JPS63224117A - Manufacture of superconductor - Google Patents

Manufacture of superconductor

Info

Publication number
JPS63224117A
JPS63224117A JP62058466A JP5846687A JPS63224117A JP S63224117 A JPS63224117 A JP S63224117A JP 62058466 A JP62058466 A JP 62058466A JP 5846687 A JP5846687 A JP 5846687A JP S63224117 A JPS63224117 A JP S63224117A
Authority
JP
Japan
Prior art keywords
ceramic
substrate
superconducting
laser beams
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62058466A
Other languages
Japanese (ja)
Other versions
JP2645489B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62058466A priority Critical patent/JP2645489B2/en
Priority to EP88302227A priority patent/EP0282360B1/en
Priority to DE3854626T priority patent/DE3854626T2/en
Publication of JPS63224117A publication Critical patent/JPS63224117A/en
Application granted granted Critical
Publication of JP2645489B2 publication Critical patent/JP2645489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To make it possible to form a ceramic superconductor substantially into a coil, a disc, a film, a wire, or a ribbon by denaturing only a portion of a ceramic material formed on the surface of a base substance into a superconducting material of an oxide, when the portion is selectively irradiated and scanned by laser beams. CONSTITUTION:A ceramic film having a thickness of 0.1-20mum, for example of 2mum, is formed on a plate shaped base substance 1 formed by using alumina, glass or YSZ as a ceramic material. The base substance is placed in an atmosphere heated up to 250 deg.C for instance and same oxygen gas is added to argon gas; after that it is scanned continuously in the oxiding ambient by excimer laser beams 3 (wavelength: 0.25mum) as shown with a broken line. Then only the portion irradiated by the laser beams is selectively oxidized and crystals are precisely arrayed to enable one to manufacture a ribbon-shaped superconducting film of 10 cm in width. Thus a domain which has a superconductive critical temperature in a ribbon shape or a wire shape can be virtually obtained by irradiation of laser beams or intense rays of light.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は薄膜のセラミック系超電導材料に関する。本発
明は、基体上に薄膜化して形成された材料に対し帯状(
または線状)にレーザ光を照射しつつ走査し連続したパ
ターンニング(実質的に基体上に帯有または線巻)を施
す超電導体の作製方法である。そしてこのセラミック系
超電導材料を用いて超電導電子ディバイスを作らんとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin film ceramic superconducting materials. The present invention provides a belt-like (
This is a method for producing a superconductor in which continuous patterning (substantially banded or wire-wound on a substrate) is performed by scanning while irradiating a laser beam (or linearly). The aim is to create superconducting electronic devices using this ceramic superconducting material.

「従来の技術」 従来超電導材料はNb−Ge(例えばNb1Ge)の金
属材料が用いられている。この材料は金属であるため延
性、展性を高く有し、超電導マグネット用のコイル巻を
行うことが可能であった。
"Prior Art" Conventionally, a metal material of Nb-Ge (for example, Nb1Ge) has been used as a superconducting material. Since this material is a metal, it has high ductility and malleability, making it possible to wind coils for superconducting magnets.

しかし、これらの金属材料を用いた超電導材料はTc(
超電導臨界温度を以下単にTcという)が小さく23°
Kまたはそれ以下しかない。これに対し工業上の応用を
考えるならばこのTcが30 ’ K好ましくは77°
Kまたはそれ以上であるとさらに有効である。特に??
 ” K以上の温度にTcを有する超電導材料が開発さ
れるならば、液体窒素温度雰囲気下での動作を可能とし
、工業上の運転維持価格をこれまでの約1/10または
それ以下にすることが可能であると期待されている。
However, superconducting materials using these metal materials have Tc (
The superconducting critical temperature (hereinafter simply referred to as Tc) is small at 23°.
Only K or less. On the other hand, considering industrial applications, this Tc is 30'K, preferably 77°.
K or more is even more effective. especially? ?
” If a superconducting material with Tc at a temperature higher than K is developed, it will be possible to operate in a liquid nitrogen temperature atmosphere, and the industrial operation and maintenance cost will be reduced to about 1/10 or less than the current cost. is expected to be possible.

「従来の問題点」 このため、Tcの高い材料として金属ではなくセラミッ
ク系材料、特に酸化物セラミック系材料が注目されてい
る。しかしこの注目されているセラミック系超電導材料
はTcが高いにもかかわらず。
"Conventional Problems" For this reason, ceramic materials, especially oxide ceramic materials, rather than metals, are attracting attention as materials with high Tc. However, this ceramic superconducting material, which is attracting attention, has a high Tc.

