JPS63224271A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPS63224271A
JPS63224271A JP62284628A JP28462887A JPS63224271A JP S63224271 A JPS63224271 A JP S63224271A JP 62284628 A JP62284628 A JP 62284628A JP 28462887 A JP28462887 A JP 28462887A JP S63224271 A JPS63224271 A JP S63224271A
Authority
JP
Japan
Prior art keywords
substrate
ceramic
thin film
superconducting
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62284628A
Other languages
Japanese (ja)
Other versions
JPH07114296B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62284628A priority Critical patent/JPH07114296B2/en
Priority to DE3854626T priority patent/DE3854626T2/en
Priority to EP88302227A priority patent/EP0282360B1/en
Publication of JPS63224271A publication Critical patent/JPS63224271A/en
Publication of JPH07114296B2 publication Critical patent/JPH07114296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to form a superconduction electronic device applying a ceramic superconductive material, by arranging, on a substrate, YSZ, yttria or zirconia, which are in the form of a thin film and closely in contact with a material generating an oxide superconductive ceramic. CONSTITUTION:A substrate 1 has a surface with a desired shape of YSZ (yttrium stabilized zircon), yttria or zirconia. By a sputtering method or a printing method, a thin film type cermic material 2 is formed on the surface of the substrate 1 so as to be closely in contact with the surface. The ceramic material 2 formed on the surface of the substrate 1 is selectively irradiated by laser light and scanned to transform the irradiated parts only into an oxide superconductive material 4. The residual region 5 in the periphery is turned substantially into an insulating region. In this manner, the ceramic superconductive material 4 is arranged so as to be in contact with YSZ, zirconia or yttria. Thereby, the constitution substantially in the form of a coil, a disc, a film, a line or a belt is enabled.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は薄膜のセラミック系超伝導材料に関する。本発
明は、YSZ、イットリア、ジルコニアの表面を有する
基体上に薄膜化した酸化物超電導材料用原材料または酸
化物超伝導材料の薄膜を有する超伝導体に関する。そし
てこのセラミック系超伝導材料を用いて超伝導電子ディ
バイスを作らんとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to thin film ceramic superconducting materials. The present invention relates to a superconductor having a raw material for an oxide superconducting material or a thin film of an oxide superconducting material formed into a thin film on a substrate having a surface of YSZ, yttria, or zirconia. The aim is to use this ceramic superconducting material to create superconducting electronic devices.

「従来の技術」 従来超伝導材料はNb−Ge(例えばNbzGe)の金
属材料が用いられている。この材料は金属であるため延
性、展性を高く有し、超伝導マグネット用のコイル巻を
行うことが可能であった。
"Prior Art" Conventionally, a metal material of Nb-Ge (for example, NbzGe) has been used as a superconducting material. Since this material is a metal, it has high ductility and malleability, making it possible to wind coils for superconducting magnets.

しかし、これらの金属材料を用いた超伝導材料はTc(
超伝導臨界温度を以下単にTcという)が小さく 23
 ” Kまたはそれ以下しかない。これに対し工業上の
応用を考えるならばこのTcが30 ’ K好ましくは
776Kまたはそれ以上であるとさらに有効である。特
に77 ” K以上の温度にTcを有する超伝導材料が
開発されるならば、液体窒素温度雰囲気下での動作を可
能とし、工業上の運転維持価格をこれまでの約1/10
またはそれ以下にすることが可能であると期待されてい
る。
However, superconducting materials using these metal materials have Tc (
The superconducting critical temperature (hereinafter simply referred to as Tc) is small 23
On the other hand, when considering industrial applications, it is more effective if the Tc is 30' K, preferably 776 K or higher.In particular, it is effective if the Tc is at a temperature of 77' K or higher. If a superconducting material is developed, it will be possible to operate in a liquid nitrogen temperature atmosphere, reducing industrial operation and maintenance costs to about 1/10 of the current cost.
It is expected that it will be possible to reduce the amount to less than

「従来の問題点」 このため、Tcの高い材料として金属ではな(セラミッ
ク系材料、特に酸化物セラミック系材料が注目されてい
る。しかしこの注目されているセラミック系超伝遵材料
はTcが高いにもかかわらず、これに密接する基板材料
との相性がきわめて悪い。
``Conventional problems'' For this reason, ceramic materials, especially oxide ceramic materials, are attracting attention as materials with high Tc.However, these ceramic superconducting materials, which are attracting attention, have a high However, it is extremely incompatible with substrate materials that are in close contact with it.

