JP2630362B2 - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JP2630362B2
JP2630362B2 JP62218539A JP21853987A JP2630362B2 JP 2630362 B2 JP2630362 B2 JP 2630362B2 JP 62218539 A JP62218539 A JP 62218539A JP 21853987 A JP21853987 A JP 21853987A JP 2630362 B2 JP2630362 B2 JP 2630362B2
Authority
JP
Japan
Prior art keywords
superconducting
oxide
thin film
oxide superconducting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62218539A
Other languages
Japanese (ja)
Other versions
JPS6459903A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62218539A priority Critical patent/JP2630362B2/en
Priority to US07/236,925 priority patent/US5079222A/en
Priority to DE3854754T priority patent/DE3854754T2/en
Priority to EP88308048A priority patent/EP0306287B1/en
Publication of JPS6459903A publication Critical patent/JPS6459903A/en
Priority to US07/757,993 priority patent/US5225394A/en
Application granted granted Critical
Publication of JP2630362B2 publication Critical patent/JP2630362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は薄膜のセラミック系超電導(超伝導ともい
う)材料の作製方法に関する。本発明は、基体上に薄膜
化して形成された材料に対し、レーザ光を選択的に照射
して除去し、残存部の酸化物超電導材料を用い超電導電
子装置好ましくは超電導コイル(エネルギー蓄積用また
はマグネット用等に用いる)を作らんとするものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a thin film ceramic-based superconducting (also called superconducting) material. According to the present invention, a material formed in a thin film on a substrate is selectively irradiated with laser light and removed, and a superconducting device, preferably a superconducting coil (for energy storage or (Used for magnets, etc.).

「従来の技術」 従来、超電導材料はNb−Ge(例えばNb3Ge)の金属材
料が用いられている。この材料は金属であるため延性、
展性を高く有し、超電導マグネット用のコイル巻を行う
ことが可能であった。
"Background of the Invention" Conventionally, superconducting materials metallic material Nb-Ge (e.g. Nb 3 Ge) is used. Since this material is metal, it is ductile,
It had high malleability and was able to perform coil winding for superconducting magnets.

しかし、これらの金属材料を用いた超電導材料はTc
(超電導臨界温度を以下単にTcという)が小さく23Kま
たはそれ以外しかない。これに対し、工業上の応用を考
えるならば、このTcが77K好ましくは室温またはそれ以
上であるとさらに有効である。
However, superconducting materials using these metallic materials are
(The superconducting critical temperature is hereinafter simply referred to as Tc) is small and only 23K or other. On the other hand, if industrial application is considered, it is more effective if this Tc is 77K, preferably room temperature or higher.

「従来の問題点」 このため、Tcの高い材料として金属ではなくセラミッ
ク系材料、特に酸化物セラミック系材料が注目されてい
る。しかしこの注目されているセラミック系超電導材料
はTcが高いにもかかわらず、曲げ性、延性、展性にとぼ
しく、少し曲げてもわれてしまう。いわんや0.1〜30μ
mといった厚さの薄膜を円台状または円板状の基体上に
形成し、この薄膜の一部または全部を選択的に除去する
ことはまったく不可能であるとされていた。特にこれに
半導体集積回路と同様のフォトリソグラフィ技術を用い
多層配線を行ったり、この薄膜超電導を用いて新しい電
子ディバイスを作ることはまったく不可能であった。
“Conventional Problems” For this reason, ceramic materials, especially oxide ceramic materials, have attracted attention as materials having a high Tc, instead of metals. However, despite the high Tc of the ceramic-based superconducting material, which has been attracting attention, it is poor in bendability, ductility, and malleability, and is slightly bent. Iwanya 0.1-30μ
It has been said that it is impossible at all to form a thin film having a thickness of m on a circular or disk-shaped substrate and selectively remove part or all of the thin film. In particular, it has been impossible at all to perform multilayer wiring using the same photolithography technology as that of a semiconductor integrated circuit or to make a new electronic device using this thin film superconductivity.