曲げ性、延性、展性にとぼしく、少し曲げてもわれでし
まう。いわんや0.1〜10μmといった薄膜を基板上
に形成し、この薄膜の一部または全部を超電導すること
はまったく不可能であるとされていた。。特にこれを半
導体集積回路と同様のフォトリソグラフィ技術を用い多
層配線を行う。またこの薄膜超電導を用いて新しい電子
ディバイスを作ることはまったく不可能であった。
It has poor bendability, ductility, and malleability, and cracks even when bent slightly. In fact, it was thought to be completely impossible to form a thin film of 0.1 to 10 μm on a substrate and make part or all of this thin film superconducting. . In particular, multilayer wiring is performed using photolithography technology similar to that used for semiconductor integrated circuits. Furthermore, it was completely impossible to create new electronic devices using this thin film superconductor.

「問題を解決すべき手段」 本発明はかかる薄膜状とし、この薄膜を用いて電子ディ
バイスを作らんとしたものである。
"Means to Solve the Problem" The present invention aims to form such a thin film and use this thin film to produce an electronic device.

本発明は予め所望の形状を存する基体、例えば円筒状ま
たは板状の基体に対し薄膜状にセラミック材料特に酸化
物セラミック材料または酸化雰囲気でアニール後酸化物
セラミックとなる金属材料をスパッタ法、印刷法例えば
スクリーン印刷法またはその他の方法により形成する。
In the present invention, a ceramic material, particularly an oxide ceramic material, or a metal material that becomes an oxide ceramic after annealing in an oxidizing atmosphere is applied to a substrate having a desired shape in advance, such as a cylindrical or plate-shaped substrate, in the form of a thin film by sputtering or printing. For example, it is formed by screen printing or other methods.

このスパッタ法で形成するとこの薄膜はアモルファス構
造または格子歪および格子欠陥を多量に有する微結晶を
有する多結晶構造を呈する。この構造では一般に半導体
性または超電導性を有さない導電性または絶縁性である
When formed by this sputtering method, this thin film exhibits an amorphous structure or a polycrystalline structure having microcrystals having a large amount of lattice distortion and lattice defects. This structure is generally conductive or insulating without semiconducting or superconducting properties.

このためかかる状態の膜に対し、本発明は選択的にレー
ザ光を照射、走査(スキャン)し、一定の巾を有する帯
状に再結晶化する工程を有せしめる。この工程によりレ
ーザ光の照射された領域のみレーザアニール工程が行わ
れて結晶化率(結晶粒径を大きく、また超電導を呈する
微結晶構造とさせる)を上げ、この領域内のみ、格子歪
、格子欠陥を少な(させ得る。同時に一度溶融して再結
晶化をさせるため本来超電導を有すべき結晶構造以外の
不純物をある程度照射された表面に偏析させ、内部の不
純物を除去し、高純度化を行い得る。
For this reason, the present invention includes a step of selectively irradiating and scanning a film in such a state with a laser beam to recrystallize it into a band shape having a constant width. Through this process, a laser annealing process is performed only on the area irradiated with laser light to increase the crystallization rate (increase the crystal grain size and create a microcrystalline structure exhibiting superconductivity), and only within this area, lattice strain and lattice At the same time, since it is melted and recrystallized, impurities other than the crystal structure that should originally have superconductivity are segregated to some extent on the irradiated surface, removing internal impurities and achieving high purity. It can be done.

するとこの部分のみ一定のTcを有する超電導材料とす
ることができる。このスパッタ法等で形成される薄膜は
ターゲットを調整しセラミック超電導材料例えば(Yl
−g Bax)CuOz、s〜*、s但しx =0.O
1〜0.1好ましくは0.05〜0.1のイントリュー
ム系セラミック材料または(Lat−xBaX)gCu
Oa(BLCO)。
Then, only this portion can be made of a superconducting material having a constant Tc. Thin films formed by this sputtering method etc. are prepared using ceramic superconducting materials such as (Yl) by adjusting the target.
-g Bax) CuOz, s~*, s where x = 0. O
1 to 0.1, preferably 0.05 to 0.1 of intrum ceramic material or (Lat-xBaX)gCu
Oa (BLCO).