このため特殊な基板材料が選ばれる必要があった。For this reason, a special substrate material had to be chosen.

さらにこのセラミック材料は曲げ性、延性、展性に乏し
く、少し曲げてもわれてしまう。いわんや0.1〜10
μmといった薄膜を基板上に形成し、この薄膜の一部ま
たは全部を超伝導とすることはまったく不可能であると
されていた。特にこれを半導体集積回路と同様のフォト
リソグラフィ技術を用い多層配線を行い、この薄膜超伝
導を用いて新しい電子ディバイスを作ることはまったく
不可能であった。
Furthermore, this ceramic material has poor bendability, ductility, and malleability, and tends to break even when bent slightly. Iwanya 0.1~10
It was thought that it would be completely impossible to form a thin film of .mu.m on a substrate and make part or all of this thin film superconducting. In particular, it was completely impossible to create new electronic devices using this thin film superconductor by creating multilayer wiring using the same photolithography technology used in semiconductor integrated circuits.

「問題を解決すべき手段」 本発明はかかる薄膜状とし、この薄膜を用いて電子ディ
バイスを作らんとしたものである。
"Means to Solve the Problem" The present invention aims to form such a thin film and use this thin film to produce an electronic device.

本発明は、予め所望の形状を有するYSZ (イツトリ
ウム・スタビライズド・ジルコン)、イツトリア(酸化
イツトリウム)またはジルコニア(酸化ジルコニウム)
の表面を有する基体、例えば円筒状または板状の基体を
用いた。さらにこの表面に密接させて薄膜状にセラミッ
ク材料特に酸化物セラミック材料または酸化雰囲気でア
ニール後酸化物セラミックとなる金属材料をスパッタ法
、印刷法例えばスクリーン印刷法またはその他の方法に
より形成する。
The present invention uses YSZ (yttrium stabilized zircon), yttrium oxide, or zirconia (zirconium oxide) having a desired shape in advance.
A substrate having a surface of, for example, a cylindrical or plate-shaped substrate was used. Further, a ceramic material, particularly an oxide ceramic material, or a metal material which becomes an oxide ceramic after annealing in an oxidizing atmosphere is formed in a thin film form in close contact with this surface by a sputtering method, a printing method such as a screen printing method, or other methods.

例えば、スパッタ法で形成するとこの薄膜はアモルファ
ス構造または格子歪および格子欠陥を多量に有する微結
晶を有する多結晶構造を呈する。
For example, when formed by sputtering, this thin film exhibits an amorphous structure or a polycrystalline structure having microcrystals with a large amount of lattice distortion and lattice defects.

この構造では一般に半導体性または超伝導性を有さない
導電性または絶縁性であった。
This structure was generally conductive or insulating without semiconducting or superconducting properties.

このためかかる状態の膜に対し、本発明は酸化性雰囲気
での熱処理または選択的にレーザ光を照射、走査(スキ
ャン)し、一定の巾を有する帯状に再結晶化する工程を
有せしめる。この工程によリレーザ光の照射された領域
のみレーザアニール工程が行われて結晶化率(結晶粒径
を大きく、また超伝導を呈する微結晶構造とさせる)を
上げ、この領域内のみ、格子歪、格子欠陥を少なくさせ
得る。同時に一度溶融して再結晶化をさせるため本来超
伝導を有すべき結晶構造以外の不純物をある程度照射さ
れた表面に偏析させ、内部の不純物を除去し、高純度化
を行い得る。するとこの部分のみ一定のTcを有する超
伝導材料とすることができる。このスパッタ法等で形成
される薄膜は、ターゲットを調整しセラミック超伝導材
料、例えば(’b−X Bax)CuOz、 s〜z、
 s但しx =0.01〜0.1好ましくは0.05〜
0.1のイントリューム系セラミック材料または(La
d−xBax) zcuOn(BLCO) 、 (La
1−x 5rx) z(SLCO)、一般的に表現する
ならば(Lad−x Ax)zcu04但しAはBa、
Srその他となり得るターゲット材料を用いた。
For this reason, the present invention includes a step of recrystallizing the film in such a state into a band shape having a certain width by heat treatment in an oxidizing atmosphere or by selectively irradiating and scanning the film with laser light. In this process, a laser annealing process is performed only in the area irradiated with laser light to increase the crystallization rate (increase the crystal grain size and create a microcrystalline structure exhibiting superconductivity), and only in this area, the lattice strain , lattice defects can be reduced. At the same time, since it is once melted and recrystallized, impurities other than the crystal structure that should originally have superconductivity are segregated to a certain extent on the irradiated surface, internal impurities are removed, and high purity can be achieved. Then, only this portion can be made of a superconducting material having a constant Tc. The thin film formed by this sputtering method etc. is prepared by adjusting the target and using a ceramic superconducting material such as ('b-X Bax)CuOz, s~z,
s However, x = 0.01~0.1 preferably 0.05~
0.1 intrum ceramic material or (La
d-xBax) zcuOn(BLCO), (La
1-x 5rx) z(SLCO), generally expressed as (Lad-x Ax)zcu04, where A is Ba,
A target material that could be Sr or other material was used.