「問題を解決すべき手段」 本発明はかかる酸化物超電導材料の薄膜と、それを挟
む同一主成分でなる酸化物非超電導材料の層間分離膜と
を用いて電子ディバイス好ましくは超電導コイルを作ら
んとしたものである。
"Means to Solve the Problem" The present invention does not make an electronic device, preferably a superconducting coil, using such a thin film of an oxide superconducting material and an interlayer separation film of an oxide non-superconducting material composed of the same main component sandwiching the thin film. It is what it was.

本発明は予め所望の形状を有する基体、例えば円筒状
または円板状の基体の被形成面上に薄膜状に酸化物超電
導材料または酸化雰囲気でアニール後、超電導特性を有
する出発材料(これらを合わせて以下酸化物超電導材料
または単に超電導材料という)をスパッタ法、印刷法例
えばスクリーン印刷法、スプレー法、電子ビーム蒸着
法、その他の方法により形成する。
According to the present invention, an oxide superconducting material or a starting material having a superconducting property is formed on a surface of a substrate having a desired shape, for example, a cylindrical or disk-shaped substrate, which is annealed in an oxide atmosphere in the form of a thin film. (Hereinafter referred to as an oxide superconducting material or simply a superconducting material) by a sputtering method, a printing method such as a screen printing method, a spray method, an electron beam evaporation method, or another method.

例えばマグネトロンスパッタ法で基板温度650℃、Ar
(酸素を20%混入)雰囲気で形成する。この時被形成面
上に酸化物超電導材料のab面(c面即ちc軸に垂直な
面)が平行になるように形成する。
For example, by magnetron sputtering, the substrate temperature is 650 ° C and Ar
(Mixed with 20% of oxygen). At this time, the oxide superconducting material is formed such that the ab plane (c plane, that is, a plane perpendicular to the c axis) of the oxide superconducting material is parallel to the surface on which the oxide superconducting material is to be formed.

このため、基体上に被膜を形成する際、この被形成面
に垂直方向に磁界を加える。すると本発明に用いる変形
ペロブスカイト構造の酸化物超電導材料は電流の特に流
れやすいab面に平行な面が被形成面に平行に構成され
る。この磁界はスパッタ法で形成された膜を酸素中で85
0℃,8時間、4℃/分の速度で徐冷中、400℃,2時間のア
ニールの間も加える。
Therefore, when a film is formed on the substrate, a magnetic field is applied in a direction perpendicular to the surface on which the film is formed. Then, in the oxide superconducting material having a modified perovskite structure used in the present invention, a plane parallel to the ab plane through which a current flows particularly easily is formed parallel to the formation surface. This magnetic field causes the film formed by the sputtering method to
During the slow cooling at a rate of 4 ° C./min at 0 ° C. for 8 hours, and also during the annealing at 400 ° C. for 2 hours.

本発明はかかる酸化物超電導材料が昇華性を有し、エ
キシマレーザまたはYAGレーザによりスクライブ加工
(切断)が容易に行い得る材料であることを実験的に発
見した。このため本発明はかかる形成された超電導薄膜
に対し、焼成前または焼成後に選択的にレーザを照射、
さらに必要に応じ走査(スキャン)を加え、一定の領
域、例えば一定の巾を有する帯状にこの酸化物超電導材
料を除去する。するとこのレーザ照射により開溝が作ら
れた以外の部分のみ一定のTcを有する超電導薄膜の帯を
することができる。
The present invention has experimentally discovered that such an oxide superconducting material has a sublimation property and can be easily scribed (cut) by an excimer laser or a YAG laser. Therefore, the present invention selectively irradiates the formed superconducting thin film with a laser before or after firing,
Further, scanning is performed as necessary, and the oxide superconducting material is removed in a certain area, for example, a strip having a certain width. Then, a band of the superconducting thin film having a constant Tc can be formed only in a portion other than the portion where the groove is formed by the laser irradiation.