(Lat−x Srx)g(SLCO)、一般的に表現
するならば(Lat−x AX)1Cu04但しAはB
a、Srその他となり得るターゲット材料を用いた。
(Lat-x Srx) g (SLCO), generally expressed as (Lat-x AX)1Cu04 However, A is B
A target material that could be A, Sr, or others was used.

本発明のレーザ光源は例えばYAGレーザ(波長1.0
6μ)、エキシマレーザ(KrF、KrC1等)炭酸ガ
スレーザまたは窒素レーザを用いた。前者は円状のレー
ザビームを5〜30KHzの周波数で繰り返して照射す
ることができ、そしてこの照射された部分のみ再結晶化
させ、層構造を有する分子配列をより基板の面に沿って
層構造を配設させることによりこの部分を超電導材料と
し得ることが特徴である。また後者のエキシマレーザを
用いる場合は面例えば20 X 30mm”に対してパ
ルス照射をすることが可能となる。゛本発明はこれを光
学系でしぼることにより円(直径10〜100μ+m)
または帯状(巾5〜100 ptm長さ10〜40cm
)のレーザビームを作ることができ1、このレーザビー
ムをセラミック膜に照射しつつ基板またはレーザ光ビー
ムを連続的に移動する。即ち走査するアニールのされた
領域をその結晶粒径を単結晶に近(大きくできる。そし
てその粒径は基板上にエピタキシアル成長をSOI(S
uper−conductiong Material
 On In5ulator)として形成される。
The laser light source of the present invention is, for example, a YAG laser (wavelength 1.0
6μ), excimer laser (KrF, KrC1, etc.), carbon dioxide laser, or nitrogen laser. The former can be repeatedly irradiated with a circular laser beam at a frequency of 5 to 30 KHz, and only the irradiated portion is recrystallized, so that the molecular arrangement with a layered structure is further formed into a layered structure along the surface of the substrate. The feature is that this portion can be made of superconducting material by disposing it. In addition, when using the latter excimer laser, it is possible to irradiate pulses on a surface of, for example, 20 x 30 mm.The present invention uses an optical system to narrow this down to a circle (10 to 100 μm in diameter).
Or strip-shaped (width 5-100 ptm length 10-40cm)
) A laser beam can be created (1), and the substrate or the laser beam is continuously moved while irradiating the ceramic film with this laser beam. In other words, the crystal grain size of the annealed area to be scanned can be made close to (larger than) a single crystal.
Upper-conducting Material
On In5ulator).

本発明はかくの如く基体の表面に形成されたセラミック
材料に対し選択的にレーザ光を照射しつつ走査してその
部分のみ酸化物の超電導材料と変成させることを特徴と
している。するとこの周辺部の残存した領域は実質的に
絶縁領域(Tc以下の湿度においては超電導を有する部
分に比べて理論的には十分に抵抗が大きく絶縁領域とす
ることが可能となる。そしてこの部分を除去することも
可能であるが、多層配線の段差を少なくする場合には凹
部のうめこみ材料とすることも可能である。
The present invention is characterized in that the ceramic material formed on the surface of the base body is selectively irradiated and scanned with a laser beam so that only that portion is transformed into an oxide superconducting material. Then, the remaining region of this peripheral part becomes a substantially insulating region (at humidity below Tc, the resistance is theoretically sufficiently higher than that of the superconducting part, and it is possible to make it an insulating region. Although it is possible to remove the material, it is also possible to use the material to fill in the recessed portions in order to reduce the level difference in the multilayer wiring.

本発明において、基板材料としてアルミナ、酸化珪素基
板、YSZ(イツトリア・スタビライズド・ジルコン)
、窒化珪素基板、窒化アルミニューム、ジルコニア、イ
ツトリアを用いた。しかし熱膨張係数の最も類似したY
SZ 、イツトリアまたはジルコニアがレーザアニール
後のTcを高く出し得る。
In the present invention, alumina, a silicon oxide substrate, and YSZ (yttoria stabilized zircon) are used as substrate materials.
, a silicon nitride substrate, aluminum nitride, zirconia, and ittria were used. However, Y with the most similar coefficient of thermal expansion
SZ, ittria, or zirconia can provide a high Tc after laser annealing.

本発明において基板は熱伝導材料に比べて十分(少なく
とも1ケタ以上)信幀できるものを絶縁基板として用い
た。
In the present invention, an insulating substrate that is sufficiently (at least one order of magnitude more reliable) than a thermally conductive material is used as the substrate.