本発明のレーザ光源は例えばYAGレーザ(波長1.0
6p)、エキシマレーザ(KrF、KrC1等)、炭酸
ガスレーザまたは窒素レーザを用いた。前者は円状のレ
ーザビームを5〜30KHzの周波数で繰り返して照射
することができ、そしてこの照射された部分のみ再結晶
化させ、層構造を有する分子配列をより基板の面に沿っ
て層構造を配設させることによりこの部分を超伝導材料
とし得ることが特徴である。また後者のエキシマレーザ
を用いる場合は面例えば20 X 30mm”に対して
パルス、照射をすることが可能となる。本発明はこれを
光学系でしぼることにより円(直径10〜100μm)
または帯状(巾5〜100μm長さ10〜40cm)の
レーザビームを作ることができ、このレーザビームをセ
ラミック膜に照射しつつ基板またはレーザ光ビームを連
続的に移動する。即ち走査するアニールのされた領域で
その結晶粒径を単結晶に近く大きくできる。そしてその
粒径は基板上にエピタキシアル成長をSol(Supe
r−conductiong Material On
 In5ulator)として形成される。
The laser light source of the present invention is, for example, a YAG laser (wavelength 1.0
6p), an excimer laser (KrF, KrC1, etc.), a carbon dioxide laser, or a nitrogen laser. The former can be repeatedly irradiated with a circular laser beam at a frequency of 5 to 30 KHz, and only the irradiated portion is recrystallized, so that the molecular arrangement with a layered structure is further formed into a layered structure along the surface of the substrate. The feature is that this portion can be made of superconducting material by disposing it. In addition, when using the latter excimer laser, it is possible to pulse and irradiate a surface of, for example, 20 x 30 mm.In the present invention, by squeezing this with an optical system, it is possible to irradiate a circle (10 to 100 μm in diameter).
Alternatively, a belt-shaped laser beam (width: 5 to 100 μm, length: 10 to 40 cm) can be created, and the substrate or the laser beam is continuously moved while irradiating the ceramic film with this laser beam. That is, the crystal grain size in the annealed area to be scanned can be increased to almost that of a single crystal. The particle size is determined by epitaxial growth on the substrate as Sol (Supe).
r-conduction Material On
In5lator).

本発明はかくの如く基体の表面に形成されたセラミック
材料に対し選択的にレーザ光を照射しつつ走査してその
部分のみ酸化物の超伝導材料と変成させることを特徴と
している。するとこの周辺部の残存した領域は実質的に
vA縁領域(Tc以下の湿度においては超伝導を有する
部分に比べて理論的には十分に抵抗が大きく絶縁領域)
とすることが可能となる。そしてこの部分を除去するこ
とも可能であるが、多層配線の段差を少なくする場合に
は凹部のうめこみ材料とすることも可能である。
The present invention is characterized in that the ceramic material formed on the surface of the substrate is selectively irradiated and scanned with laser light so that only that portion is transformed into an oxide superconducting material. Then, the remaining region at the periphery is essentially a vA edge region (an insulating region with theoretically sufficiently high resistance compared to the superconducting region at humidity below Tc).
It becomes possible to do this. Although it is possible to remove this portion, it is also possible to use the material to fill in the recessed portions in order to reduce the level difference in the multilayer wiring.