スパッタ法等で形成される膜は、ターゲットを調整
し、形成後の酸化物超電導材料が例えば、(A1-XBx)yC
uzOw但しx=0〜1好ましくは0.6〜0.7,y=2.0〜4.0好
ましくは2.5〜3.5,z=1.0〜4.0好ましくは1.5〜3.5,W=
4.0〜10.0好ましくは6〜8であって、Aは元素周期表I
II a族特にイットリウム(Y)またはランタノイドより
選ばれた1種類または複数種類の元素、Bは元素周期表
II a族より選ばれた1種類または複数種類の元素、例え
ばバリウム(Ba)となるようにする。尚、本明細書にお
ける元素周期表は理化学辞典(岩波書店 1963年4月1
日発行)によるものである。
For a film formed by a sputtering method or the like, the target is adjusted, and the formed oxide superconducting material is, for example, (A 1-X Bx) yC
uzOw, where x = 0 to 1, preferably 0.6 to 0.7, y = 2.0 to 4.0, preferably 2.5 to 3.5, z = 1.0 to 4.0, preferably 1.5 to 3.5, W =
4.0 to 10.0, preferably 6 to 8, wherein A is the periodic table of elements I
Group IIa, one or more elements selected from yttrium (Y) or lanthanoids, B is the periodic table of elements
One or more elements selected from Group IIa, for example, barium (Ba). The periodic table of elements in the present specification is a dictionary of physics and chemistry (Iwanami Shoten, April 1, 1963).
Date).

本発明のレーザ光源は例えばYAGレーザ(波長1.06μ
m),エキシマレーザ(KrF,KrCl等),アルゴンガスレ
ーザまたは窒素レーザを用いた。YAGレーザは円状のレ
ーザビームを5〜100KHzの周波数で繰り返して照射する
ことができ、そしてこの照射された部分のみの超電導材
料を昇華して除去させることができる。このレーザは寿
命が長く、工業的に低コストで使用できるが、赤外波長
でありパルス巾が50n秒以上あるため、深さ方向の制御
がしにくい。
The laser light source of the present invention is, for example, a YAG laser (wavelength 1.06 μm).
m), an excimer laser (KrF, KrCl, etc.), an argon gas laser or a nitrogen laser was used. The YAG laser can repeatedly irradiate a circular laser beam at a frequency of 5 to 100 KHz, and can sublimate and remove the superconducting material only in the irradiated portion. Although this laser has a long life and can be used industrially at low cost, it is difficult to control in the depth direction because it has an infrared wavelength and a pulse width of 50 ns or more.

またエキシマレーザを用いる場合は、パルス巾が20n
秒と小さいため、除去する領域の深さ方向の制御がより
容易となる。本発明はエキシマレーザを光学系でしぼる
ことにより円(直径10〜100μm)のレーザビームを作
ることができ、このレーザビームを酸化物超電導膜に照
射しつつ基体またはおよびレーザ光ビームを移動する。
この時所望の位置の酸化物超電導薄膜を昇華または飛翔
化して除去する。
When an excimer laser is used, the pulse width is 20n.
Since it is as small as seconds, it is easier to control the area to be removed in the depth direction. In the present invention, a circular (10 to 100 μm diameter) laser beam can be formed by squeezing an excimer laser with an optical system, and the substrate or the laser beam is moved while irradiating the oxide superconducting film with the laser beam.
At this time, the oxide superconducting thin film at a desired position is removed by sublimation or flying.

この酸化物超電導薄膜は熱伝導係数が比較的小さく、
かつ昇華性であるため、レーザ光の照射された部分のみ
を選択的にかかる薄膜を完全に除去することができる。
そしてその端面の近傍において永ら銅および酸素原子の
層構造を有する分子配列を有する超電導材料とし得るこ
とが特徴である。
This oxide superconducting thin film has a relatively small thermal conductivity coefficient,
In addition, since it is sublimable, it is possible to completely remove such a thin film selectively only in a portion irradiated with laser light.
The feature is that a superconducting material having a molecular arrangement having a layer structure of copper and oxygen atoms in the vicinity of the end surface can be obtained.

本発明はかくの如く基板の表面に形成されたセラミッ
ク材料に対し選択的にレーザ光を照射しつつ、また必要
に応じて操作してその部分のみ酸化物の超電導材料を除
去すること、およびその前後、この上面にこの酸化物超
電導材料と概略同一の熱膨張係数を有する酸化物非超電
導材料を電気的分離用の層間膜とするため、酸化物超電
導材料と同一主成分でなる材料であって非超電導特性を
有する材料を積層した。そしてさらにこの後、第2の酸
化物超電導薄膜を積層し、再び第1の酸化物超電導材料
と同様にレーザスクライブを行った。これを繰り返して
多層に捲かれたコイルを構成せしめた。
The present invention selectively irradiates the laser light to the ceramic material formed on the surface of the substrate as described above, and also operates as necessary to remove the oxide superconducting material only at that portion, and Before and after, in order to make an oxide non-superconducting material having substantially the same thermal expansion coefficient as this oxide superconducting material on this upper surface as an interlayer film for electrical isolation, it is a material composed of the same main component as the oxide superconducting material. Materials having non-superconducting properties were laminated. Then, after that, the second oxide superconducting thin film was laminated, and the laser scribe was performed again in the same manner as the first oxide superconducting material. This was repeated to form a multilayer wound coil.