「作用」 これまでの金属超電導材料を用いる場合、その工程とし
てまず線材とする。そしてこれを所定の基体にまいてゆ
くことによりコイルを構成せしめた。
``Operation'' When using conventional metal superconducting materials, the first step is to make them into wire rods. A coil was then constructed by wrapping this around a predetermined base.

しかし本発明のセラミック超電導体に関しては最終形状
の基体を設け、この基体上に帯状に超電導を結晶化処理
の後呈すべき材料を膜状(そのままでは超電導を呈さな
い)に形成する。そしてこの膜に対し選択的にレーザア
ニールを行うことによりアニールを行った部分のみ結晶
化度を向上せしめる。そしてこのレーザ光を任意に走査
することにより、その表面領域にのみ任意の線、帯また
は面を導出させることができる。そしてこの領域のみT
c以下の温度では抵抗が減少しTco (電気抵抗が零
になる温度)では抵抗は「0」またはそれに近い状態を
生ぜしめ得る。
However, with regard to the ceramic superconductor of the present invention, a substrate in the final shape is provided, and a material that is to exhibit superconductivity after crystallization treatment is formed in a band shape on this substrate in the form of a film (which does not exhibit superconductivity as it is). By selectively performing laser annealing on this film, the degree of crystallinity is improved only in the annealed portions. By scanning this laser beam arbitrarily, it is possible to derive an arbitrary line, band, or plane only on the surface area. And only this area T
At temperatures below c, the resistance decreases, and at Tco (the temperature at which the electrical resistance becomes zero), the resistance can be at or close to zero.

以下に実施例に従って本発明を説明する。The present invention will be explained below according to examples.

「実施例1」 第1図は本発明の製造工程を示す。"Example 1" FIG. 1 shows the manufacturing process of the present invention.

第1図(A)において基体(1)はセラミック材料例え
ばアルミナ、ガラスまたはVSZを用いた。金属を用い
てもよい、これらの場合セラミック薄膜と同程度(±5
0%以内)の熱膨張係数の差であることが好ましい、こ
の差が大きすぎるとアニール後応力歪を有し、超電導を
呈する温度が小さく、また超電導が観察されなくなって
しまう、この基体をこの実施例では板状を有する基体上
にスパッタ法により0.1〜20μm例えば2μmの厚
さに形成した。この人バッタに際しては予めターゲット
に(Yl−X Bax)*Cu0g、s 〜s、。例え
ばX−0,075として十分混合したものを用いた。
In FIG. 1A, the substrate (1) is made of a ceramic material such as alumina, glass or VSZ. Metals may also be used; in these cases, the thickness is comparable to that of ceramic thin films (±5
It is preferable that the difference in thermal expansion coefficient is within 0%. If this difference is too large, stress distortion will occur after annealing, the temperature at which superconductivity is exhibited will be low, and superconductivity will no longer be observed. In the example, the film was formed on a plate-shaped substrate by sputtering to a thickness of 0.1 to 20 μm, for example, 2 μm. When this person becomes a grasshopper, the target is (Yl-X Bax)*Cu0g, s ~ s. For example, a sufficiently mixed product was used as X-0,075.

それをスパッタ法で飛翔化させ、基体(1)上に膜(2
)を形成させた。この際基体は室温〜400℃例えば2
50℃に加熱した雰囲気でアルゴンに酸素を若干加えた
。かくして第1図(B)の形状が作られた後第1図(C
)に示すごとく、酸化性雰囲気でエキシマレーザの光(
波長0.25μm)(3)を照射しつつ破線の如く連続
的に走査する。これはパルス光であるため、そのパルス
が畳上に走査するために1つの長方形スポットに次の長
方形ビームの80〜98%が重なるようにした。即ちレ
ーザ光の走査速度は2 cys/分とし、周波数100
KHz 、ビーム径50μta X10cn+とした。
It is made into flying particles by sputtering, and a film (2
) was formed. At this time, the substrate temperature is between room temperature and 400°C, for example, 2
Some oxygen was added to the argon in an atmosphere heated to 50°C. After the shape shown in Figure 1 (B) is created in this way, the shape shown in Figure 1 (C) is created.
), excimer laser light (
While irradiating with light (wavelength: 0.25 μm) (3), continuous scanning is performed as shown by the broken line. Since this is pulsed light, one rectangular spot was made to overlap 80 to 98% of the next rectangular beam so that the pulse scanned the carpet. That is, the scanning speed of the laser beam is 2 cys/min, and the frequency is 100
KHz, beam diameter 50μta, X10cn+.

するとこのレーザ光の照射された部分のみ選択的に酸化
し、ミクロに結晶が配列する。そして巾10cmの帯状
超電導薄膜を作ることができた。この再結晶化の速度を
余り急峻にしないため、この第1図(C)の工程の際、
基体全体を200〜800℃、例えば600℃の温度に
ハロゲンランプにより加熱した酸素雰囲気でレーザアニ
ールまたは光アニールを行った。するとレーザ光または
それと同等の強光により照射される部分は1000℃ま
たはそれ以上の温度であって照射されセラミック材料が
昇華してしまわない温度とした。そして光の照射後室温
への急激な除冷によりクランクの発生を防ぐことができ
た。そしてこの実施例でのTcは43 ” Kを得た。
Then, only the portions irradiated with this laser light are selectively oxidized, and crystals are arranged microscopically. We were able to create a strip-shaped superconducting thin film with a width of 10 cm. In order not to make the rate of recrystallization too steep, during the process shown in Figure 1 (C),
Laser annealing or optical annealing was performed on the entire substrate in an oxygen atmosphere heated to a temperature of 200 to 800°C, for example 600°C, using a halogen lamp. Then, the temperature of the portion irradiated with laser light or equivalent intense light was 1000° C. or higher, at a temperature at which the irradiated ceramic material would not sublime. The occurrence of cranks could be prevented by rapid cooling to room temperature after irradiation with light. In this example, Tc was 43''K.

かくしてこのレーザ光または強光を照射して実質的に帯
または線状にTcを有する領域を作ることができた。
Thus, by irradiating this laser light or strong light, it was possible to create a region having Tc substantially in the form of a band or line.

「実施例2」 第2図は本発明の他の実施例を示す。"Example 2" FIG. 2 shows another embodiment of the invention.

図面において基体(’1)は円筒状を有する。ここに実
施例1と同様に膜状にセラミック材料(2)をスパッタ
法で形成する。
In the drawing, the base body ('1) has a cylindrical shape. Here, similarly to Example 1, a ceramic material (2) is formed in the form of a film by sputtering.

この作製はスパッタ装置でこの円筒基体を矢印(12)
に示す如くに回転しつつコーティングすればよい。
For this production, use a sputtering device to connect this cylindrical substrate to the arrow (12).
The coating may be applied while rotating as shown in the figure.

次にこれら膜の形成された基体にWAGレーザ(3)ビ
ーム径(5011m)を照射しつつ、このレーザ光を(
11)の方向に徐々に移す、同時に円筒を矢印(12)
の方向に回転をする。するとこの円筒状基体に対し一本
の連続した帯状のTcを有する領域(4)を構成させる
ことができる。その隣接部(5)はTcを有さない領域
として残存させる。即ちコイル状に熱電荷ワイヤを実質
的に形成したことと同じ超電導マグネットコイルを構成
させることができた。
Next, while irradiating the substrate on which these films are formed with the WAG laser (3) beam diameter (5011 m), this laser light (
Gradually move the cylinder in the direction of 11), and at the same time move the cylinder in the direction of arrow (12).
Rotate in the direction of. Then, a region (4) having one continuous band-like Tc can be formed on this cylindrical substrate. The adjacent portion (5) is left as a region without Tc. In other words, it was possible to construct a superconducting magnet coil that is essentially the same as a thermoelectric wire formed in a coil shape.

第4図はかかる工程を繰り返し行うことにより多層に超
電導ワイヤを形成したものである。
FIG. 4 shows a multi-layered superconducting wire formed by repeating these steps.

これに第2図におけるA−A’の縦断面図が対応する0
図面の構成を略記する。
This corresponds to 0
The structure of the drawing is abbreviated.

基体(1)上に第1のセラミック材料を膜コーティング
(2−1)する、この後レーザ光を(4−1)、 (4
−2)・・・(4,−n)に照射する。これは基体を回
転しつつレーザ光を右へ移すことにより成就し得る。す
るとこのレーザ光は連続的に走査しつつが照射され、か
つ熱アニールされた領域部分のみ超電導材料に変成する
The first ceramic material is coated (2-1) on the substrate (1), and then laser light is applied (4-1), (4
-2)... (4, -n) is irradiated. This can be accomplished by moving the laser beam to the right while rotating the substrate. Then, this laser light is irradiated while scanning continuously, and only the thermally annealed region is transformed into a superconducting material.

次にこれら上に第2のセラミック材料を膜コーティング
(2−2)を形成する。さらにレーザアニールを同様に
行い、帯状のTcを有する領域(4′−n)。
Next, a film coating (2-2) of a second ceramic material is formed on these. Further, laser annealing is performed in the same manner to form a region (4'-n) having a band-shaped Tc.

・・・(4’ −2) 、 (4“−1)を作る。この
時レーザはその深さ方向の制御が比較的困難のため下側
ににじみ出しやすい、そのため(4”−1) 、 (4
’−2)の位置はその下側のTcを有する領域(4−1
) 、 (4−2)  ・・・の上方を避け、Tcのな
い領域(5−1) 、 (5−2)  ・・・上方に配
設する。この(4−1)は1回コイルをまわって(4−
2)に電気的に連携している。これら端部の(4−n)
では2層目の(4’−n)に(10−1)にて連結して
いる。
...(4'-2), (4"-1) is created.At this time, the laser tends to bleed downward because it is relatively difficult to control the depth, so (4"-1), (4
'-2) is the region (4-1) with Tc below it.
), (4-2) . . . and are arranged above the Tc-free regions (5-1), (5-2) . This (4-1) goes around the coil once and (4-1)
2) is electrically linked. (4-n) of these ends
In this case, it is connected to (4'-n) of the second layer at (10-1).

さらにこの2層目の他方の端部(4’−1)は3層目の
(4”−1)と(10−2)で連結しており、3層目の
Tcを有する領域を(4”−1)、(4”−2)  ・
・・(4”−n)として作り得、さらに(10−3)に
て4層目と連結させる。かくして多層構造(ここでは4
層構造)をしても1本の長い線が繰り返し巻かれ、実質
的にコイルの多層巻と同じ構成とすることができる。
Furthermore, the other end (4'-1) of the second layer is connected to (4''-1) and (10-2) of the third layer, and the region having Tc of the third layer is connected to (4'-1) of the third layer. ”-1), (4”-2) ・
...(4"-n), and further connects with the fourth layer at (10-3). Thus, the multilayer structure (here, 4"
Even with a layered structure, one long wire is wound repeatedly, and the structure can be substantially the same as multilayer winding of a coil.

この第4図の実施例では(4−1) 、 (4−2)の
巾の約5倍に(5−1) 、 (5−2)を有せしめ、
(4”−1)、<4°゛−1)(4°°”−1)は(5
−1)の上方に形成され、それぞれの眉間で互いのリー
ド線のショートが発生しないようしている。多層配線は
これを繰り返し、1層〜数十層とし得る。またこの際は
直列にあたかも1本の超電導体の如(に連結した。しか
し用途により並列に連結してもよい、そして外部取り出
し電極、リード(30) 、 (30’ )を設けた。
In the embodiment shown in FIG. 4, (5-1) and (5-2) are made to have approximately five times the width of (4-1) and (4-2),
(4”-1), <4°゛-1) (4°°”-1) is (5
-1) is formed above the lead wires to prevent short-circuiting of the lead wires between each eyebrow. By repeating this process, multilayer wiring can have one to several tens of layers. Also, in this case, they were connected in series as if they were one superconductor. However, depending on the application, they may be connected in parallel, and external extraction electrodes and leads (30) and (30') were provided.

その他は実施例1と同様である。The rest is the same as in Example 1.

「実施例3」 第3図は本発明の他の実施例を示す図面である。"Example 3" FIG. 3 is a drawing showing another embodiment of the present invention.

図面において、基体(1) は円板状(ディスク状)を
有し、この直径より大きなレーザ光(3)は線状に照射
する。この後このディスク(1)を繰り返し連続的に回
転させる。すると光アニールを繰り返し行わしめること
ができる。するとこのセラミック薄膜は次第に結晶配列
を揃え大きな面積を結晶に成長させることができる。し
かる後、基板上面にそって層構造を分子配列で有すべく
再結晶化させている。
In the drawing, a base (1) has a disk shape, and a laser beam (3) larger than this diameter is irradiated linearly. Thereafter, this disk (1) is repeatedly and continuously rotated. Then, optical annealing can be repeated. Then, this ceramic thin film gradually aligns its crystal alignment and can grow into crystals over a large area. Thereafter, it is recrystallized along the upper surface of the substrate to form a layered structure with molecular alignment.

この図面では1層のディスク構成を示すが、第4図に示
した実施例と同様に多層構成を有せしめることが可能で
ある。
Although this figure shows a single-layer disk configuration, it is possible to have a multi-layer configuration similar to the embodiment shown in FIG.

この酸化雰囲気でのレーザアニールを加えた領域のTc
は43°Kを得た。
Tc of the region subjected to laser annealing in this oxidizing atmosphere
obtained 43°K.

「効果」 本発明によりこれまでまったく不可能とされていたセラ
ミック超電導体を実質的にコイル状、ディスク状または
膜状に線または帯状に構成させることが可能となった。
"Effects" According to the present invention, it has become possible to construct a ceramic superconductor substantially in the shape of a coil, disk, or film in the form of a wire or band, which was previously considered impossible.

そして曲げるとすぐわれてしまうセラミックス超電導材
料として導体または超電導素子の固体材料として薄膜状
に作ることができた。
As a ceramic superconducting material that easily breaks when bent, it could be made into a thin film as a solid material for conductors or superconducting elements.

本発明において超電導薄膜を形成した後、公知のフォト
リソグラフィ技術を用い、所定のバターニンイグをし超
電導素子または超電導配線とすることはその工業的応用
を考えると重要である。
In the present invention, after forming a superconducting thin film, it is important from the viewpoint of industrial application that it is subjected to a predetermined patterning process using a known photolithography technique to form a superconducting element or superconducting wiring.

本発明の超導電材料はセラミック材料であればなんでも
よい。
The superconducting material of the present invention may be any ceramic material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導体の作製工程を示す。 第2図、第3図および第4図は本発明の超電導体の実施
例を示す。 l・・・基体 2・・・セラミック材料 3・・・レーザ光 4・・・超電導を呈する帯状領域 5・・・超電導を呈さない領域
FIG. 1 shows the manufacturing process of the superconductor of the present invention. 2, 3 and 4 show embodiments of the superconductor of the present invention. l...Substrate 2...Ceramic material 3...Laser light 4...Striped region exhibiting superconductivity 5...Region not exhibiting superconductivity

Claims (1)

【特許請求の範囲】 1、基体上に薄膜状にセラミック材料を形成する工程と
、該材料に対し帯状にレーザ光またはそれと同等の強光
を走査しつつ照射して前記セラミック材料を酸化させつ
つ再結晶化せしめて超電導状態を生ぜしめ得る材料に変
成する工程とを有することを特徴とする超電導体の作製
方法。 2、特許請求の範囲第1項において、絶縁基板上に薄膜
状に酸化物セラミック材料を形成する工程と、該材料に
対し円筒上の基板を回転しつつレーザ光を帯状に照射す
ることによりコイル状に超電導を呈する状態の領域を作
製することを特徴とする超電導体の作製方法。 3、特許請求の範囲第2項において、セラミック材料の
熱膨張後の±50%以内に概略一致した熱膨張係数を有
する基板よりなることを特徴とした超電導体の作製方法
[Claims] 1. A step of forming a ceramic material in the form of a thin film on a substrate, and oxidizing the ceramic material by scanning and irradiating the material with a laser beam or a strong light equivalent to it in a band shape. 1. A method for producing a superconductor, comprising the step of recrystallizing the material and transforming it into a material capable of producing a superconducting state. 2. In claim 1, a coil is formed by forming an oxide ceramic material in the form of a thin film on an insulating substrate, and irradiating the material with a laser beam in a belt shape while rotating the cylindrical substrate. 1. A method for producing a superconductor, comprising producing a region exhibiting superconductivity in a shape. 3. A method for producing a superconductor according to claim 2, comprising a substrate having a coefficient of thermal expansion approximately within ±50% after the thermal expansion of the ceramic material.
JP62058466A 1987-03-12 1987-03-12 Superconductor fabrication method Expired - Fee Related JP2645489B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62058466A JP2645489B2 (en) 1987-03-12 1987-03-12 Superconductor fabrication method
EP88302227A EP0282360B1 (en) 1987-03-12 1988-03-14 Method for manufacturing components of superconducting ceramic oxide materials
DE3854626T DE3854626T2 (en) 1987-03-12 1988-03-14 Process for the production of components from superconducting oxide ceramic materials.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058466A JP2645489B2 (en) 1987-03-12 1987-03-12 Superconductor fabrication method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP62284627A Division JPH07114295B2 (en) 1987-03-12 1987-11-11 Superconducting coil fabrication method
JP62284628A Division JPH07114296B2 (en) 1987-03-12 1987-11-11 Superconductor