本発明において、基板材料としてアルミナ、酸化珪素基
板、YSZ (イツトリア・スタビライズド・ジルコン
)、窒化珪素基板、窒化アルミニューム、ジルコニア、
イツトリアを用いた。しかし熱膨張係数の最も類似した
YSZ 、イツトリアまたはジルコニアがレーザアニー
ル後のTcを高(出し得る。
In the present invention, the substrate materials include alumina, silicon oxide substrate, YSZ (yttoria stabilized zircon), silicon nitride substrate, aluminum nitride, zirconia,
Ittria was used. However, YSZ, ittria, or zirconia, which have the most similar thermal expansion coefficients, can provide a high Tc after laser annealing.

本発明において、基板は酸化珪素基板、窒化珪素基板等
の酸化物超伝導セラミックスと酸=塩基反応をするもの
は好ましくなく、これらに比べて十分(少なくとも1ケ
タ以上)信頼できるものを絶縁基板として用いた。
In the present invention, it is not preferable to use a substrate that undergoes an acid-base reaction with oxide superconducting ceramics, such as a silicon oxide substrate or a silicon nitride substrate, and use a substrate that is sufficiently (at least one order of magnitude) more reliable than these as an insulating substrate. Using.

「作用」 このため、きわめて酸=塩基反応を伴いやすくかつ大き
な熱膨張係数を有する酸化物超電導セラミックに対し、
反応を防止でき、かつほぼ同じ熱膨張係数を有する材料
であるYSZ、イットリアおよびジルコニアを発生し得
た。かくして初めて酸化物超電導セラミックスを薄膜状
に形成することが可能となった。本発明のセラミック超
伝導体に関しては、最終形状の基体を設け、この基体上
に帯状に超伝導を結晶化処理の後車すべき材料を膜状(
そのままでは超伝導を呈さない)に形成する。
``Action'' For this reason, for oxide superconducting ceramics that are highly susceptible to acid-base reactions and have a large coefficient of thermal expansion,
It was possible to generate materials YSZ, yttria and zirconia that could prevent the reaction and have approximately the same coefficient of thermal expansion. This made it possible for the first time to form oxide superconducting ceramics into a thin film. Regarding the ceramic superconductor of the present invention, a base body in the final shape is provided, and a film-like material (
(does not exhibit superconductivity as it is).

そしてこの膜に対し、選択的にレーザアニールを行うこ
とによりアニールを行った部分のみ結晶化度を向上せし
める。このレーザ光を任意に走査することにより、その
表面領域にのみ任意の線、帯または面を導出させること
ができる。そしてこの領域のみTc以下の温度では抵抗
が減少しTco (電気抵抗が零になる温度)では抵抗
は「0」またはそれに近い状態を生ぜしめ得る。
Then, by selectively performing laser annealing on this film, the degree of crystallinity is improved only in the annealed portions. By scanning this laser beam arbitrarily, it is possible to derive an arbitrary line, band, or plane only on the surface area. Only in this region, the resistance decreases at temperatures below Tc, and at Tco (temperature at which the electrical resistance becomes zero), the resistance can become "0" or close to it.

以下に実施例に従って本発明を説明する。The present invention will be explained below according to examples.

「実施例1」 第1図は本発明の製造工程を示す。"Example 1" FIG. 1 shows the manufacturing process of the present invention.

第1図(A)において基体(1)はセラミック材料例え
ばイツトリア、ジルコニアまたはysz <イツトリウ
ム・スタビライズド・ジルコン)を用いた。
In FIG. 1(A), a ceramic material such as yttrium, zirconia or ysz<yttrium stabilized zircon) is used for the substrate (1).

これらの場合セラミソ゛り薄膜と同程度(±50%以内
)の熱膨張係数の差であることが好ましい。この差が大
きすぎるとアニール後応力歪を有し、超伝導を呈する温
度が小さく、また超伝導が観察されなくなってしまう。
In these cases, it is preferable that the difference in coefficient of thermal expansion be the same (within ±50%) as that of a ceramic thin film. If this difference is too large, stress distortion occurs after annealing, the temperature at which superconductivity is exhibited is low, and superconductivity is not observed.

この基体をこの実施例では板状を有する基体上にスパッ
タ法により0.1〜20μm例えば2μmの厚さに形成
した。このスパッタに際しては予めターゲットに(YI
−XBax) zcuoz、 s〜3.。例えばX=0
.075として十分混合したものを用いた。
In this example, this substrate was formed on a plate-shaped substrate by sputtering to a thickness of 0.1 to 20 μm, for example, 2 μm. During this sputtering, the target (YI
-XBax) zcuoz, s~3. . For example, X=0
.. A sufficiently mixed product was used as 075.

それをスパッタ法で飛翔化させ、基体(1)上に膜(2
)を形成させた。この際基体は室温〜400℃例えば2
50℃に加熱した雰囲気でアルゴンに酸素を若干加えた
。かくして第1図(B)の形状が作られた後第1図(C
)に示すごとく、酸化性雰囲気でエキシマレーザの光(
波長0.25μm) (3)を照射しつつ破線の如く連
続的に走査する。これはパルス光であるため、そのパル
スが帯止に走査するために1つの長方形スポットに次の
長方形ビームの80〜98%が重なるようにした。即ち
レーザ光の走査速度は2 cm/分とし、周波数100
KHz、ビーム径50μm X10cmとした。すると
このレーザ光の照射された部分のみ選択的に酸化し、ミ
クロに結晶が配列する。そして巾10cmの帯状超伝導
薄膜を作ることができた。この再結晶化の速度を余り急
峻にしないため、この第1図(C)の工程の際、基体全
体を200〜800℃、例えば600℃の温度にハロゲ
ンランプにより加熱した酸素雰囲気でレーザアニールま
たは光アニールを行った。するとレーザ光またはそれと
同等の強光により照射される部分は、1000℃または
それ以上の温度であって照射されセラミック材料が昇華
してしまわない温度とした。そして光の照射後室温への
急激な除冷によりクランクの発生を防ぐことができた。
It is made into flying particles by sputtering, and a film (2
) was formed. At this time, the substrate temperature is between room temperature and 400°C, for example, 2
Some oxygen was added to the argon in an atmosphere heated to 50°C. After the shape shown in Figure 1 (B) is created in this way, the shape shown in Figure 1 (C) is created.
), excimer laser light (
Wavelength: 0.25 μm) (3) While irradiating, scan continuously as shown by the broken line. Since this is pulsed light, one rectangular spot was made to overlap 80 to 98% of the next rectangular beam so that the pulse scanned in a continuous manner. That is, the scanning speed of the laser beam was 2 cm/min, and the frequency was 100 cm/min.
KHz, beam diameter 50 μm x 10 cm. Then, only the portions irradiated with this laser light are selectively oxidized, and crystals are arranged microscopically. They were able to create a strip-shaped superconducting thin film with a width of 10 cm. In order not to make the rate of recrystallization too steep, during the process shown in FIG. 1(C), the entire substrate is heated by laser annealing or Optical annealing was performed. Then, the temperature of the part irradiated with the laser beam or equivalent strong light was set to 1000° C. or higher, at which the irradiated ceramic material would not sublimate. The occurrence of cranks could be prevented by rapid cooling to room temperature after irradiation with light.

そしてこの実施例でのTcは43°Kを得た。In this example, Tc was 43°K.

かくしてこのレーザ光または強光を照射して実質的に帯
または線状にTcを有する領域を作ることができた。
Thus, by irradiating this laser light or strong light, it was possible to create a region having Tc substantially in the form of a band or line.

「実施例2」 第2図は本発明の他の実施例を示す。"Example 2" FIG. 2 shows another embodiment of the invention.

図面において基体(1)は円筒状を存する。ここに実施
例1と同様に膜状にセラミック材料(2)をスパッタ法
で形成する。
In the drawing, the base body (1) has a cylindrical shape. Here, similarly to Example 1, a ceramic material (2) is formed in the form of a film by sputtering.

この作製はスパッタ装置でこの円筒基体を矢印(12)
に示す如くに回転しつつコーティングすればよい。
For this production, use a sputtering device to connect this cylindrical substrate to the arrow (12).
The coating may be applied while rotating as shown in the figure.

次にこれら膜の形成された基体にYAGレーザ(3)ビ
ーム径(50μm)を照射しつつ、このレーザ光を(1
1)の方向に徐々に移す。同時に円筒を矢印(12)の
方向に回転をする。するとこの円筒状基体に対し一本の
連続した帯状のTcを有する領域(4)を構成させるこ
とができる。その隣接部(5)はTcを有さない領域と
して残存させる。即ちコイル状に熱電荷ワイヤを実質的
に形成したことと同じ超伝導マグネットコイルを構成さ
せることができた。
Next, while irradiating the substrate on which these films are formed with a YAG laser (3) beam diameter (50 μm), this laser light (1
Gradually move in the direction of 1). At the same time, rotate the cylinder in the direction of arrow (12). Then, a region (4) having one continuous band-like Tc can be formed on this cylindrical substrate. The adjacent portion (5) is left as a region without Tc. In other words, a superconducting magnet coil can be constructed which is essentially the same as forming a thermoelectric wire in the form of a coil.

第4図はかかる工程を繰り返し行うことにより多層に超
伝導ワイヤを形成したものである。
FIG. 4 shows a multi-layered superconducting wire formed by repeating these steps.

これに第2図におけるA−A’ の縦断面図が対応する
。図面の構成を略記する。
This corresponds to the longitudinal sectional view taken along line AA' in FIG. The structure of the drawing is abbreviated.

基体(1)上に第1のセラミック材料を膜コーティング
(2−1)する。この後レーザ光を(4−1) 、 (
4−2)・・・(4−n)に照射する。これは基体を回
転しつつレーザ光を右へ移すことにより成就し得る。す
るとこのレーザ光は連続的に走査しつつが照射され、か
つ熱アニールされた領域部分のみ超伝導材料に変成する
A first ceramic material is coated (2-1) on the substrate (1). After this, the laser beam (4-1), (
4-2)...(4-n) is irradiated. This can be accomplished by moving the laser beam to the right while rotating the substrate. Then, this laser light is irradiated while scanning continuously, and only the thermally annealed region is transformed into a superconducting material.

次にこれら上に第2のセラミック材料を膜コーティング
(2−2)で形成する。さらにレーザアニールを同様に
行い、帯状のTcを有する領域(4”−〇)。
A second ceramic material is then formed over these with a membrane coating (2-2). Further, laser annealing was performed in the same manner to form a region (4''-〇) having a band-shaped Tc.

・・・(4’−2)、(4”−1)を作る。この時レー
ザはその深さ方向の制御が比較的困難のため下側ににじ
み出しやすい。そのため(4’ −1) 、 (4’−
2)の位置はその下側のTcを有する領域(4−1) 
、 (4−2)  ・・・の上方を避け、Tcのない領
域(5−1) 、 (5−2)  ・・・上方に配設す
る。この(4−1)は1回コイルをまわって(4−2)
に電気的に連携している。これら端部の(4−n)では
2層目の(4’−n)に(10−1)にて連結している
...(4'-2), (4''-1) are made. At this time, the laser tends to bleed downward because it is relatively difficult to control the depth direction. Therefore, (4'-1), (4'-
The position of 2) is the region (4-1) with Tc below it.
, (4-2) . . . , and are arranged above the Tc-free region (5-1) , (5-2) . This (4-1) goes around the coil once and (4-2)
are electrically linked. These ends (4-n) are connected to the second layer (4'-n) at (10-1).

さらにこの2層口の他方の端部(4’−1)は3層目の
(4”−1)と(10−2)で連結しており、3N目の
Tcを有する領域を(4°’−1) 、 (4” −2
)  ・・・(4″−〇)として作り得、さらに(10
−3)にて4層目と連結させる。かくして多層構造(こ
こでは4N構造)をしても1本の長い線が繰り返し巻か
れ、実質的にコイルの多層巻と同じ構成とすることがで
きる。
Furthermore, the other end (4'-1) of this second layer opening is connected to the third layer (4''-1) and (10-2), and the region having the 3Nth Tc is (4° '-1), (4"-2
) ...(4″-〇), and further (10
Connect with the fourth layer in -3). In this way, even in the case of a multilayer structure (here, a 4N structure), one long wire is wound repeatedly, and the structure can be substantially the same as that of multilayer winding of a coil.

この第4図の実施例では(4−1) 、 (4−2)の
巾の約5倍に(5−1) 、 (5−2)を有せしめ、
(4’−1) 、 (4” −1)(4”’−1)は(
5−1)の上方に形成され、それぞれの層間で互いのリ
ード線のショートが発生しないようしている。多層配線
はこれを繰り返し、1層〜数十層とし得る。またこの際
は直列にあたかも1本の超伝導体の如(に連結した。し
かし用途により並列に連結してもよい。そして外部取り
出し電極、リード<30) 、 (30’ )を設けた
In the embodiment shown in FIG. 4, (5-1) and (5-2) are made to have approximately five times the width of (4-1) and (4-2),
(4'-1), (4"-1) (4"-1) is (
5-1) to prevent short-circuiting of the lead wires between the respective layers. By repeating this process, multilayer wiring can have one to several tens of layers. In addition, in this case, they were connected in series as if they were one superconductor. However, they may be connected in parallel depending on the purpose. External extraction electrodes, leads <30) and (30') were provided.

その他は実施例1と同様である。The rest is the same as in Example 1.

「実施例3」 第3図は本発明の他の実施例を示す図面である。"Example 3" FIG. 3 is a drawing showing another embodiment of the present invention.

図面において、YSZ、イットリアまたはジルコニアの
基体(1)は円板状(ディスク状)を有し、この直径よ
り大きなレーザ光(3)は線状に照射する。
In the drawing, a substrate (1) of YSZ, yttria, or zirconia has a disk shape, and a laser beam (3) larger than this diameter is applied linearly.

この後このディスク(1)を繰り返し連続的に回転させ
る。すると光アニールを繰り返し行わしめることができ
る。するとこのセラミック薄膜は次第に結晶配列を揃え
大きな面積を結晶に成長させることができる。しかる後
、基板上面にそって層構造を分子配列で有すべく再結晶
化させている。
Thereafter, this disk (1) is repeatedly and continuously rotated. Then, optical annealing can be repeated. Then, this ceramic thin film gradually aligns its crystal alignment and can grow into crystals over a large area. Thereafter, it is recrystallized along the upper surface of the substrate to form a layered structure with molecular alignment.

この図面では1層のディスク構成を示すが、第4図に示
した実施例と同様に多層構成を有せしめることが可能で
ある。
Although this figure shows a single-layer disk configuration, it is possible to have a multi-layer configuration similar to the embodiment shown in FIG.

この酸化雰囲気でのレーザアニールを加えた領域のTc
は43°Kを得た。
Tc of the region subjected to laser annealing in this oxidizing atmosphere
obtained 43°K.

「効果」 本発明によりこれまでまったく不可能とされていたセラ
ミック超伝導体をこれらysz 、ジルコニアまたはイ
ツトリアと接して設けることにより、実質的にコイル状
、ディスク状または膜状に線または帯状に構成させるこ
とが可能となった。
``Effect'' By providing a ceramic superconductor in contact with these ysz, zirconia, or yttria, which has been thought to be completely impossible until now, the present invention allows a substantially coil-like, disk-like, or film-like wire or band-like structure to be formed. It became possible to do so.

そして曲げるとすぐねれてしまうセラミックス超伝導材
料として導体または超伝導素子の固体材料として薄膜状
に作ることができた。
As a ceramic superconducting material that easily warps when bent, it was possible to make it into a thin film as a solid material for conductors or superconducting elements.

本発明において、YSZ、イットリアまたはジルコニア
の基体上に超伝導薄膜を形成した後、公知のフォトリソ
グラフィ技術を用い、所定のバターニンイグをし超伝導
素子または超伝導配線とすることはその工業的応用を考
えると重要である。
In the present invention, after forming a superconducting thin film on a substrate of YSZ, yttria, or zirconia, a predetermined buttering process is performed using a known photolithography technique to form a superconducting element or superconducting wiring, which facilitates its industrial application. This is important when you think about it.

本発明の超導電材料はセラミック材料であればなんでも
よい。
The superconducting material of the present invention may be any ceramic material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超伝導体の作製工程を示す。 第2図、第3図および第4図は本発明の超伝導体の実施
例を示す。 1・・・基体 2・・・セラミック材料 3・・・レーザ光 4・・・超伝導を呈する帯状領域 5・・・超伝導を呈さない領域
FIG. 1 shows the manufacturing process of the superconductor of the present invention. 2, 3 and 4 show embodiments of the superconductor of the present invention. 1... Substrate 2... Ceramic material 3... Laser light 4... Band-shaped region exhibiting superconductivity 5... Region not exhibiting superconductivity

Claims (1)

【特許請求の範囲】 1、基体上に薄膜状に酸化物超電導セラミックを生ぜし
め得る材料を形成するに際し、前記材料に密接してYS
Z、イットリアまたはジルコニアが設けられたことを特
徴とする超伝導体。 2、特許請求の範囲第1項において、薄膜状に超電導状
態を生ぜしめる材料は酸化物セラミック材料の薄膜より
なり、この薄膜と同程度(±50%以内)の熱膨張係数
を有することを特徴とする超伝導体。
[Claims] 1. When forming a material capable of producing an oxide superconducting ceramic in the form of a thin film on a substrate, YS
A superconductor characterized by being provided with Z, yttria or zirconia. 2. In claim 1, the material that produces a superconducting state in the form of a thin film is made of a thin film of an oxide ceramic material, and has a coefficient of thermal expansion comparable to that of this thin film (within ±50%). A superconductor.
JP62284628A 1987-03-12 1987-11-11 Superconductor Expired - Fee Related JPH07114296B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62284628A JPH07114296B2 (en) 1987-11-11 1987-11-11 Superconductor
DE3854626T DE3854626T2 (en) 1987-03-12 1988-03-14 Process for the production of components from superconducting oxide ceramic materials.
EP88302227A EP0282360B1 (en) 1987-03-12 1988-03-14 Method for manufacturing components of superconducting ceramic oxide materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284628A JPH07114296B2 (en) 1987-11-11 1987-11-11 Superconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62058466A Division JP2645489B2 (en) 1987-03-12 1987-03-12 Superconductor fabrication method

Publications (2)

Publication Number Publication Date
JPS63224271A true JPS63224271A (en) 1988-09-19
JPH07114296B2 JPH07114296B2 (en) 1995-12-06

Family

ID=17680928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284628A Expired - Fee Related JPH07114296B2 (en) 1987-03-12 1987-11-11 Superconductor

Country Status (1)

Country Link
JP (1) JPH07114296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211751A (en) * 1988-06-28 1990-01-16 Shinei Tsushin Kogyo Kk Superconductor and its formation
JPH02221120A (en) * 1989-02-22 1990-09-04 Shibuya Kogyo Co Ltd Production of superconducting thin film
JP2007081254A (en) * 2005-09-16 2007-03-29 Univ Of Tokyo Superconductive electromagnet and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011692A (en) * 1973-06-01 1975-02-06
JPS5720486A (en) * 1980-07-11 1982-02-02 Nippon Telegr & Teleph Corp <Ntt> Superconductive integrated circuit and preparation thereof
JPS5998590A (en) * 1982-11-27 1984-06-06 株式会社東芝 Method of producing thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011692A (en) * 1973-06-01 1975-02-06
JPS5720486A (en) * 1980-07-11 1982-02-02 Nippon Telegr & Teleph Corp <Ntt> Superconductive integrated circuit and preparation thereof
JPS5998590A (en) * 1982-11-27 1984-06-06 株式会社東芝 Method of producing thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211751A (en) * 1988-06-28 1990-01-16 Shinei Tsushin Kogyo Kk Superconductor and its formation
JPH02221120A (en) * 1989-02-22 1990-09-04 Shibuya Kogyo Co Ltd Production of superconducting thin film
JP2007081254A (en) * 2005-09-16 2007-03-29 Univ Of Tokyo Superconductive electromagnet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07114296B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JPS63250881A (en) Manufacture of superconductor
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
EP0282360B1 (en) Method for manufacturing components of superconducting ceramic oxide materials
JP2645489B2 (en) Superconductor fabrication method
JPH0577347B2 (en)
JPS6161556B2 (en)
JPS63224271A (en) Superconductor
JP2660280B2 (en) Superconductor
JPS63224270A (en) Manufacture of superconductor device
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JP2660281B2 (en) Superconductor fabrication method
JPH0812819B2 (en) Superconductor fabrication method
JP2630362B2 (en) Superconducting coil
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH0829944B2 (en) Method for producing oxide superconducting material
JPH01100096A (en) Production of oxide superconductor thin film
JP2654555B2 (en) Superconducting device manufacturing method
JPH01100095A (en) Production of oxide superconductor circuits
JPH083968B2 (en) How to make a superconductor
JP2585624B2 (en) Superconducting coil fabrication method
JPH01115899A (en) Production of oxide superconductor film
JPH01119076A (en) Manufacture of oxide superconductive film
JPH063766B2 (en) Superconducting coil manufacturing method
JPH01205579A (en) Superconductive thin film and formation of superconductive thin film
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees