JPS6322627B2 - - Google Patents

Info

Publication number
JPS6322627B2
JPS6322627B2 JP56194709A JP19470981A JPS6322627B2 JP S6322627 B2 JPS6322627 B2 JP S6322627B2 JP 56194709 A JP56194709 A JP 56194709A JP 19470981 A JP19470981 A JP 19470981A JP S6322627 B2 JPS6322627 B2 JP S6322627B2
Authority
JP
Japan
Prior art keywords
active layer
thickness
sbfet
etching time
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56194709A
Other languages
Japanese (ja)
Other versions
JPS5895869A (en
Inventor
Yoshinobu Kadowaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19470981A priority Critical patent/JPS5895869A/en
Publication of JPS5895869A publication Critical patent/JPS5895869A/en
Publication of JPS6322627B2 publication Critical patent/JPS6322627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 この発明は、高周波回路に用いるシヨツトキバ
リア形電界効果トランジスタの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a shotgun barrier type field effect transistor used in a high frequency circuit.

第1図a〜iは従来のシヨツトキバリア形電界
効果トランジスタ(以下、SBFETと略称する)
の製造方法の一例の主要工程を示す断面図であ
る。まず、第1図aに示すように半絶縁性GaAs
基板1とn形のGaAsから成る動作層2を有する
半導体基板上に、同図bに示すようにソース電極
3およびドレイン電極5を形成すべき部分のフオ
トレジスト膜6を写真製版技術によつて除去し、
同図cに示すようにソース電極3およびドレイン
電極5を形成するための金属を蒸着する。続い
て、フオトレジスト膜6を除去するとその上の金
属層が除去されて、同図dに示すようにソース電
極3とドレイン電極5が形成される。次に、同図
eに示すようにSBFETの動作に必要な部分のみ
フオトレジスト膜6を覆い、他の不要動作層をエ
ツチングし、フオトレジスト膜6を除去すれば同
図fに示すようになる。さらに、同図gに示すよ
うにソース・ドレインの場合と同様に、ゲート電
極を形成すべき部分のフオトレジスト膜6を除去
し、同図hに示すようにゲート電極4を形成する
ための金属を蒸着し、フオトレジスト膜を除去す
れば、同図iに示すような構造のSBFETが完成
する。
Figure 1 a to i are conventional shotgun barrier field effect transistors (hereinafter abbreviated as SBFET).
FIG. 2 is a cross-sectional view showing main steps of an example of a manufacturing method. First, as shown in Figure 1a, semi-insulating GaAs
On a semiconductor substrate having a substrate 1 and an active layer 2 made of n-type GaAs, as shown in FIG. remove,
As shown in FIG. 3c, metal for forming the source electrode 3 and drain electrode 5 is deposited. Subsequently, when the photoresist film 6 is removed, the metal layer thereon is removed, and a source electrode 3 and a drain electrode 5 are formed as shown in FIG. Next, as shown in figure e, the photoresist film 6 is covered only in the areas necessary for the operation of the SBFET, other unnecessary operating layers are etched, and the photoresist film 6 is removed, resulting in the structure shown in figure f. . Furthermore, as in the case of the source/drain, as shown in FIG. By depositing the photoresist film and removing the photoresist film, an SBFET with the structure shown in Figure i is completed.

以上の製造方法によつて製作された従来の
SBFETでは、半導体基板のn形動作層2の厚み
と不純物濃度のばらつきによつて、SBFETの飽
和ドレイン電流Idssが大きくばらつく欠点を有し
ていた。Idssの変動は、SBFETの性能に重大な
影響を及ぼす事はよく知られており、Idssを所定
値に制御する事はSBFETの生産性を向上させる
ためには非常に重要な事柄であつたが、従来の製
造方法ではIdssを所定値に設定する簡単な方法が
なかつた。
Conventional products manufactured using the above manufacturing method
The SBFET has a drawback that the saturation drain current Idss of the SBFET varies greatly due to variations in the thickness and impurity concentration of the n-type active layer 2 of the semiconductor substrate. It is well known that fluctuations in Idss have a significant impact on SBFET performance, and controlling Idss to a predetermined value is extremely important for improving SBFET productivity. In conventional manufacturing methods, there was no easy way to set Idss to a predetermined value.

この発明は上記の点に鑑みてなされたものであ
り、半導体基板上のSBFETパターンを形成すべ
き以外の場所にエツチングによつて複数個の異な
る厚みを有するn形動作層部分を形成し、それぞ
れの厚みのn形動作層の表面にモニタパターン電
極を形成し、モニタパターン電極間を流れる電流
を動作層のエツチング時間と対照する事により、
所定飽和電流が得られるn形動作層のエツチング
時間を決定する方法を提供するものである。以
下、図に従つて、この発明方法の一実施例を説明
する。
This invention has been made in view of the above points, and involves forming a plurality of n-type active layer portions having different thicknesses by etching in locations other than where an SBFET pattern is to be formed on a semiconductor substrate, and each By forming a monitor pattern electrode on the surface of an n-type active layer with a thickness of , and comparing the current flowing between the monitor pattern electrodes with the etching time of the active layer,
The present invention provides a method for determining the etching time of an n-type active layer that provides a predetermined saturation current. An embodiment of the method of this invention will be described below with reference to the drawings.

第2図はこの発明の一実施例であるSBFETの
工程を示す断面図である。所定のIdssが得られる
厚み以上に厚く形成されたn形動作層を有する半
導体基板を用い、選択エツチングにより、複数の
異なる厚みの動作層部分を形成し、ソース電極
3、ドレイン電極5の形成と同時に、それぞれの
厚みの動作層の表面にモニタ用電極7を形成す
る。次に、各モニタ用電極間を流れる電流を測定
し、第3図に示すように、動作層のエツチング量
を時間で表した特性図を作成し、ゲート電極を形
成した場合に所定のIdssが得られるようなモニタ
間電流Idss0を与えるエツチング時間teを導出す
る。teが判明すれば、従来と同様の方法で第4図
に示したゲート電極形成前までの工程を実施す
る。ここで、第5図に示すようにゲート電極を形
成すべき動作層部分をteの時間のみエツチング
し、凹部を形成した後、従来と同様にゲート電極
4を形成し第6図に示す構造のSBFETが完成す
る。
FIG. 2 is a sectional view showing the process of an SBFET which is an embodiment of the present invention. Using a semiconductor substrate having an n-type active layer formed thicker than the thickness that provides a predetermined Idss, a plurality of active layer parts with different thicknesses are formed by selective etching, and the source electrode 3 and drain electrode 5 are formed. At the same time, monitoring electrodes 7 are formed on the surface of the active layer of each thickness. Next, we measured the current flowing between each monitoring electrode and created a characteristic diagram showing the amount of etching of the active layer over time, as shown in Figure 3. Derive the etching time te that gives the inter-monitor current Idss 0 as obtained. Once te is known, the steps up to the gate electrode formation shown in FIG. 4 are carried out in the same manner as in the conventional method. Here, as shown in FIG. 5, the active layer portion where the gate electrode is to be formed is etched for a period of time te to form a recess, and then the gate electrode 4 is formed in the same manner as in the conventional method, resulting in the structure shown in FIG. SBFET is completed.

上記のように製造されたSBFETは、n形動作
層の厚みがモニタ電極7を流れる電流から決定さ
れた所定厚みに形成されている。この結果、従来
方法では困難であつたIdssのばらつきの抑制が可
能となり、SBFETの生産性の向上が図れる事と
なる。
In the SBFET manufactured as described above, the n-type active layer is formed to have a predetermined thickness determined from the current flowing through the monitor electrode 7. As a result, it becomes possible to suppress variations in Idss, which was difficult with conventional methods, and it becomes possible to improve the productivity of SBFETs.

以上述べたように、この発明に係るSBFETの
製造方法によれば、簡単にSBFETの生産性の向
上が可能となる効果がある。
As described above, the SBFET manufacturing method according to the present invention has the effect of easily improving the productivity of SBFETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜iは従来のSBFETの製造方法を示
す工程順の断面図、第2図はこの発明に係る
SBFETの製造方法の一実施例を示す工程の断面
図、第3図はこの発明による実施例の特性図、第
4図、第5図、第6図はこの発明の工程の続きを
示す断面図である。 図において、1は半絶縁性GaAs基板、2はn
形動作層、3はソース電極、4はゲート電極、5
はドレイン電極、6はフオトレジスト膜、7はモ
ニタ用電極である。なお、図中、同一符号は同一
または相当部分を示す。
Figures 1 a to i are cross-sectional views showing the conventional SBFET manufacturing method in the order of steps, and Figure 2 is a cross-sectional view of the method according to the present invention.
3 is a characteristic diagram of the embodiment of the present invention, and FIGS. 4, 5, and 6 are sectional views showing the continuation of the process of the present invention. It is. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n
form operation layer, 3 is a source electrode, 4 is a gate electrode, 5
6 is a drain electrode, 6 is a photoresist film, and 7 is a monitoring electrode. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 半導体基板上に形成された動作層の厚みを局
所的に薄くし、複数の異なる厚みの動作層領域を
形成する工程、 各々の厚みの動作層上に対向した電極からなる
モニタパターン電極を形成し、このモニタパター
ン電極間を流れる電流を各々の動作層厚さについ
て測定する工程、 各々の厚みの動作層領域を形成する際のエツチ
ング時間とモニタパターン電極間を流れる電流の
関係から、所望の飽和ドレイン電流が得られるよ
うなエツチング時間を導出する工程、 ゲート電極を形成すべき動作層部分を導出され
たエツチング時間だけエツチングする工程 を含むことを特徴とするシヨツトキバリア形電
界効果トランジスタの製造方法。
[Claims] 1. A step of locally reducing the thickness of an active layer formed on a semiconductor substrate to form a plurality of active layer regions with different thicknesses, from electrodes facing each other on the active layer of each thickness. forming a monitor pattern electrode, and measuring the current flowing between the monitor pattern electrodes for each active layer thickness; the etching time and the current flowing between the monitor pattern electrodes when forming an active layer region of each thickness; A shot barrier type electric field characterized in that it includes the steps of: deriving an etching time such that a desired saturated drain current can be obtained from the relationship; and etching a portion of the active layer where a gate electrode is to be formed for the determined etching time. Method of manufacturing effect transistors.
JP19470981A 1981-11-30 1981-11-30 Manufacture of schottky barrier field effect transistor Granted JPS5895869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19470981A JPS5895869A (en) 1981-11-30 1981-11-30 Manufacture of schottky barrier field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19470981A JPS5895869A (en) 1981-11-30 1981-11-30 Manufacture of schottky barrier field effect transistor

Publications (2)

Publication Number Publication Date
JPS5895869A JPS5895869A (en) 1983-06-07
JPS6322627B2 true JPS6322627B2 (en) 1988-05-12

Family

ID=16328943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19470981A Granted JPS5895869A (en) 1981-11-30 1981-11-30 Manufacture of schottky barrier field effect transistor

Country Status (1)

Country Link
JP (1) JPS5895869A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184368A (en) * 1986-08-26 1988-07-29 Agency Of Ind Science & Technol Manufacture of compound semiconductor fet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984377A (en) * 1972-12-18 1974-08-13
JPS5279881A (en) * 1975-12-26 1977-07-05 Nec Corp Production of gaas schottky barrier gate type field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984377A (en) * 1972-12-18 1974-08-13
JPS5279881A (en) * 1975-12-26 1977-07-05 Nec Corp Production of gaas schottky barrier gate type field effect transistor

Also Published As

Publication number Publication date
JPS5895869A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
JP2553699B2 (en) Method for manufacturing semiconductor device
US4352237A (en) Method for manufacture of integrated semiconductor circuits, in particular CCD-circuits, with self-adjusting, nonoverlapping polysilicon electrodes
JPS6322627B2 (en)
JPH09191018A (en) Semiconductor device and its manufacture
JPS6215861A (en) Manufacture of semiconductor device
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPH029451B2 (en)
JPH03203246A (en) Method of manufacturing semiconductor device
JPS6142169A (en) Manufacture of semiconductor device
JPH0228333A (en) Manufacture of semiconductor device
JPS5931073A (en) Manufacture of field effect transistor
JPS6077468A (en) Field effect transistor and manufacture thereof
KR100241416B1 (en) Method of manufacturing hemt
JPH03289142A (en) Manufacture of compound semiconductor device
JPH06151459A (en) Manufacture of thin-film transistor
JPH03238830A (en) Manufacture of field effect transistor
JPS61107740A (en) Manufacture of semiconductor device
JPS60234326A (en) Manufacture of semiconductor device
JPS639982A (en) Manufacture of junction field-effect transistor
JPH03268334A (en) Manufacture of semiconductor device
JPH0529353A (en) Field-effect transistor and manufacture thereof
JPH03233939A (en) Field-effect transistor and its manufacture
JPH03268333A (en) Manufacture of semiconductor device
JPH02156544A (en) Manufacture of gaas mesfet
JPS5951575A (en) Manufacture of semiconductor device