本発明において、基体材料としてアルミナ、YSZ(イ
ットリア・スタビライズド・ジルコン)、酸化マグネシ
ウム(MgO),窒化珪素、窒化アルミニウム、ジルコニ
ア、イットリア、チタン酸ストロンチウム(SrTiO3)、
石英ガラスを用いた。また金属等の基体上に酸化物非超
電導薄膜を形成して複合基体を用いてもよい。
In the present invention, as a base material, alumina, YSZ (yttria stabilized zircon), magnesium oxide (MgO), silicon nitride, aluminum nitride, zirconia, yttria, strontium titanate (SrTiO 3 ),
Quartz glass was used. Further, a composite substrate may be used by forming an oxide non-superconducting thin film on a substrate such as a metal.

「作用」 従来、金属超電導材料を用いる場合、その工程として
まず線材とする。そしてこれを所定の基体にまいてゆく
ことによりコイルを構成せしめた。
[Operation] Conventionally, when a metal superconducting material is used, first, a wire is used as a process. This was applied to a predetermined substrate to form a coil.

しかし、本発明の酸化物超電導体を用いるコイルに関
しては、最終形状を有する基体、例えば円型または円筒
状(ボビン)構造を用いる。この基体上に帯状に超電導
を熱処理の後、超電導を呈すべき酸化物超電導材料を膜
状に形成する。そしてこの膜に対し選択的にレーザスク
ライブを行うことにより他部の残存した領域により帯状
のコイルを構成せしめる。さらにその上面に酸化物超電
導材料と同一主成分でなる酸化物非超電導材料を形成す
る。すると同一主成分であるため、クラック等が発生し
にくく、高信頼性を得ることができる。さらにこの酸化
物非超電導材料の連結部にて連結しつつ、第2の酸化物
超電導薄膜を形成する。そしてこの薄膜に対し、第2の
レーザスクライブを行う。酸化物超電導材料のアニール
はこれをすべての工程を行った後に行っても、またそれ
ぞれの工程毎にで行ってもよい。
However, for a coil using the oxide superconductor of the present invention, a substrate having a final shape, for example, a circular or cylindrical (bobbin) structure is used. After heat treatment of the superconductivity in a strip shape on the substrate, an oxide superconducting material to be provided with superconductivity is formed in a film shape. Then, by selectively performing laser scribing on this film, a band-shaped coil is formed by the remaining region of the other portion. Further, an oxide non-superconducting material having the same main component as the oxide superconducting material is formed on the upper surface. Then, since they are the same main component, cracks and the like hardly occur, and high reliability can be obtained. Further, a second oxide superconducting thin film is formed while being connected at the connecting portion of the oxide non-superconducting material. Then, a second laser scribe is performed on the thin film. The annealing of the oxide superconducting material may be performed after performing all the steps, or may be performed for each step.

以下に実施例に従って本発明を説明する。 Hereinafter, the present invention will be described with reference to Examples.

「実施例1」 第1図は本発明の実施例を示す。Embodiment 1 FIG. 1 shows an embodiment of the present invention.

第1図(A)において、セラミック材料からなる基体
(1)上に酸化物非超電導薄膜(1′)(第1図(A)
には図示されない)を形成した。するとその上面には酸
化物超電導薄膜と同程度(±50%以内)の熱膨張係数の
差を作ることができる。この差が大きすぎるとアニール
後応力歪を有し、超電導を呈する温度が小さく、また膜
に生ずるクラックにより超電導が観察されなくなってし
まう。この実施例では円板状の酸化物非超電導薄膜
(1′)からなる表面を有する基体(1)上に、スパッ
タ法または印刷法例えばスクリーン印刷法により0.1〜5
0μm例えば20μmの厚さに酸化物超電導薄膜(2)を
形成した。
In FIG. 1 (A), an oxide non-superconducting thin film (1 ′) is formed on a substrate (1) made of a ceramic material (FIG. 1 (A)).
(Not shown). Then, on the upper surface, a difference in thermal expansion coefficient comparable to that of the oxide superconducting thin film (within ± 50%) can be formed. If this difference is too large, it has stress strain after annealing, the temperature at which superconductivity is exhibited is low, and superconductivity is no longer observed due to cracks generated in the film. In this embodiment, a substrate having a surface composed of a disc-shaped oxide non-superconducting thin film (1 ') is coated on a substrate (1) having a thickness of 0.1 to 5 by a sputtering method or a printing method such as a screen printing method.
The oxide superconducting thin film (2) was formed to a thickness of 0 μm, for example, 20 μm.

それを酸素雰囲気で加熱処理を行った。500〜1000℃
例えば900℃で15時間行った。かくして超電導セラミッ
ク膜を形成させた。さらにこの後、エキシマレーザ(25
4nm)(4)をレーザスクライブを行うために照射し
た。このレーザ光を第1図では矢印(11)に示すように
左端より中央部に走査し、かつ円板状基体を矢印(12)
に示すように回転した。かくして開講(3)を作製し
た。レーザ光はピーク出力は106〜108W/秒であった。こ
れを強くしすぎると基体(1)をも損傷させてしまうた
め注意を要する。
It was subjected to a heat treatment in an oxygen atmosphere. 500 ~ 1000 ℃
For example, it was performed at 900 ° C. for 15 hours. Thus, a superconducting ceramic film was formed. After this, an excimer laser (25
(4 nm) (4) was irradiated to perform laser scribing. In FIG. 1, this laser beam is scanned from the left end to the center as shown by the arrow (11), and the disk-shaped base is moved by the arrow (12).
Rotated as shown. Thus, the lecture (3) was created. The peak output of the laser light was 10 6 to 10 8 W / sec. Care must be taken if this is too strong, since it will damage the substrate (1) as well.

第1図(B)は第1図(A)の1層配線の後、これら
の全面に層間分離膜(9)として酸化物非超電導薄膜
(6)を形成し、連結部(8)にて開穴を形成する。さ
らに第2の酸化物超電導薄膜(7)を積層した後、第2
の酸化物超電導薄膜をレーザスクライブしたものであ
り、第1図(A)のA−A′線の断面に対応する。
FIG. 1B shows an oxide non-superconducting thin film 6 formed as an interlayer separation film 9 on the entire surface after the one-layer wiring of FIG. Form an aperture. Further, after laminating a second oxide superconducting thin film (7),
Of the oxide superconducting thin film obtained by laser scribing, and corresponds to a cross section taken along line AA ′ of FIG. 1 (A).

図面より明らかな如く、第1の酸化物超電導薄膜は帯
状に(5−1),(5−2)・・・として残存してコイ
ル(5)を構成する。そして連結部(8)にて、コイル
(5)は第2の酸化物超電導薄膜を帯状に(7−1),
(7−2)・・・レーザスクライブしたコイル(7)に
連結されている。
As is apparent from the drawing, the first oxide superconducting thin film remains in a strip shape as (5-1), (5-2)... To constitute the coil (5). Then, at the connection part (8), the coil (5) forms the second oxide superconducting thin film in a belt shape (7-1),
(7-2) ... connected to the coil (7) that has been laser scribed.

かくして円板状に帯状線を配線し、かつその多層まき
が可能となった。
Thus, the strip-shaped wires are wired in a disk shape, and the multi-layer winding can be performed.

第1、第2の帯状の超電導薄膜の上または下に銀等の
金属を設けた多層膜としてもよい。
It may be a multilayer film in which a metal such as silver is provided above or below the first and second belt-like superconducting thin films.

「実施例2」 第2図は本発明の他の実施例を示す。Embodiment 2 FIG. 2 shows another embodiment of the present invention.

図面において基体(1)は円筒状(ボビン形状)を有
する。ここに実施例1と同様に、酸化物非超電導薄膜
(1′)(第2図(A)には図示されない)を形成した
後、膜状に酸化物超電導材料(2)を形成する。
In the drawing, the base (1) has a cylindrical shape (bobbin shape). Here, similarly to the first embodiment, after forming the oxide non-superconducting thin film (1 ') (not shown in FIG. 2 (A)), the oxide superconducting material (2) is formed in a film shape.

この作製はスパッタ装置でこの円筒基体(1)を矢印
(12)に示す如くに回転しつつディポジッションすれば
よい。
This production may be performed by depositing the cylindrical substrate (1) while rotating it as shown by an arrow (12) in a sputtering apparatus.

次にこれら膜を熱アニールさせた後、この膜にYAGレ
ーザビーム(4)(径50μm)を照射しつつ、このレー
ザ光を矢印(11)の方向に徐々に移す。同時に円筒状基
体(1)を矢印(12)の方向に回転させる。するとこの
円筒状基体に対し一本の連続した帯状のスクライブライ
ン(3)を構成させることができる。この開溝によりそ
れぞれの酸化物超電導材料が帯状に(5−1),(5−
2)として形成され、それぞれは電気的に分離されて、
超電導領域(5)を構成させ得る。ここではこの超電導
領域(5)はコイル状を有し、実質的に超電導マグネッ
トコイルを構成させることができた。
Next, after these films are thermally annealed, the laser light is gradually transferred in the direction of arrow (11) while irradiating the films with a YAG laser beam (4) (diameter: 50 μm). At the same time, the cylindrical substrate (1) is rotated in the direction of the arrow (12). Then, one continuous band-shaped scribe line (3) can be formed on the cylindrical substrate. Due to this groove, each oxide superconducting material becomes strip-like (5-1), (5-
2), each of which is electrically isolated,
A superconducting region (5) may be configured. Here, the superconducting region (5) had a coil shape, and could substantially constitute a superconducting magnet coil.

この実施例はかかる工程の後これら全体を酸素中で焼
成し、(A1-XBX)yCuzOwの一般式で示される酸化物超電
導材料に変成した。そして超電導マグネットとさせるこ
とができた。このコイルの始点と終点とを超電導線で連
結することにより、エネルギ蓄積装置とすることが可能
である。
In this example, after these steps, all of them were calcined in oxygen to transform into an oxide superconducting material represented by the general formula of (A1 - XBX) yCuzOw. And it could be made a superconducting magnet. By connecting the start point and the end point of this coil with a superconducting wire, an energy storage device can be obtained.

第2図(B)は第2図(A)のA−A′線の断面図に
対応する。第2図(A)は図面の複雑化を避けるため1
層目のみを示し、第1の酸化物非超電導薄膜(1′)を
省略した。本発明はこれを多層化せしめたものである。
第2図(B)において、第1の酸化物非超電導薄膜
(1′)からなる表面を有する基体(1)上に、第2図
(A)に示した如くにして第1の酸化物超電導材料
(2)を帯状の第1の超電導領域(5)に形成する。さ
らにこれら全体を同一主成分でなる第2の酸化物非超電
導薄膜を同じスパッタ法で層間分離膜(6)として形成
する。連結部(8)で開穴を行った後、これら全体に第
2の酸化物超電導薄膜を形成する。さらに第1の超電導
薄膜と同様にレーザスクライブをして帯状に(7−
1),(7−2)・・・成形して第2の超電導領域
(7)を作る。この状態で、連結部(8)にて、第1の
超電導領域(5)と第2の超電導領域(7)が連結され
ている。さらに層間分離膜(9)として同一主成分でな
る第3の酸化物非超電導薄膜(6′)を形成し、連結部
(8′)で開穴を形成した後、さらに第3の酸化物超電
導材料を形成し、レーザスクライブをして帯状の第3の
超電導領域を形成した。この状態で、連結部(8′)に
て、第2の酸化物超電導領域(7)と第3の酸化物超電
導領域が連結されている。外部取り出しは、層間分離膜
(6),(9)に第1の超電導領域(5)に達する開穴
を形成し、そこに取り出し電極(10)を形成することで
行っている。これを繰り返し行うことにより、3層だけ
ではなく任意の多層とすることができる。
FIG. 2 (B) corresponds to a cross-sectional view taken along line AA ′ of FIG. 2 (A). FIG. 2 (A) is a diagram 1 in order to avoid complication of the drawing.
Only the first layer is shown, and the first oxide non-superconducting thin film (1 ') is omitted. In the present invention, this is multi-layered.
In FIG. 2 (B), as shown in FIG. 2 (A), on a substrate (1) having a surface composed of a first oxide non-superconducting thin film (1 '), a first oxide superconducting film is formed. A material (2) is formed in a strip-shaped first superconducting region (5). Further, a second oxide non-superconducting thin film composed entirely of the same main component is formed as an interlayer separation film (6) by the same sputtering method. After the opening is made in the connecting portion (8), a second oxide superconducting thin film is formed on the entirety. Further, laser scribe is performed in the same manner as the first superconducting thin film to form a strip (7-
1), (7-2)... To form a second superconducting region (7). In this state, the first superconducting region (5) and the second superconducting region (7) are connected at the connecting portion (8). Further, a third oxide non-superconducting thin film (6 ') composed of the same main component is formed as an interlayer separation film (9), an opening is formed in the connecting portion (8'), and then a third oxide superconducting film is formed. A material was formed, and a laser scribe was performed to form a band-shaped third superconducting region. In this state, the second oxide superconducting region (7) and the third oxide superconducting region are connected at the connecting portion (8 '). External extraction is performed by forming an opening reaching the first superconducting region (5) in the interlayer separation films (6) and (9), and forming an extraction electrode (10) there. By repeating this, not only three layers but also an arbitrary multilayer can be obtained.

その他は実施例1と同様である。 Others are the same as the first embodiment.

「効果」 本発明によりこれまでまったく不可能とされていた酸
化物超電導材料を実質的にコイル状に基体上に選択的に
残存させることが可能となった。
[Effects] According to the present invention, it has become possible to selectively leave oxide superconducting materials, which have been impossible at all up to now, substantially in a coil shape on a substrate.

かくして、曲げるとすぐわれてしまうセラミック超電
導材料をして導線、電極または超電導素子を構成させる
ためのアイソレイションをして膜状または帯状に作るこ
とができた。
Thus, the ceramic superconducting material, which breaks off as soon as it is bent, can be formed into a film or a band by performing isolation for forming a conductor, an electrode or a superconducting element.

本発明において超電導薄膜を形成した後、公知のフォ
トリソグラフィ技術を用い、所定のパターニングをし、
超電導素子または超電導配線としてもよい。しかしこの
工程中で用いる液体により劣化しやすいため、本発明の
方法が優れている。本発明の超導電材料はセラミック材
料であればなんでもよい。
After forming a superconducting thin film in the present invention, using a known photolithography technique, predetermined patterning,
It may be a superconducting element or a superconducting wiring. However, the method of the present invention is excellent because it is easily deteriorated by the liquid used in this step. The superconductive material of the present invention may be any ceramic material.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の酸化物超電導材料を用いた超
電導コイルの実施例を示す。 1……基板 2……酸化物超電導材料 3……開溝 4……レーザ光 5……超電導を呈する領域 6,9……層間分離膜 7……第2の酸化物超電導材料
FIG. 1 and FIG. 2 show an embodiment of a superconducting coil using the oxide superconducting material of the present invention. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Oxide superconducting material 3 ... Groove 4 ... Laser beam 5 ... Region exhibiting superconductivity 6, 9 ... Interlayer separation film 7 ... Second oxide superconducting material

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体上に非超電導特性を有する材料が設け
られ、 該材料上に第1の酸化物超電導材料が帯状に設けられ、 該材料上に非超電導特性を有する材料が積層して設けら
れ、 該材料上に前記帯状に設けられた第1の酸化物超電導材
料の一端部に連結して第2の酸化物超電導材料が帯状に
積層して設けられ、 た超電導コイルであって、 前記非超電導特性を有する材料は、前記酸化物超電導材
料を構成する材料と同一主成分でなることを特徴とする
超電導コイル。
1. A material having non-superconducting properties is provided on a substrate, a first oxide superconducting material is provided on the material in a strip shape, and a material having non-superconducting properties is provided by lamination on the material. A second oxide superconducting material connected to one end of the first oxide superconducting material provided in a strip shape on the material, the second oxide superconducting material being provided in a strip shape, the superconducting coil comprising: The superconducting coil is characterized in that the material having non-superconducting properties is composed of the same main component as the material constituting the oxide superconducting material.
【請求項2】特許請求の範囲第1項において、超電導コ
イルは複数の酸化物超電導材料が複数の非超電導特性を
有する材料を介して多層に設けられることにより構成さ
れていることを特徴とする超電導コイル。
2. A superconducting coil according to claim 1, wherein the superconducting coil is formed by providing a plurality of oxide superconducting materials in multiple layers via a plurality of materials having non-superconducting properties. Superconducting coil.
JP62218539A 1987-08-31 1987-08-31 Superconducting coil Expired - Fee Related JP2630362B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62218539A JP2630362B2 (en) 1987-08-31 1987-08-31 Superconducting coil
US07/236,925 US5079222A (en) 1987-08-31 1988-08-26 Superconducting ceramic circuits and manufacturing method for the same
DE3854754T DE3854754T2 (en) 1987-08-31 1988-08-31 Ceramic superconducting circuits and process for their manufacture.
EP88308048A EP0306287B1 (en) 1987-08-31 1988-08-31 Superconducting ceramic circuits and manufacturing method for the same
US07/757,993 US5225394A (en) 1987-08-31 1991-09-12 Method for manufacturing high Tc superconducting circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62218539A JP2630362B2 (en) 1987-08-31 1987-08-31 Superconducting coil

Publications (2)

Publication Number Publication Date
JPS6459903A JPS6459903A (en) 1989-03-07
JP2630362B2 true JP2630362B2 (en) 1997-07-16

Family

ID=16721513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62218539A Expired - Fee Related JP2630362B2 (en) 1987-08-31 1987-08-31 Superconducting coil

Country Status (1)

Country Link
JP (1) JP2630362B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472505A (en) * 1987-09-12 1989-03-17 Univ Tokai Superconducting coil
JPH01276605A (en) * 1988-04-27 1989-11-07 Hokuriku Electric Power Co Inc:The Manufacture of superconducting magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496448A (en) * 1972-02-22 1974-01-21
JPS6161555A (en) * 1984-08-31 1986-03-29 Norinosuke Kojima Automatic message method using dial telephone
JPS6175509A (en) * 1984-09-20 1986-04-17 Fujitsu Ltd Thin film coil
JPS61225807A (en) * 1985-03-29 1986-10-07 Kobe Steel Ltd Manufacture of superconductive coil

Also Published As

Publication number Publication date
JPS6459903A (en) 1989-03-07

Similar Documents

Publication Publication Date Title
KR910004993B1 (en) Method of manufacturing a superconducting pattern by light irradiation
JP2007141688A (en) Low ac loss oxide superconductor and its manufacturing method
JP2007141688A6 (en) Low AC loss oxide superconducting conductor and method of manufacturing the same
JP2011096566A (en) Low ac-loss multifilament type superconductive wire material, and method of manufacturing the same
EP0282360B1 (en) Method for manufacturing components of superconducting ceramic oxide materials
JP2011040378A (en) Coated conductor
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JP2630362B2 (en) Superconducting coil
JP2005044636A (en) Superconductive wire rod
JP2645489B2 (en) Superconductor fabrication method
JP2660280B2 (en) Superconductor
JP2660281B2 (en) Superconductor fabrication method
JPH063766B2 (en) Superconducting coil manufacturing method
JP2585624B2 (en) Superconducting coil fabrication method
JP2645490B2 (en) How to make superconducting material
JP2654555B2 (en) Superconducting device manufacturing method
JPS63224270A (en) Manufacture of superconductor device
JP4128358B2 (en) Manufacturing method of oxide superconductor
JPH04297003A (en) Substrate for manufacturing superconducting device
US5248658A (en) Method of manufacturing a superconducting oxide pattern by laser sublimation
JPH07114296B2 (en) Superconductor
JPH0812819B2 (en) Superconductor fabrication method
CN111183493A (en) Connection structure of oxide superconducting wire
JPH063765B2 (en) Superconducting coil
JPH10107334A (en) Superconducting member and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees