセプタ202の温度は30℃に設定した。ここでは、反応室201の壁と透過窓204の温度を120℃としたが、Oリングの耐熱性を確保できる範囲で更に高くすることも無論可能である。なお、透過窓204を加熱する方法は、細いヒータ線で直接透過窓204を加熱する方法や補強フレーム215を加熱する方法等がある。本実施例では、補強フレーム215を加熱して、その熱伝導で透過窓204の間接的な加熱を行った。 Also in this example, film formation was performed using a Xe 2 excimer lamp (wavelength = 172 nm) as the VUV lamp 205 and OMCTS of an organic silicon source as the source gas. The wall of the reaction chamber 201 and the transmission window 204 were set to 120 ° C., and the temperature of the sample susceptor 202 was set to 30 ° C. Here, the temperature of the wall of the reaction chamber 201 and the transmission window 204 is 120 ° C., but it is of course possible to further increase the temperature within a range where the heat resistance of the O-ring can be secured. As a method of heating the transmission window 204, there are a method of directly heating the transmission window 204 with a thin heater wire, a method of heating the reinforcing frame 215, and the like. In this embodiment, the reinforcing frame 215 is heated and the transmission window 204 is indirectly heated by the heat conduction.

以下、本実施例における光CVD膜の製造方法を説明する。成膜時のプロセスフローは、図6に示した方法に従う。先ず、ガラス基板203を反応室201に搬送した後、反応室201内を真空排気する。続いて、排気側の全ての排気バルブ(本図では12個を表記)を閉止すると同時に、ガス導入バルブ206を開けてOMCTSを反応室201に導入する。反応室201の圧力が上昇を始めたら試料サセプタ202を遊動させる。反応室の圧力センサ(P1)207の圧力が所定の圧力(例えば70Pa)になったら、原料ガス導入バルブ206を閉止して、VUVランプ205を点灯する。所定の時間が経過したら、VUVランプ205を消灯すると同時に、排気バルブ209を全開し、反応室201を真空排気する。以上のシーケンスを繰り返すことで、所望の膜厚の光CVD膜を成膜する。   Hereinafter, a method for producing a photo-CVD film in this example will be described. The process flow during film formation follows the method shown in FIG. First, after the glass substrate 203 is transferred to the reaction chamber 201, the inside of the reaction chamber 201 is evacuated. Subsequently, all the exhaust valves on the exhaust side (12 are shown in the figure) are closed, and at the same time, the gas introduction valve 206 is opened to introduce OMCTS into the reaction chamber 201. When the pressure in the reaction chamber 201 starts to rise, the sample susceptor 202 is moved freely. When the pressure of the pressure sensor (P1) 207 in the reaction chamber reaches a predetermined pressure (for example, 70 Pa), the source gas introduction valve 206 is closed and the VUV lamp 205 is turned on. When a predetermined time elapses, the VUV lamp 205 is turned off and at the same time the exhaust valve 209 is fully opened and the reaction chamber 201 is evacuated. By repeating the above sequence, a photo-CVD film having a desired film thickness is formed.

このように、本実施例に係る光CVD膜の製造装置は、基板を設置する反応室(201)と、反応室の外部から光を照射する光源部(真空紫外ランプ205)と、前記光を反応室へ透過させる透過窓(204)と、反応室へ光CVD膜の原料ガスを導入する第1ガス導入バルブ(206)と、反応室に接続され、反応室を排気する複数の第1排気バルブ(209)と、複数の第1排気バルブを介して反応室に接続され、複数の第1排気バルブよりも径が大きい第2排気バルブ(210)と、を有することを特徴とする。   As described above, the photo-CVD film manufacturing apparatus according to this example includes a reaction chamber (201) in which a substrate is installed, a light source unit (vacuum ultraviolet lamp 205) that emits light from outside the reaction chamber, and the light. A transmission window (204) that allows the reaction chamber to pass through, a first gas introduction valve (206) that introduces a source gas of the photo-CVD film into the reaction chamber, and a plurality of first exhausts that are connected to the reaction chamber and exhaust the reaction chamber. It has a valve (209) and a second exhaust valve (210) connected to the reaction chamber via a plurality of first exhaust valves and having a diameter larger than that of the plurality of first exhaust valves.

係る特徴により、本実施例に係る光CVD膜の製造装置も、実施例2に係る製造装置と同様の効果を奏する。すなわち、成膜された光CVD膜の膜厚均一性が、原料ガスの導入位置に全く依存しないため、ガスバルブの設置場所の自由度が大きくなること、及び膜厚均一性が飛躍的に向上する等の利点がある。   Due to this feature, the photo-CVD film manufacturing apparatus according to the present embodiment also has the same effects as the manufacturing apparatus according to the second embodiment. That is, since the film thickness uniformity of the formed photo-CVD film does not depend at all on the introduction position of the source gas, the degree of freedom in the installation location of the gas valve is increased, and the film thickness uniformity is dramatically improved. There are advantages such as.

その上で、実施例2と比較すると、小さい直径の配管とバルブを複数配置することで、小さいコンダクタンスと異物発生の抑制を同時に実現できる。また、排気バルブが小さいため高速開閉動作が可能で、本発明の成膜方法においても、実質的な成膜時間の割合をより大きくすることができる。ここで、実施例2と3の製造装置の違いを、図2と図6とを対比して説明する。図2と図6の違いは、ガス排気の停止と開始の速度の違いである。図2は、ガス排気バルブの開閉速度をなだらかに行う方法であるのに対し、図6は、開閉速度を急峻にする方法である。上述したように、本実施例に係る光CVD膜の製造装置は、排気系のコンダクタンスを小さくする手段として、排気のパスを増やす構成を採用している。このように、1つの排気配管の径を小さくして、複数の配管を用いることで、排気配管のトータルのコンダクタンスを小さくすることができる。排気配管が小さければ、小さいダイアフラムバルブの使用が可能となるため、本実施例に係る光CVD膜の製造装置は、高速の開閉動作を行っても、異物の発生をより抑制することが可能である。なお、多数回開閉処理を行う小さいダイアフラムバルブの信頼性は、原子状CVD装置(ALD−CVD法)への採用で、既に実証されている。よって、排気バルブの組み合わせとしては、複数の第1排気バルブとして、異物の発生を抑制しうるダイアフラムバルブを用いて、第2排気バルブとして、APCバルブを用いることができる。   In addition, as compared with the second embodiment, by arranging a plurality of pipes and valves having a small diameter, it is possible to simultaneously realize small conductance and suppression of foreign matter generation. Further, since the exhaust valve is small, a high-speed opening / closing operation is possible, and in the film forming method of the present invention, the substantial film forming time ratio can be further increased. Here, the difference between the manufacturing apparatuses of Examples 2 and 3 will be described in comparison with FIG. 2 and FIG. The difference between FIG. 2 and FIG. 6 is the difference in the speed of stopping and starting the gas exhaust. FIG. 2 is a method of gently opening and closing the gas exhaust valve, while FIG. 6 is a method of making the opening and closing speed steep. As described above, the photo-CVD film manufacturing apparatus according to this embodiment employs a configuration in which the exhaust path is increased as a means for reducing the conductance of the exhaust system. Thus, the total conductance of the exhaust pipe can be reduced by reducing the diameter of one exhaust pipe and using a plurality of pipes. If the exhaust pipe is small, it is possible to use a small diaphragm valve. Therefore, the photo-CVD film manufacturing apparatus according to this embodiment can further suppress the generation of foreign matter even when performing a high-speed opening / closing operation. is there. Note that the reliability of a small diaphragm valve that performs multiple opening and closing processes has already been demonstrated by adopting it in an atomic CVD apparatus (ALD-CVD method). Therefore, as a combination of the exhaust valves, a diaphragm valve capable of suppressing the generation of foreign matters can be used as the plurality of first exhaust valves, and an APC valve can be used as the second exhaust valve.

なお、本実施例では、複数の排気バルブ209の開閉を全て同時に行ったが、個々のバルブの開閉タイミングを少しずつずらして、圧力が急激に変動しないようにしても良い。また、図5では、原料ガス導入バルブ206を2箇所示しているが、実際には原料ガス導入バルブ206は複数存在しても良い。同様に、ガス排気バルブ209も複数存在して良い。   In this embodiment, the plurality of exhaust valves 209 are all opened / closed simultaneously, but the opening / closing timing of each valve may be shifted little by little so that the pressure does not fluctuate rapidly. In FIG. 5, two source gas introduction valves 206 are shown, but a plurality of source gas introduction valves 206 may actually exist. Similarly, a plurality of gas exhaust valves 209 may exist.

101、201、501:反応室、
102、202、502:試料サセプタ、
103、203、503:試料(ガラス基板)、
104、204、504:透過窓(合成石英)、
105、205、505:VUVランプ、
106、206、506:原料ガス導入バルブ、
107、207、507:反応室ガス圧力センサ、
108、208、508:排気配管、
109、209、509:排気バルブ、
110、111、210、510:APCバルブ、
113:窒素ガス導入バルブ、
114、214、514:真空ポンプ、
115、215:補強フレーム。
101, 201, 501: reaction chamber,
102, 202, 502: sample susceptor,
103, 203, 503: Sample (glass substrate),
104, 204, 504: transmission window (synthetic quartz),
105, 205, 505: VUV lamp,
106, 206, 506: Source gas introduction valve,
107, 207, 507: reaction chamber gas pressure sensor,
108, 208, 508: exhaust pipe,
109, 209, 509: exhaust valve,
110, 111, 210, 510: APC valve,
113: Nitrogen gas introduction valve,
114, 214, 514: vacuum pump,
115, 215: Reinforcing frame.

Claims (10)

(a)光CVD膜を成膜する反応室に前記光CVD膜の原料ガスを導入し、前記反応室を所定の圧力にする工程と、
(b)前記工程(a)の後に、前記原料ガスの前記反応室への導入、および、前記原料ガスの前記反応室からの排気を停止し、前記反応室に光を照射する工程と、
(c)前記工程(b)の後に、前記照射を停止し、その後前記反応室を排気する工程と、を有し、
前記工程(a)から前記工程(c)を複数回繰り返すことを特徴とする光CVD膜の製造方法。
(A) introducing a source gas of the photo-CVD film into a reaction chamber for forming the photo-CVD film, and setting the reaction chamber to a predetermined pressure;
(B) after the step (a), stopping the introduction of the source gas into the reaction chamber and the exhaust of the source gas from the reaction chamber, and irradiating the reaction chamber with light;
(C) after the step (b), stopping the irradiation, and then evacuating the reaction chamber,
The method for producing a photo-CVD film, wherein the steps (a) to (c) are repeated a plurality of times.
請求項1において、
前記工程(a)における前記所定の圧力が、前記光CVD膜の成膜速度が最大になる圧力より小さいことを特徴とする光CVD膜の製造方法。
In claim 1,
The method for producing a photo-CVD film, wherein the predetermined pressure in the step (a) is smaller than a pressure at which the film-forming speed of the photo-CVD film is maximized.
光CVD膜の製造装置であって、
基板を設置する反応室と、
前記反応室の外部から光を照射する光源部と、
前記光を前記反応室へ透過させる透過窓と、
前記反応室へ前記光CVD膜の原料ガスを導入する第1ガス導入バルブと、
前記反応室に接続され、前記反応室を排気する第1排気バルブと、
前記第1排気バルブを介して前記反応室に接続され、前記反応室を排気する第2排気バルブと、を有することを特徴とする光CVD膜の製造装置。
An apparatus for manufacturing a photo-CVD film,
A reaction chamber in which the substrate is installed;
A light source unit that emits light from outside the reaction chamber;
A transmission window for transmitting the light to the reaction chamber;
A first gas introduction valve for introducing a source gas of the photo-CVD film into the reaction chamber;
A first exhaust valve connected to the reaction chamber and exhausting the reaction chamber;
An apparatus for producing a photo-CVD film, comprising: a second exhaust valve connected to the reaction chamber via the first exhaust valve and exhausting the reaction chamber.
請求項3において、
前記第1排気バルブと前記第2排気バルブの間の領域に窒素ガスを導入する第2ガス導入バルブをさらに有することを特徴とする光CVD膜の製造装置。
In claim 3,
The apparatus for producing a photo-CVD film, further comprising a second gas introduction valve for introducing nitrogen gas into a region between the first exhaust valve and the second exhaust valve.
請求項4において、
前記反応室の圧力を測定する第1圧力センサと、
前記間の領域の圧力を測定する第2圧力センサと、をさらに有し、
前記第2ガス導入バルブは、前記第2圧力センサの測定値が前記第1圧力センサの測定値と等しくなるように前記窒素ガスを導入することを特徴とする光CVD膜の製造装置。
In claim 4,
A first pressure sensor for measuring the pressure in the reaction chamber;
A second pressure sensor for measuring the pressure in the region between the two,
The apparatus for producing a photo-CVD film, wherein the second gas introduction valve introduces the nitrogen gas so that a measured value of the second pressure sensor is equal to a measured value of the first pressure sensor.
請求項3において、
前記反応室の圧力を測定する第1圧力センサをさらに有し、
前記第2排気バルブは、前記第1圧力センサからの信号によって制御されることを特徴とする光CVD膜の製造装置。
In claim 3,
A first pressure sensor for measuring the pressure in the reaction chamber;
The apparatus for producing a photo-CVD film, wherein the second exhaust valve is controlled by a signal from the first pressure sensor.
請求項3において、
前記第1排気バルブおよび前記第2排気バルブは、APCバルブであることを特徴とする光CVD膜の製造装置。
In claim 3,
The apparatus for producing a photo-CVD film, wherein the first exhaust valve and the second exhaust valve are APC valves.
請求項3において、
前記第1ガス導入バルブは、前記基板の横方向に設けられることを特徴とする光CVD膜の製造装置。
In claim 3,
The apparatus for producing a photo-CVD film, wherein the first gas introduction valve is provided in a lateral direction of the substrate.
光CVD膜の製造装置であって、
基板を設置する反応室と、
前記反応室の外部から光を照射する光源部と、
前記光を前記反応室へ透過させる透過窓と、
前記反応室へ前記光CVD膜の原料ガスを導入する第1ガス導入バルブと、
前記反応室に接続され、前記反応室を排気する複数の第1排気バルブと、
前記複数の第1排気バルブを介して前記反応室に接続され、前記複数の第1排気バルブよりも径が大きい第2排気バルブと、を有することを特徴とする光CVD膜の製造装置。
An apparatus for manufacturing a photo-CVD film,
A reaction chamber in which the substrate is installed;
A light source unit that emits light from outside the reaction chamber;
A transmission window for transmitting the light to the reaction chamber;
A first gas introduction valve for introducing a source gas of the photo-CVD film into the reaction chamber;
A plurality of first exhaust valves connected to the reaction chamber and exhausting the reaction chamber;
An apparatus for producing a photo-CVD film, comprising: a second exhaust valve connected to the reaction chamber through the plurality of first exhaust valves and having a diameter larger than that of the plurality of first exhaust valves.
請求項9において、
前記複数の第1排気バルブは、ダイアフラムバルブであり、
前記第2排気バルブは、APCバルブであることを特徴とする光CVD膜の製造装置。
In claim 9,
The plurality of first exhaust valves are diaphragm valves,
The apparatus for producing a photo-CVD film, wherein the second exhaust valve is an APC valve.
JP2012167922A 2012-07-30 2012-07-30 Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film Pending JP2014027191A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012167922A JP2014027191A (en) 2012-07-30 2012-07-30 Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film
TW102121717A TW201404926A (en) 2012-07-30 2013-06-19 Manufacturing method for photo-CVD film and manufacturing apparatus for photo-CVD film
CN201310323455.2A CN103572262A (en) 2012-07-30 2013-07-25 Light CVD film manufacturing method and light CVD film manufacturing apparatus
KR1020130089855A KR20140016198A (en) 2012-07-30 2013-07-29 Method and apparatus for forming a film using a photo induced chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167922A JP2014027191A (en) 2012-07-30 2012-07-30 Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film

Publications (1)

Publication Number Publication Date
JP2014027191A true JP2014027191A (en) 2014-02-06

Family

ID=50044952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167922A Pending JP2014027191A (en) 2012-07-30 2012-07-30 Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film

Country Status (4)

Country Link
JP (1) JP2014027191A (en)
KR (1) KR20140016198A (en)
CN (1) CN103572262A (en)
TW (1) TW201404926A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059789A1 (en) * 2014-10-14 2016-04-21 凸版印刷株式会社 Method for forming film on flexible substrate using vapor phase deposition method
US10422037B2 (en) 2014-09-19 2019-09-24 Toppan Printing Co., Ltd. Film formation apparatus and film formation method
US10685817B2 (en) 2015-03-17 2020-06-16 Toppan Printing Co., Ltd. Film forming apparatus
JP2020126925A (en) * 2019-02-04 2020-08-20 東京エレクトロン株式会社 Exhaust device, treatment system, and treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212121A (en) * 1985-07-10 1987-01-21 Hitachi Ltd Photo processing equipment
JPS63232416A (en) * 1987-03-20 1988-09-28 Sony Corp Formation of thin-film through photochemical vapor growth
JPH04302138A (en) * 1991-03-29 1992-10-26 Furukawa Electric Co Ltd:The Vapor growth device for semiconductor wafer
JPH04329626A (en) * 1991-05-02 1992-11-18 Matsushita Electron Corp Processor of semiconductor device
JPH05251362A (en) * 1992-03-06 1993-09-28 Fujitsu Ltd Low-pressure treatment device
JPH1011152A (en) * 1996-06-26 1998-01-16 Dainippon Screen Mfg Co Ltd Vacuum exhaustion device of processor
JP2001060578A (en) * 1999-08-20 2001-03-06 Nec Corp Vacuum treatment apparatus
JP2008103754A (en) * 2007-12-10 2008-05-01 Tadahiro Omi Method of using valve for vacuum evacuation system
JP2010087475A (en) * 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc Method and device for manufacturing semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653501B1 (en) * 1993-11-11 1998-02-04 Nissin Electric Company, Limited Plasma-CVD method and apparatus
US6930041B2 (en) * 2000-12-07 2005-08-16 Micron Technology, Inc. Photo-assisted method for semiconductor fabrication
US20100159122A1 (en) * 2008-12-19 2010-06-24 Canon Kabushiki Kaisha Deposition film forming apparatus, deposition film forming method and electrophotographic photosensitive member manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212121A (en) * 1985-07-10 1987-01-21 Hitachi Ltd Photo processing equipment
JPS63232416A (en) * 1987-03-20 1988-09-28 Sony Corp Formation of thin-film through photochemical vapor growth
JPH04302138A (en) * 1991-03-29 1992-10-26 Furukawa Electric Co Ltd:The Vapor growth device for semiconductor wafer
JPH04329626A (en) * 1991-05-02 1992-11-18 Matsushita Electron Corp Processor of semiconductor device
JPH05251362A (en) * 1992-03-06 1993-09-28 Fujitsu Ltd Low-pressure treatment device
JPH1011152A (en) * 1996-06-26 1998-01-16 Dainippon Screen Mfg Co Ltd Vacuum exhaustion device of processor
JP2001060578A (en) * 1999-08-20 2001-03-06 Nec Corp Vacuum treatment apparatus
JP2008103754A (en) * 2007-12-10 2008-05-01 Tadahiro Omi Method of using valve for vacuum evacuation system
JP2010087475A (en) * 2008-09-03 2010-04-15 Hitachi Kokusai Electric Inc Method and device for manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422037B2 (en) 2014-09-19 2019-09-24 Toppan Printing Co., Ltd. Film formation apparatus and film formation method
WO2016059789A1 (en) * 2014-10-14 2016-04-21 凸版印刷株式会社 Method for forming film on flexible substrate using vapor phase deposition method
JP2016079438A (en) * 2014-10-14 2016-05-16 凸版印刷株式会社 Film deposition method by vapor phase growth method on flexible substrate
EP3208363A4 (en) * 2014-10-14 2018-05-16 Toppan Printing Co., Ltd. Method for forming film on flexible substrate using vapor phase deposition method
US10685817B2 (en) 2015-03-17 2020-06-16 Toppan Printing Co., Ltd. Film forming apparatus
JP2020126925A (en) * 2019-02-04 2020-08-20 東京エレクトロン株式会社 Exhaust device, treatment system, and treatment method
JP7175210B2 (en) 2019-02-04 2022-11-18 東京エレクトロン株式会社 Exhaust device, treatment system and treatment method
US11807938B2 (en) 2019-02-04 2023-11-07 Tokyo Electron Limited Exhaust device, processing system, and processing method

Also Published As

Publication number Publication date
KR20140016198A (en) 2014-02-07
CN103572262A (en) 2014-02-12
TW201404926A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
TWI465158B (en) A microwave-excited plasma device
KR101685833B1 (en) Substrate processing apparatus, gas rectifying part, method of manufacturing a semiconductor device, and recording medium
KR20190002659A (en) Substrate processing apparatus, nose section
US20110304078A1 (en) Methods for removing byproducts from load lock chambers
KR20000028954A (en) Single substrate heat treating apparatus for semiconductor process system
JP2017183393A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program
JP2014027191A (en) Manufacturing method of photo-cvd film and manufacturing apparatus of photo-cvd film
JP6793031B2 (en) Substrate processing equipment and substrate processing method, and substrate processing system
TW200539268A (en) Ultraviolet ray generator, ultraviolet ray irradiation processing apparatus, and semiconductor manufacturing system
US9850574B2 (en) Forming a low-k dielectric layer with reduced dielectric constant and strengthened mechanical properties
JP5941653B2 (en) Silicon nitride film forming method and silicon nitride film forming apparatus
US20100330773A1 (en) Substrate processing method and substrate processing apparatus
US10032629B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US8518834B2 (en) Method and apparatus for forming oxide film on carbon film
TW201532122A (en) Method of, and apparatus for, forming hard mask
JP2012012628A (en) Substrate treatment apparatus
US20160348239A1 (en) Heat Beam Film-Forming Apparatus
JP2004162133A (en) Method for manufacturing super water-repellent film
TWI759183B (en) Methods for cleaning a vacuum chamber, method for cleaning a vacuum system, method for vacuum processing of a substrate, and apparatuses for vacuum processing a substrate
CN113243039B (en) Method for growing doped group IV materials
JP2003273020A (en) Substrate-processing method
JP2012204694A (en) Manufacturing method of semiconductor device and substrate processing device
JP2013100575A (en) Film forming device and method for forming film
JP2008251956A (en) Forming method of oxide film and its apparatus
JP2012256724A (en) Substrate processing apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308