Publications (2)

Publication Number Publication Date
JPS63224117A true JPS63224117A (en) 1988-09-19
JP2645489B2 JP2645489B2 (en) 1997-08-25

Family

ID=13085206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058466A Expired - Fee Related JP2645489B2 (en) 1987-03-12 1987-03-12 Superconductor fabrication method

Country Status (1)

Country Link
JP (1) JP2645489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237313A (en) * 1987-03-18 1988-10-03 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive structural body and manufacture thereof
JPS63257127A (en) * 1987-04-13 1988-10-25 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
JPS6427294A (en) * 1987-04-27 1989-01-30 Fujitsu Ltd Multilayer circuit board for superconducting ceramics circuit and manufacture thereof
JPS6433006A (en) * 1987-04-08 1989-02-02 Hitachi Ltd Production of superconducting oxide and superconducting device
JPH01144689A (en) * 1987-03-30 1989-06-06 Sumitomo Electric Ind Ltd Formation of superconducting circuit
JPH02221120A (en) * 1989-02-22 1990-09-04 Shibuya Kogyo Co Ltd Production of superconducting thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225808A (en) * 1985-03-29 1986-10-07 Kobe Steel Ltd Manufacture of superconductive coil
JPS61261467A (en) * 1985-05-15 1986-11-19 Hitachi Ltd Heat resisting material
JPS61266387A (en) * 1985-05-20 1986-11-26 Fujitsu Ltd Method for recrystallizing semiconductor thin film with laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225808A (en) * 1985-03-29 1986-10-07 Kobe Steel Ltd Manufacture of superconductive coil
JPS61261467A (en) * 1985-05-15 1986-11-19 Hitachi Ltd Heat resisting material
JPS61266387A (en) * 1985-05-20 1986-11-26 Fujitsu Ltd Method for recrystallizing semiconductor thin film with laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237313A (en) * 1987-03-18 1988-10-03 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive structural body and manufacture thereof
JPH01144689A (en) * 1987-03-30 1989-06-06 Sumitomo Electric Ind Ltd Formation of superconducting circuit
JPS6433006A (en) * 1987-04-08 1989-02-02 Hitachi Ltd Production of superconducting oxide and superconducting device
JPS63257127A (en) * 1987-04-13 1988-10-25 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
JPS6427294A (en) * 1987-04-27 1989-01-30 Fujitsu Ltd Multilayer circuit board for superconducting ceramics circuit and manufacture thereof
JPH02221120A (en) * 1989-02-22 1990-09-04 Shibuya Kogyo Co Ltd Production of superconducting thin film

Also Published As

Publication number Publication date
JP2645489B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR910004993B1 (en) Method of manufacturing a superconducting pattern by light irradiation
EP0282360B1 (en) Method for manufacturing components of superconducting ceramic oxide materials
JPS59169121A (en) Method of producing semiconductor device
JPS63224117A (en) Manufacture of superconductor
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP2660280B2 (en) Superconductor
JP2660281B2 (en) Superconductor fabrication method
JPS63224270A (en) Manufacture of superconductor device
JPS63224271A (en) Superconductor
JPH0812819B2 (en) Superconductor fabrication method
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JP2630362B2 (en) Superconducting coil
JPH0829944B2 (en) Method for producing oxide superconducting material
JP2011146234A (en) Method of manufacturing oxide superconducting film
US5248658A (en) Method of manufacturing a superconducting oxide pattern by laser sublimation
JPH01119076A (en) Manufacture of oxide superconductive film
JP2004244263A (en) Method for forming superconducting oxide thin film having high critical current density
JPH063766B2 (en) Superconducting coil manufacturing method
JPH01205579A (en) Superconductive thin film and formation of superconductive thin film
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JP2654555B2 (en) Superconducting device manufacturing method
JPH01100096A (en) Production of oxide superconductor thin film
JPH083968B2 (en) How to make a superconductor
JPH04297003A (en) Substrate for manufacturing superconducting device
JPH01115899A (en) Production of oxide superconductor film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees