JPH01205579A - Superconductive thin film and formation of superconductive thin film - Google Patents

Superconductive thin film and formation of superconductive thin film

Info

Publication number
JPH01205579A
JPH01205579A JP63028834A JP2883488A JPH01205579A JP H01205579 A JPH01205579 A JP H01205579A JP 63028834 A JP63028834 A JP 63028834A JP 2883488 A JP2883488 A JP 2883488A JP H01205579 A JPH01205579 A JP H01205579A
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
superconducting
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028834A
Other languages
Japanese (ja)
Inventor
Kazunori Miyahara
一紀 宮原
Kimihisa Aihara
公久 相原
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63028834A priority Critical patent/JPH01205579A/en
Publication of JPH01205579A publication Critical patent/JPH01205579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To easily obtain an oxide superconductive thin film without giving a thermal influence on a foundation film by forming an amorphous film on a substrate followed by proceeding with crystallization through short time nonbalanced heat treatment by photoradiation. CONSTITUTION:Amorphous thin films are piled up on a substrate 4 at a low substrate temperature by a sputtering method or an electron beam evaporation method followed by irradiating laser light 6 on the film surface. At this time, by properly setting up irradiation time or power of laser light, the irradiated part alone can be heated in the film thickness direction up to prescribed depth. Heat treatment only of the film can be performed without heating the substrate 4 so that deterioration of a superconductive characteristic due to reaction of the film to the substrate can be prevented. Ristriction of heat resistance as to the substrate 4 is eliminated so that latitude of selection of a material of the substrate 4 is broadened. Thereby, an oxide superconductive thin film can be easily obtained having no thermal influence on the foundation film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導薄膜および超高速スイッチング、低消
費電力の特徴を有し、かつ液体窒素温度(77K)以上
でも動作する超伝導素子の製作法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a superconducting element that has the features of a superconducting thin film, ultra-high-speed switching, and low power consumption, and that operates even at liquid nitrogen temperatures (77 K) or higher. It concerns the production method.

1従来の技術1 従来の酸化物超伝導薄膜の製作法は、基板温度約400
℃以上に加熱した基板(SrTi03.MgO、サファ
イヤ等)上に酸化物超伝導体となる組成の薄膜をあらか
しめ堆積させておき、しかる後に02ガス中で800〜
900℃で1〜数時間熱処理することによって膜を結晶
化させ、超伝導特性を示す膜を得ていた。
1 Conventional technology 1 The conventional method for manufacturing oxide superconducting thin films requires a substrate temperature of approximately 400°C.
A thin film having a composition that will become an oxide superconductor is deposited on a substrate (SrTi03.MgO, sapphire, etc.) heated to above 0.0°C, and then heated to 800°C or more in 02 gas.
The film was crystallized by heat treatment at 900°C for one to several hours, resulting in a film exhibiting superconducting properties.

[発明か解決しようとする課題] しかしこの方法では膜および基板全体か高温になるため
、基板と膜の界面で反応か起こり、超伝導特性(例えは
臨界温度、臨界電流、上部臨界磁場)が劣化する。この
ため基板と膜の反応か生じないように低温で、かつ結晶
化か十分に進む程度に高温に熱処理温度を設定しなけれ
ばならない。
[Problem to be solved by the invention] However, in this method, the entire film and substrate are heated to high temperatures, so a reaction occurs at the interface between the substrate and the film, and the superconducting properties (for example, critical temperature, critical current, upper critical magnetic field) are deteriorated. to degrade. For this reason, the heat treatment temperature must be set at a low temperature to prevent reaction between the substrate and the film, and at a high enough temperature to sufficiently promote crystallization.

この相反する温度条件を同時に満足するのはむずかしく
、基板と膜との反応を完全には除去てきないという重大
な問題点があった。
It is difficult to satisfy these contradictory temperature conditions at the same time, and there is a serious problem in that the reaction between the substrate and the film cannot be completely eliminated.

また従来の酸化物超伝導体を用いたジョセフソン接合に
おいても同様の問題か生じていた。第5図にジョセフソ
ン接合の構造を示す。下部電極を構成する超伝導薄膜1
と、上部電極を構成する超伝導薄膜2との間にトンネル
バリヤ層3か形成されている。このジョセフソン接合を
形成するためには、まず下部電極を形成し、次にトンネ
ルバリヤ層を形成し、しかる後に上部電極を形成するわ
けであるか、上部電極を酸化物超伝導体で構成する場合
には膜形成後900℃前後て熱処理する。そのとき)・
ンネル電流が流れ得るような数10オングストローム程
度のうずいバリヤ層は高温のために破壊されてしまう。
A similar problem also occurred in Josephson junctions using conventional oxide superconductors. Figure 5 shows the structure of a Josephson junction. Superconducting thin film 1 constituting the lower electrode
A tunnel barrier layer 3 is formed between the superconducting thin film 2 and the superconducting thin film 2 constituting the upper electrode. In order to form this Josephson junction, the lower electrode is first formed, then the tunnel barrier layer is formed, and then the upper electrode is formed, or the upper electrode is made of an oxide superconductor. In some cases, heat treatment is performed at around 900° C. after film formation. then)·
The barrier layer, which is thick on the order of tens of angstroms through which channel current can flow, is destroyed by the high temperature.

そのため従来の接合では下部電極を酸化物超伝導体とし
、バリヤ層をAi酸化物で形成し、」二部電極Nbで形
成し、4.2にで動作さえた例かあるのみて、上部電極
、下部電極とも酸化物超伝導体で形成した例はまたない
。液体窒素温度(77K)以上で動作する接合を得るた
めには電極をすべて酸化物超伝導体で構成した接合か必
要である。また接合の電極だけでなく超伝導配線なと、
超伝導薄膜を用いた素子を実現するためには、下地に熱
による劣化を与えることなく膜を熱処理し、超伝導特性
を有する膜を得る手段か必要である。
Therefore, in conventional bonding, the lower electrode is made of an oxide superconductor, the barrier layer is made of Ai oxide, and the upper electrode is made of a two-part electrode, Nb. There is no example in which both the lower electrode and the lower electrode are made of an oxide superconductor. In order to obtain a junction that operates at liquid nitrogen temperatures (77 K) or higher, it is necessary to have a junction in which all electrodes are made of oxide superconductors. In addition to bonding electrodes, superconducting wiring
In order to realize an element using a superconducting thin film, it is necessary to have a means to heat-treat the film without causing thermal deterioration to the underlying layer and obtain a film having superconducting properties.

また短時間に膜を熱処理する方法として例えはアプライ
ド フィジックス レター Vol、5IP、1554
にコーネル大のBuhrmanらによって開示されてい
るようなフラッシュランプアニールによる方法かあるか
、この方法では加熱時間は数秒間と非常に長く、熱拡散
による下地膜の加熱は避けられず、所定の膜のみを熱処
理することは困難である。またこの方法ては膜と下地膜
との光の吸収係数の差を利用して、所望の膜のみを加熱
することばてきない。また膜内の所望の部分のみを局所
的に加熱して超電導膜のパターニングをすることも不可
能である。さらに上記の方法で提案されているのは、基
板加熱温度を400℃および700℃で成膜したある程
度結晶化した膜を用いている。しかしこの方法だとあら
かじめランダムに結晶化した種があるため結晶成長がラ
ンダムとなり、瞬間的な熱処理では高品質な結晶化は望
めないという難点かあった。
Another example of a method for heat-treating a film in a short time is Applied Physics Letters Vol. 5IP, 1554.
Is there a method using flash lamp annealing as disclosed by Buhrman et al. of Cornell University? In this method, the heating time is very long, several seconds, and heating of the underlying film due to thermal diffusion is unavoidable. It is difficult to heat-treat only that part. Furthermore, this method cannot heat only the desired film by utilizing the difference in light absorption coefficient between the film and the underlying film. It is also impossible to pattern a superconducting film by locally heating only a desired portion within the film. Furthermore, the proposed method uses a film that is crystallized to some extent and is formed at substrate heating temperatures of 400° C. and 700° C. However, this method had the disadvantage that crystal growth would be random because there were seeds that had been randomly crystallized beforehand, and high-quality crystallization could not be expected with instantaneous heat treatment.

酸化物超伝導体において、超伝導特性を有する膜を得る
ために膜を熱処理する過程で、従来の熱平衡炉を用いる
熱処理手段では素子全体が高温になるため、(1)基板
と反応する。(2)接合において上部電極形成時にバリ
ヤ層が破壊される。(3)超伝導配線なとて下地と反応
する。などの素子製作上、重大な困難が生じる。本発明
はこの熱処理によって生じる困難を解決した新規な超伝
導薄膜の形成方法および超伝導薄膜素子の形成方法を提
供することを目的とする。
In an oxide superconductor, in the process of heat-treating a film to obtain a film having superconducting properties, the entire element reaches a high temperature when using a conventional heat-treatment method using a thermal equilibrium furnace, so that (1) it reacts with the substrate; (2) During bonding, the barrier layer is destroyed during formation of the upper electrode. (3) As a superconducting wiring, it reacts with the underlying layer. Significant difficulties arise in manufacturing such devices. An object of the present invention is to provide a novel method for forming a superconducting thin film and a method for forming a superconducting thin film element that solves the difficulties caused by this heat treatment.

[課題を解決するための手段] このような目的を達成するために、本発明超伝導薄膜の
形成方法は酸化物超伝導体となり得る組成を持つ薄膜を
、非晶質もしくは結晶化の少ない状態で基板上に形成し
、薄膜を膜方向に所定の深さまで結晶化させるように熱
処理することによって基板」二に超電導特性を有する薄
膜を形成することを特徴とする。
[Means for Solving the Problems] In order to achieve such objects, the method for forming a superconducting thin film of the present invention converts a thin film having a composition capable of becoming an oxide superconductor into an amorphous state or a state with little crystallization. The method is characterized in that a thin film having superconducting properties is formed on the substrate by forming the thin film on the substrate and heat-treating the thin film to crystallize it to a predetermined depth in the film direction.

本発明超伝導薄膜素子の形成方法は下部電極をなす第1
の超伝導体上に、または第1の超伝導体上に形成された
トンネルバリア層上に酸化物超伝導体となり得る組成を
持つ薄膜を、非晶質もしくは結晶化の少/ハ)状態で形
成し、薄膜を膜方向に所定の深さまで結晶化させるよう
に熱処理することによって第2の超伝導体を形成するこ
とを特徴とする。
The method for forming the superconducting thin film element of the present invention includes the first
or on the tunnel barrier layer formed on the first superconductor, a thin film having a composition capable of becoming an oxide superconductor is placed in an amorphous or slightly crystallized state. The second superconductor is formed by forming a thin film and heat-treating the thin film to crystallize it to a predetermined depth in the film direction.

[作 用] 従来、基板温度が低い状態で堆積させた膜は、結晶の方
位かランダムな多結晶膜となるため、これを後て熱処理
しても結晶化かランタムな方位で生じ、単結晶に近い高
品質な結晶膜が得られない。そのため超伝導臨界温度が
低い膜しか得られないどされていた。しかしこの点につ
いて詳しく検討した結果、逆に基板温度を低く抑えるこ
とによって非晶質あるいはそれに近い膜が得られ、この
膜を後て熱処理することにより結晶化が均一に進み、短
時間の熱処理でも高臨界温度の膜か得られることが分か
った。すなわち酸化物超伝導薄膜を製作するにあたって
、例えはスパッタ法、電子ビーム蒸着法、などにより非
晶質薄膜を成膜し、しかる後に、例えはNd : YA
G レーザなどを用い、膜表面にレーザ光を短時間(数
ナノ秒程度)照射することにより熱処理を行なう。この
場合、試料周辺の雰囲気は酸素雰囲気が望ましいが、大
気中でもよい。この方法では、レーザ光のパワー、およ
び波長を適切に選ぶことによって、膜厚方向に所定の深
さまで熱処理し、加熱の影響を下層の膜に及ぼさないこ
とかできる。またレーザ光を集束して走査させることに
より、あるいは薄膜か堆積した基板を動かずことにより
、レーザ光を照射した部分のみ結晶化させ、超伝導薄膜
にすることがてぎる。このようにして本発明においては
、レーザ光による熱処理を行なうことにより下地層に熱
処理の影響を与えることなく、超伝導薄膜を得ることが
可能となり、上記の困難を克服することがてきる。
[Function] Conventionally, films deposited at low substrate temperatures become polycrystalline films with random crystal orientations, so even if they are subsequently heat-treated, crystallization occurs in random orientations, resulting in single crystals. It is not possible to obtain a high-quality crystal film close to that of . For this reason, only films with low superconducting critical temperatures could be obtained. However, as a result of detailed study on this point, we found that by keeping the substrate temperature low, an amorphous or nearly amorphous film can be obtained, and that by subsequent heat treatment of this film, crystallization progresses uniformly, even with short heat treatment. It was found that a film with a high critical temperature could be obtained. That is, in producing an oxide superconducting thin film, an amorphous thin film is formed by, for example, a sputtering method or an electron beam evaporation method, and then, for example, Nd:YA is deposited.
Heat treatment is performed by irradiating the film surface with laser light for a short time (about several nanoseconds) using a G laser or the like. In this case, the atmosphere around the sample is preferably an oxygen atmosphere, but may also be in the air. In this method, by appropriately selecting the power and wavelength of the laser beam, it is possible to perform heat treatment to a predetermined depth in the film thickness direction without affecting the underlying film. Furthermore, by focusing the laser beam and scanning it, or by not moving the substrate on which the thin film is deposited, it is possible to crystallize only the area irradiated with the laser beam, making it a superconducting thin film. In this way, in the present invention, by performing heat treatment using laser light, it is possible to obtain a superconducting thin film without affecting the underlying layer due to the heat treatment, thereby overcoming the above-mentioned difficulties.

本発明によれは、膜の下地、および周辺に熱による劣化
を生しることなく、酸化物超伝導薄膜が得られるので、
ジョセフソン接合、超伝導配線を用いたデバイスなと、
酸化物超伝導薄膜の特徴である高臨界温度、高臨界電流
などの特徴をいかしたデバイスを製作することかできる
According to the present invention, an oxide superconducting thin film can be obtained without causing thermal deterioration of the base and surroundings of the film.
Devices using Josephson junctions and superconducting wiring.
It is possible to fabricate devices that take advantage of the characteristics of oxide superconducting thin films, such as high critical temperature and high critical current.

[実施例1 以下に実施例によって本発明の詳細な説明する。[Example 1 The present invention will be explained in detail below by way of examples.

実施例1 第1図に本発明の第1の実施例を示す。図中、5は酸化
物超伝導体となり得る組成をもった薄膜、6はレーザ光
、4は基板である。薄膜5としては例えばY :Ba:
Cu= l:2:3のモル比のスパッタ膜等を用いる。
Example 1 FIG. 1 shows a first example of the present invention. In the figure, 5 is a thin film having a composition that can be an oxide superconductor, 6 is a laser beam, and 4 is a substrate. As the thin film 5, for example, Y:Ba:
A sputtered film or the like having a molar ratio of Cu=l:2:3 is used.

レーザ光6としては連続光の后レーザ、パルス光のルビ
ーレーザ、パルスまたは連続光のNd:YAGレーザ、
C02レーザなどを用いる。連続光レーザは、レンズで
集光して光を走査して照射する。またパルスレーザの場
合はレンズで光を広げて一括照射する。基板4としては
、例えはSrTiO3,MgO,サファイヤ等を用いる
As the laser beam 6, a continuous laser, a pulsed ruby laser, a pulsed or continuous beam Nd:YAG laser,
A C02 laser or the like is used. A continuous light laser condenses light with a lens and scans the light for irradiation. In the case of a pulsed laser, the light is spread out using a lens and irradiated all at once. As the substrate 4, for example, SrTiO3, MgO, sapphire, etc. are used.

基板4上に低い基板温度で非晶質状の薄膜なスパッタ法
あるいは電子ビーム蒸着法で堆積させ、しかる後にレー
ザ光6を膜表面に照射する。このときレーザ光の照射時
間あるいはパワーを適切に設定することにより、照射さ
れた部分のみを膜厚方向に所定の深さまで加熱すること
が可能である。この方法により基板4を加熱することな
く、膜のみを熱処理できるので、膜と基板の反応による
超伝導特性の劣化を防止できる。また基板について耐熱
性の制限がなくなるので基板材料の選択の幅も広がる。
An amorphous thin film is deposited on the substrate 4 by sputtering or electron beam evaporation at a low substrate temperature, and then the film surface is irradiated with laser light 6. At this time, by appropriately setting the irradiation time or power of the laser beam, it is possible to heat only the irradiated portion to a predetermined depth in the film thickness direction. With this method, only the film can be heat-treated without heating the substrate 4, so that deterioration of superconducting properties due to reaction between the film and the substrate can be prevented. Furthermore, since there are no restrictions on heat resistance of the substrate, the range of selection of substrate materials is expanded.

また本実施例では、基板4と膜との反応について述べた
が、基板に限らず、層間絶縁層上に超伝導層な設ける場
合にも本発明を適用できる。例えは半導体集積回路に超
伝導配線を用いる場合に下地膜およびその下にあるデバ
イスに熱の影響を与えることなく所望の膜のみを熱処理
して超伝導体とすることが可能である。
Further, in this embodiment, the reaction between the substrate 4 and the film has been described, but the present invention is applicable not only to the substrate but also to the case where a superconducting layer is provided on an interlayer insulating layer. For example, when superconducting wiring is used in a semiconductor integrated circuit, it is possible to heat-treat only a desired film to make it a superconductor without affecting the underlying film and the underlying devices.

実施例2 第2の実施例として本発明による超伝導薄膜形成法をシ
ゴセフソン接合の上部電極に用いた例を説明する。第2
図において4は基板、2はジョセフソン接合の上部電極
、5Aはトンネルバリヤ層、1は下部電極である。
Example 2 As a second example, an example will be described in which the method for forming a superconducting thin film according to the present invention is used for the upper electrode of a Sigo-Sefson junction. Second
In the figure, 4 is a substrate, 2 is an upper electrode of a Josephson junction, 5A is a tunnel barrier layer, and 1 is a lower electrode.

この接合を製作するには、まず基板4上に超伝導薄膜1
を堆積させ、接合の下部電極とする。この場合の熱処理
は、従来の熱平衡炉を用いてもよいし、基板との反応を
避りるために実施例1に述へた本発明によるレーザアニ
ール法を用いてもよい。次に上部電極およびバリヤ層を
形成するために、酸化物超伝導体となりつる組成を持っ
た薄膜5を堆積させる。この薄膜は低い基板温度で成膜
し、非晶質あるいはそれに近い状態にする。これの表面
にレーザ光を照射して熱処理し、膜の結晶化を進め、超
伝導体とするわけであるか、このときレーザのパワー、
照射時間を適切に調節することにより熱の侵入距離を薄
膜5の膜厚よりわずかに少ない程度に設定すると膜5の
下層数ナノメートルを非超伝導層5Aとして残すことか
できる。
To fabricate this bond, first place a superconducting thin film 1 on a substrate 4.
is deposited to form the lower electrode of the junction. For the heat treatment in this case, a conventional thermal equilibrium furnace may be used, or the laser annealing method according to the present invention described in Example 1 may be used to avoid reaction with the substrate. Next, a thin film 5 having a composition that is an oxide superconductor is deposited to form an upper electrode and a barrier layer. This thin film is formed at a low substrate temperature and is made into an amorphous or nearly amorphous state. The surface of this film is irradiated with laser light and heat treated to promote crystallization of the film and become a superconductor.At this time, the power of the laser
If the heat penetration distance is set to be slightly less than the thickness of the thin film 5 by appropriately adjusting the irradiation time, several nanometers of the lower layer of the film 5 can be left as the non-superconducting layer 5A.

この部分は、通常絶縁体であるのでジョセフソン接合の
トンネルバリヤ層5Aとして使用できる。
Since this portion is usually an insulator, it can be used as the tunnel barrier layer 5A of the Josephson junction.

実施例3 第3図に木発明の第3の実施例を示す。デバイスの構造
は、第2図に示した実施例2と同様であるか、トンネル
バリヤ層3として、上部電極とは別の薄膜を用いる点が
異なる。デバイスの製作手順は、下部電極1の形成まで
は、実施例2と同しであるか、その後別の薄膜をトンネ
ルバリヤ層3として堆積させる。トンネルバリヤ層3と
しては、例えば従来からジョセフソン接合のバリヤ層に
用いられている八fl 203. MgO,Tag、 
ZrOなどか可能である。さらに酸化物超伝導体と同じ
構成元素で組成比か異なる絶縁体であるY :Ba:C
u−2:1:1の薄j摸等を用いることがてきる。この
後」二部電極5を堆積させて、しかる後にレーザ光6を
パワー、照射時間を適切に調節して照射し、上部電極5
のみを熱処理し、超伝導特性を有する薄1摸とする。こ
のときトンネルバリヤ層3として上部電極5および下部
型8i1に較べて、レーザ光の波長に対して吸収係数が
小さくなる材料を選択するか、あるいは逆に電極材料と
バリヤ層との組合せに対して、吸収係数かバリヤ層の方
が小さくなるようにレーザ光の波長を調節することによ
り、1−ンネルハリャ層3を加熱することなく電極のみ
を熱処理することも可能である。またさらに第3図のデ
バイス上に絶縁層を設け、さらにその上に木発明による
方法によって超伝導膜を設り、磁気結合形ジョセフソン
接合の制御線を形成するなど本発明の方法を繰り返し用
いることにより、さらに複雑なテハイス構造も実現可能
である。
Embodiment 3 FIG. 3 shows a third embodiment of the wooden invention. The structure of the device is the same as that of Example 2 shown in FIG. 2, or is different in that a thin film other than the upper electrode is used as the tunnel barrier layer 3. The device fabrication procedure is the same as in Example 2 up to the formation of the lower electrode 1, or after that another thin film is deposited as the tunnel barrier layer 3. As the tunnel barrier layer 3, for example, 8 fl 203. MgO, Tag,
Possible materials include ZrO. Furthermore, Y:Ba:C is an insulator with the same constituent elements as the oxide superconductor but a different composition ratio.
A thin film of u-2:1:1 or the like can be used. After this, the two-part electrode 5 is deposited, and then the laser beam 6 is irradiated with the power and irradiation time appropriately adjusted, and the upper electrode 5 is deposited.
The material is heat-treated and made into a thin sheet with superconducting properties. At this time, a material having a smaller absorption coefficient with respect to the wavelength of the laser beam is selected as the tunnel barrier layer 3 compared to the upper electrode 5 and the lower type 8i1, or conversely, a material with a smaller absorption coefficient with respect to the wavelength of the laser beam is selected, or conversely, a material with a smaller absorption coefficient than the upper electrode 5 and the lower type 8i1 is selected. By adjusting the wavelength of the laser beam so that the absorption coefficient of the barrier layer is smaller than that of the barrier layer, it is also possible to heat-treat only the electrodes without heating the 1-channel harrier layer 3. Furthermore, an insulating layer is provided on the device shown in FIG. 3, and a superconducting film is further provided on the insulating layer by the method of Wood's invention, and the method of the present invention is repeatedly used, such as forming a control line of a magnetically coupled Josephson junction. This makes it possible to realize even more complicated technology structures.

実施例4 第4図に本発明の第4の実施例を示す。本実施例では、
レンズ7によって集束されたレーザ光6を用いて熱処理
を行う。図中5Bは、超伝導体となり得る薄膜5のうち
レーザ光が照射され、超伝導特性を有するようになった
部分、5Cは薄膜5のうちレーザ光が照射されず、した
かって絶縁体のままか、あるいはそれに近い高抵抗の部
分である。デバイスの構成法は実施例2あるいは3と同
様である。集光されたレーザ光6を走査し、薄膜5上に
パターンを描くことによって任意の形状に」二部電極5
Bが形成される。したがフて任意の形状のジョセフソン
接合がその下に形成できる。このとき接合の大ぎさはレ
ーザ光のビーム径(1ミクロン以下)程度まで小さくす
ることができ、微少な接合を容易に形成できる。またこ
の方法によれは論理素子として用いられる長いジョセフ
ソン接合からなるソリトン伝送線路なども容易に形成で
きる。さらに本実施例においてはエツチング。
Embodiment 4 FIG. 4 shows a fourth embodiment of the present invention. In this example,
Heat treatment is performed using laser light 6 focused by lens 7. In the figure, 5B is a portion of the thin film 5 that can become a superconductor that has been irradiated with laser light and has superconducting properties, and 5C is a portion of the thin film 5 that has not been irradiated with laser light and therefore remains an insulator. or a high resistance part close to it. The method of configuring the device is the same as in the second or third embodiment. By scanning the focused laser beam 6 and drawing a pattern on the thin film 5, the two-part electrode 5 is formed into an arbitrary shape.
B is formed. Therefore, a Josephson junction of arbitrary shape can be formed thereunder. At this time, the size of the bond can be reduced to about the beam diameter of a laser beam (1 micron or less), and a minute bond can be easily formed. Furthermore, by this method, soliton transmission lines made of long Josephson junctions used as logic elements can be easily formed. Furthermore, in this example, etching is performed.

リフ1〜オフ等の加工法と異なり、上部電極を構成する
膜を除去することな(、バターニングができるため平坦
化か実現される。これはデバイス構造上大きな利点とな
る。
Unlike processing methods such as riff 1-off, flattening can be achieved without removing (or patterning) the film constituting the upper electrode. This is a great advantage in terms of device structure.

[発明の効果] 以上説明したようにまず非晶質膜を成膜し、しかる後に
光照射による単時間非平衡熱処理により結晶化を進める
ことにより下地膜に熱の影響を与えることなく、酸化物
超伝導薄膜を形成することが可能となった。実施例では
基板に5rTi03.MgO。
[Effects of the Invention] As explained above, an amorphous film is first formed, and then crystallization is promoted by a single-time non-equilibrium heat treatment using light irradiation, thereby forming an oxide without affecting the base film. It has become possible to form superconducting thin films. In the example, 5rTi03. MgO.

サファイヤなど酸化物結晶を用いたか、最も安定した基
板材料であるSlに、上述した酸化物を堆積した複合基
板を用い、これに前記超伝導体を堆積し、本発明による
熱処理を施すことによっても、素子が形成できることは
明かで、本発明の実施効果は十分に発揮される。この方
法をジョセフソン接合の上部電極に用いることにより、
上部電極も下部電極も酸化物超伝導体からなる液体窒素
温度(77K)以上で動作可能なジョセフソン接合を形
成できるようになった。また本発明を半導体集積回路の
超伝導配線に用いることにより、下層の半導体デバイス
に熱的な悪影響を与えることなく超伝導配線の熱処理か
行えるようになったので超伝導配線の適用範囲を飛躍的
に広めることができる。
By using an oxide crystal such as sapphire or by using a composite substrate in which the above-mentioned oxide is deposited on Sl, which is the most stable substrate material, the superconductor is deposited on this and the heat treatment according to the present invention is performed. It is clear that an element can be formed, and the effects of implementing the present invention can be fully exhibited. By using this method for the upper electrode of the Josephson junction,
Both the upper and lower electrodes are made of oxide superconductors, making it possible to form a Josephson junction that can operate at temperatures above liquid nitrogen temperature (77K). Furthermore, by applying the present invention to superconducting interconnects in semiconductor integrated circuits, it has become possible to heat-treat superconducting interconnects without adversely affecting underlying semiconductor devices, dramatically expanding the scope of application of superconducting interconnects. can be spread to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による酸化物超伝導薄膜の形成法を示
す断面図、 第2図 、第3図および第4図はそれぞれ本発明による
酸化物超伝導薄膜を電極に用いたジョセフソン接合の形
成法を示す断面図、 第5図は従来のジョセフソン接合の断面図である。 1・・・ジョセフソン接合の下部電極、2・・・ジョセ
フソン接合の」二部N、h、3・・・トンネルバリヤ層
、 4・・・基板、 5・・・酸化物超伝導体となりつる薄膜、5A・・・ジ
ョセフソン接合の(〜ンネルバリャ層、6・・・レーザ
光、 7・・・レンズ。 第2図
FIG. 1 is a cross-sectional view showing a method for forming an oxide superconducting thin film according to the present invention, and FIGS. 2, 3, and 4 are Josephson junctions using the oxide superconducting thin film according to the present invention as electrodes, respectively. FIG. 5 is a cross-sectional view of a conventional Josephson junction. 1...lower electrode of Josephson junction, 2...second part N, h of Josephson junction, 3...tunnel barrier layer, 4...substrate, 5...becomes oxide superconductor. Vine thin film, 5A... Josephson junction (~ner barrier layer, 6... laser beam, 7... lens. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超伝導体となり得る組成を持つ薄膜を、非
晶質もしくは結晶化の少ない状態で基板上に形成し、該
薄膜を膜方向に所定の深さまで結晶化させるように熱処
理することによって基板上に超電導特性を有する薄膜を
形成することを特徴とする超伝導薄膜の形成法。
(1) Forming a thin film with a composition capable of becoming an oxide superconductor on a substrate in an amorphous or minimally crystallized state, and heat-treating the thin film to crystallize it to a predetermined depth in the film direction. 1. A method for forming a superconducting thin film, which comprises forming a thin film having superconducting properties on a substrate by.
(2)下部電極をなす第1の超伝導体上に、または該第
1の超伝導体上に形成されたトンネルバリア層上に酸化
物超伝導体となり得る組成を持つ薄膜を、非晶質もしく
は結晶化の少ない状態で形成し、該薄膜を膜方向に所定
の深さまで結晶化させるように熱処理することによって
第2の超伝導体を形成することを特徴とする超伝導薄膜
素子の形成方法。
(2) A thin film having a composition capable of becoming an oxide superconductor is formed on the first superconductor forming the lower electrode or on the tunnel barrier layer formed on the first superconductor. Alternatively, a method for forming a superconducting thin film element, characterized in that a second superconductor is formed by forming the thin film in a state with little crystallization and heat-treating the thin film to crystallize it to a predetermined depth in the film direction. .
JP63028834A 1988-02-12 1988-02-12 Superconductive thin film and formation of superconductive thin film Pending JPH01205579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028834A JPH01205579A (en) 1988-02-12 1988-02-12 Superconductive thin film and formation of superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028834A JPH01205579A (en) 1988-02-12 1988-02-12 Superconductive thin film and formation of superconductive thin film

Publications (1)

Publication Number Publication Date
JPH01205579A true JPH01205579A (en) 1989-08-17

Family

ID=12259408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028834A Pending JPH01205579A (en) 1988-02-12 1988-02-12 Superconductive thin film and formation of superconductive thin film

Country Status (1)

Country Link
JP (1) JPH01205579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476967A (en) * 1990-07-19 1992-03-11 Sumitomo Electric Ind Ltd Superconducting device and its manufacture
JPH057028A (en) * 1990-07-12 1993-01-14 Sumitomo Electric Ind Ltd Method of laminating upper layer thin film on oxide superconducting thin film
JPH0513834A (en) * 1991-07-02 1993-01-22 Sumitomo Electric Ind Ltd Superconducting device and its manufacture
JP2019212715A (en) * 2018-06-01 2019-12-12 富士通株式会社 Superconducting device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057028A (en) * 1990-07-12 1993-01-14 Sumitomo Electric Ind Ltd Method of laminating upper layer thin film on oxide superconducting thin film
JPH0476967A (en) * 1990-07-19 1992-03-11 Sumitomo Electric Ind Ltd Superconducting device and its manufacture
JPH0513834A (en) * 1991-07-02 1993-01-22 Sumitomo Electric Ind Ltd Superconducting device and its manufacture
JP2019212715A (en) * 2018-06-01 2019-12-12 富士通株式会社 Superconducting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4375993A (en) Method of producing a semiconductor device by simultaneous multiple laser annealing
US5077266A (en) Method of forming weak-link josephson junction, and superconducting device employing the junction
US5547922A (en) Fabrication of oxide superconductor devices and circuits by impurity ion implantation
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JPH0577347B2 (en)
JPH01205579A (en) Superconductive thin film and formation of superconductive thin film
EP0478466B1 (en) A superconducting device and a method for manufacturing the same
US5183800A (en) Interconnection method for semiconductor device comprising a high-temperature superconductive material
JPH079905B2 (en) Wiring method for semiconductor device
KR100372889B1 (en) Ramp edge josephson junction devices and methods for fabricating the same
JP2645489B2 (en) Superconductor fabrication method
KR100400080B1 (en) Josephson junction including superconducting MgB2 thin film and method for manufacturing the same
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
US5219830A (en) Process for preparing high-Tc superconducting integrated circuits
JPH0381313B2 (en)
JPH01100096A (en) Production of oxide superconductor thin film
JP2909455B1 (en) Superconducting element
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JP2831918B2 (en) Superconducting element manufacturing method
JP2614941B2 (en) Superconducting element and fabrication method
JP2969068B2 (en) Superconducting element manufacturing method
JP2641969B2 (en) Superconducting element and fabrication method
JPH0669561A (en) Semiconductor device and its manufacture
JPH01100095A (en) Production of oxide superconductor circuits
JPH01220876A (en) Wiring of oxide superconductor film