JPH063765B2 - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPH063765B2
JPH063765B2 JP62222622A JP22262287A JPH063765B2 JP H063765 B2 JPH063765 B2 JP H063765B2 JP 62222622 A JP62222622 A JP 62222622A JP 22262287 A JP22262287 A JP 22262287A JP H063765 B2 JPH063765 B2 JP H063765B2
Authority
JP
Japan
Prior art keywords
superconducting
oxide
substrate
superconducting material
elements selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62222622A
Other languages
Japanese (ja)
Other versions
JPS6465806A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62222622A priority Critical patent/JPH063765B2/en
Priority to US07/236,925 priority patent/US5079222A/en
Priority to EP88308048A priority patent/EP0306287B1/en
Priority to DE3854754T priority patent/DE3854754T2/en
Publication of JPS6465806A publication Critical patent/JPS6465806A/en
Priority to US07/757,993 priority patent/US5225394A/en
Publication of JPH063765B2 publication Critical patent/JPH063765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は薄膜のセラミック系超電導(超伝導ともいうが
ここでは超電導と記す)材料に関する。
TECHNICAL FIELD The present invention relates to a thin film ceramic-based superconducting (also referred to as superconducting, herein referred to as superconducting) material.

本発明は、気体上に薄膜化して形成された材料を覆って
非超電導材料を設けることにより、超電導材料の多層配
線をせしめ、かかる構成を用いて超電導電子装置好まし
くは超電導コイル(エネルギー蓄積用またはマグネット
用等に用いる)を作らんとするものである。
The present invention provides a non-superconducting material by covering a material formed into a thin film on a gas, thereby allowing multilayer wiring of the superconducting material, and using such a configuration, a superconducting device, preferably a superconducting coil (for energy storage or It is intended to be used for magnets, etc.).

「従来の技術」 従来、超電導材料はNb-Ge(例えばNb3Ge)の金属材料が用
いられている。この材料は金属であるため延性、展性を
高く有し、超電導マグネット用のコイル巻を行うことが
可能であった。
"Background of the Invention" Conventionally, superconducting materials metallic material Nb-Ge (e.g. Nb 3 Ge) is used. Since this material is a metal, it has high ductility and malleability, and it was possible to perform coil winding for a superconducting magnet.

しかし、これらの金属材料を用いた超電導材料はTc(超
電導臨海温度を以下単にTcという)が小さく23Kまたは
それ以下しかない。これに対し、工業上の応用を考える
ならば、このTcが77K好ましくは室温またはそれ以上で
あるとさらに有効である。
However, the superconducting materials using these metallic materials have a small Tc (superconducting water temperature is simply referred to as Tc hereinafter) and are only 23K or less. On the other hand, when considering industrial applications, it is more effective that the Tc is 77K, preferably room temperature or higher.

「従来の問題点」 このため、Tcの高い材料として金属ではなくセラミック
系材料、特に酸化物セラミック系材料が注目されてい
る。しかしこの注目されているセラミック系超電導材料
はTcが高いにもかかわらず、曲げ性、延性、展性にとぼ
しく、少し曲げてもわれてしまう。いわんや0.1〜30μ
mといった厚さの薄膜を円筒状または円板状の基体上に
形成し、この薄膜の一部または全部を選択的に除去する
ことはまったく不可能であるとされていた。特にこれに
半導体集積回路と同様のフォトソングラフィ技術を用い
多層配線を行ったり、この薄膜超電導を用いて新しい電
子ディバイスを作ることはまったく不可能であった。
“Conventional Problems” For this reason, ceramic-based materials, particularly oxide ceramic-based materials, are attracting attention as materials with high Tc, rather than metals. However, despite the high Tc, this ceramic superconducting material, which has been attracting attention, has poor bendability, ductility, and malleability, and even if it is bent a little. Iwanya 0.1-30μ
It has been considered completely impossible to form a thin film having a thickness of m on a cylindrical or disk-shaped substrate and selectively remove a part or all of this thin film. In particular, it has been completely impossible to perform multi-layer wiring using the same photosonography technology as that for semiconductor integrated circuits or to make new electronic devices using this thin film superconductivity.

さらに多層配線、特にコイル等を設けようとした場合、
その集合した全体を同一主成分とすることにより、熱膨
張係数を合わせることがクラック等を防止させるために
重要である。このため、基体それ自体を酸化物超電導材
料と異種材料とし、長期使用条件下において実使用する
ことは、信頼性上大問題を内在させてしまっていた。
Furthermore, when trying to provide multilayer wiring, especially coils etc.,
In order to prevent cracks and the like, it is important to match the coefficient of thermal expansion by making the entire assembly the same main component. Therefore, using the substrate itself as a different material from the oxide superconducting material and actually using it under a long-term use condition causes a great problem in reliability.

「問題を解決すべき手段」 本発明はかかる酸化物超電導材料の薄膜と、それを挟む
同一主成分の酸化物非超電導材料の層間分離膜とを用い
て電子ディバイス好ましくは超電導コイルを作らんとし
たものである。
"Means for Solving the Problem" The present invention is intended to form an electronic device, preferably a superconducting coil, using a thin film of such an oxide superconducting material and an interlayer separation film of an oxide non-superconducting material of the same main component that sandwiches the thin film. It was done.

本発明は予め所望の形状を有する母体、例えば円筒状ま
たは円板状の母体の被形成面上に酸化物超電導材料と同
一主成分材料の非超電導材料を形成する。この材料を基
体とする。またこの形成後もとの母体を除去してしまう
ことにより、非超電導材料のみを気体として用い得る。
本発明はかかる酸化物非超電導材料の被形成面を有する
基体上に、酸化物超電導材料または酸化雰囲気でアニー
ル後、超電導特性を有する出発材料(これらを合わせて
以下酸化物超電導材料または単に超電導材料という)の
膜をスパッタ法、印刷法例えばスクリーン印刷法、スプ
レー法、プラズマスプレー法、電子ビーム蒸着法、プラ
ズマCVD法、その他の方法により形成する。
In the present invention, a non-superconducting material having the same main component material as that of the oxide superconducting material is previously formed on the formation surface of a matrix having a desired shape, for example, a cylindrical or disk-shaped matrix. This material is used as a base. Further, by removing the original matrix after the formation, only the non-superconducting material can be used as the gas.
The present invention provides a starting material having superconducting properties after annealing in an oxide superconducting material or an oxidizing atmosphere on a substrate having a surface on which such an oxide non-superconducting material is formed (these are collectively referred to as oxide superconducting material or simply Film) is formed by a sputtering method, a printing method such as a screen printing method, a spray method, a plasma spray method, an electron beam evaporation method, a plasma CVD method, or another method.

例えばマグネトロンスパッタ法で基板温度650゜C、Ar
(酸素を20%混入)雰囲気で形成する。この時被形成面
上に酸化物超電導材料のab面(c面即ちc軸に垂直な面)
が平行になるように形成する。
For example, magnetron sputtering method with substrate temperature 650 ° C, Ar
It is formed in an atmosphere containing 20% oxygen. At this time, the ab plane of the oxide superconducting material (the c plane, that is, the plane perpendicular to the c axis) on the formation surface
Are formed so that they are parallel to each other.

このため、基体上に被膜を形成する際、この被形成面
(円筒状にあってはその円の接線方向の面)に垂直方向
に磁界を加える。すると本発明に用いる変形ペルブスカ
イト構造の酸化物超電導材料は電流の特に流れやすいab
面に平行な面が被形成面に平行に構成される。この磁界
はスパッタ法で形成された膜を酸素中で850゜C,8時間、
4゜C/分の速度で徐冷中、400゜C,2時間のアニールの間
も加える。
Therefore, when forming a film on the substrate, this surface to be formed
A magnetic field is applied in the vertical direction to the (tangential surface of the circle if it is cylindrical). Then, the modified perovskite structure oxide superconducting material used in the present invention has an ab which an electric current flows easily.
The surface parallel to the surface is configured to be parallel to the surface to be formed. This magnetic field is applied to the film formed by the sputtering method in oxygen at 850 ° C for 8 hours,
During slow cooling at a rate of 4 ° C / min, it is also added during annealing at 400 ° C for 2 hours.

本発明はかかる酸化物超電導材料が昇華性を有し、エキ
シマレーザまたはYAGレーザによりスクライブ加工(切
断)が容易に行い得る材料であることを実験的に発見し
た。このため本発明はかかる形成された超電導薄膜に対
し、焼成前または焼成後に選択的にレーザ光を照射、さ
らに必要に応じ走査(スキャン)を加え、一定の領域、
例えば一定の巾を有する帯状にこの酸化物超電導材料を
除去する。するとこのレーザ照射により開溝が作られた
以外の部分のみ一定のTcを有する超電導薄膜の帯とする
ことができる。
The present invention experimentally found that such an oxide superconducting material has a subliming property and can be easily scribed (cut) by an excimer laser or a YAG laser. For this reason, the present invention selectively irradiates the formed superconducting thin film with a laser beam before or after firing, and further scans (scans) as necessary to give a predetermined region,
For example, the oxide superconducting material is removed in a band shape having a certain width. Then, the band of the superconducting thin film having a constant Tc can be formed only in the portion other than the groove formed by the laser irradiation.

スパッタ法等で形成される膜は、ターゲットを調整し、
形成後の酸化物超電導材料が例えば、(A1-xBx)yCuzOw但
しx=0.1〜1好ましくは0.6〜0.7,y=2.0〜4.0好まし
くは2.5〜3.5,z=0.1〜4.0好ましくは1.5〜3.5,w=4.
0〜10.0好ましくは6〜8であって、Aは元素周期表III
a族特にイットリウム(Y)またはランタノイドより選ば
れた1種類または複数種類の元素、Bは元素周期表IIa
族のBa(バリウム),Sr(ストロンチウム)またはCa(カルシ
ウム)より選ばれた1種類または複数種類の元素、例え
ばバリウム(Ba)となるようにする。
For the film formed by the sputtering method, adjust the target,
The oxide superconducting material after formation is, for example, (A 1-x Bx) yCuzOw, where x = 0.1-1, preferably 0.6-0.7, y = 2.0-4.0, preferably 2.5-3.5, z = 0.1-4.0, preferably 1.5- 3.5, w = 4.
0 to 10.0, preferably 6 to 8, A is the periodic table of elements III
One or more elements selected from group a, especially yttrium (Y) or lanthanoids, B is the periodic table IIa
One or more elements selected from the group Ba (barium), Sr (strontium) or Ca (calcium), for example, barium (Ba).

さらに層間絶縁膜は、 ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0〜1.0,y=2.0〜4.0,z=1.0〜4.0,w=4.0〜10.
0を有し、A′はY(イットリウム),Gd(ガドリニウム),Yb
(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),D
y(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),Tm
(ツリウム),Lu(ルテチウム),Sc(スカンジウム)および
その他のランタノイドより選ばれた1種または複数種の
元素よりなり、B′はBa(バリウム),Sr(ストロンチウ
ム),Ca(カルシウム)より選ばれた元素を有するととも
に、A″,B″,XはMg(マグネシウム),Be(ベリリウ
ム),Al(アルミニウム),Fe(鉄),Co(コバルト),Ni(ニッ
ケル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr(ジルコ
ニウム)より選ばれた1つまたは複数種類の元素よりな
る酸化物超電導材料を用いた。このとき、この非超電導
材料とするための添加物は1〜20体積%(p,qまたはrの
値としては0.99〜0.80)を加えた。特に酸化物絶縁物と
なる程度が大きいMg,Alはその添加量が1〜5%と少なく
てすみ、好都合であった。
Further, the interlayer insulating film is ((A'pA " 1-P ) 1-x (B'qB" 1-q )
x) y (CurX 1-r ) zOw x = 0 to 1.0, y = 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 10.
Has 0, A ′ is Y (yttrium), Gd (gadolinium), Yb
(Ytterbium), Eu (europium), Tb (terbium), D
y (dysprosium), Ho (holmium), Er (erbium), Tm
(Thulium), Lu (Lutetium), Sc (Scandium) and other lanthanoids, consisting of one or more elements, B'is selected from Ba (Barium), Sr (Strontium), Ca (Calcium) A ″, B ″, X are Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt), Ni (nickel), Cr (chromium), An oxide superconducting material composed of one or more kinds of elements selected from Ti (titanium), Mn (manganese) and Zr (zirconium) was used. At this time, 1 to 20% by volume (the value of p, q or r is 0.99 to 0.80) was added as an additive for forming the non-superconducting material. In particular, Mg and Al, which have a large degree of becoming an oxide insulator, are convenient because the addition amount thereof is as small as 1 to 5%.

尚、本明細書における元素周期表は理化学辞典(岩波書
店1963年4月1日発行)によるものである。
In addition, the periodic table of elements in this specification is based on a dictionary of physics and chemistry (Iwanami Shoten, published April 1, 1963).

絶縁領域を作るために、エキシマレーザを用いたレーザ
スクライブを行う場合は、パルス巾が20n秒と小さいた
め、除去する領域の深さ方向の制御がより容易となる。
本発明はエキシマレーザを光学系でしぼることにより円
(直径10〜100μm)のレーザビームを作ることができ、
このレーザビームを酸化物超電導膜に照射しつつ基体ま
たは基体とレーザビーム光とを移動する。そして所望の
位置の酸化物超電導薄膜を昇華または飛翔化して除去す
る。
When laser scribing using an excimer laser is performed to form the insulating region, the pulse width is as small as 20 nsec. Therefore, it becomes easier to control the region to be removed in the depth direction.
The present invention can make a laser beam of a circle (diameter 10 to 100 μm) by squeezing an excimer laser with an optical system,
The substrate or the substrate and the laser beam light are moved while irradiating the oxide superconducting film with this laser beam. Then, the oxide superconducting thin film at a desired position is removed by sublimation or flying.

この除去されるべき領域に対し、本発明で用いるMg(マ
グネシウム),Be(ベリリウム),Al(アルミニウム)、Fe
(鉄),Co(コバルト),Ni(ニッケル),Cr(クロム),Ti(チタ
ン),Mn(マンガン)より選ばれた1種または複数種をイ
オン注入法等により選択的に注入して絶縁化してもよ
い。かくすると、この絶縁領域と超電導領域との上表面
を互いに滑らかな平坦にできる特長を有するが、注入量
が多く、生産性の上で十分でない。
For this region to be removed, Mg (magnesium), Be (beryllium), Al (aluminum), Fe used in the present invention
Insulation by selectively implanting one or more species selected from (iron), Co (cobalt), Ni (nickel), Cr (chromium), Ti (titanium), Mn (manganese) by ion implantation method, etc. May be turned into. Thus, although the upper surfaces of the insulating region and the superconducting region can be made smooth and flat, the amount of implantation is large and the productivity is not sufficient.

本発明はかくの如く、酸化物超電導材料と同一主成分の
酸化物非超電導材料とを基体またはその上部および層間
絶縁物として用いることにより、酸化物超電導材料と概
略同一の熱膨張係数を有する酸化物非超電導材料を電気
的分離用の層間膜とする。そしてさらにこの後、第2の
酸化物超電導材料を積層し、再び第1の酸化物超電導材
料と同様に選択的に不要物をレーザスクライブ法等によ
り除去した。これを繰り返して多層に捲かれたコイルを
構成せしめた。
As described above, the present invention uses the oxide superconducting material and the oxide non-superconducting material having the same main component as the substrate or the upper portion thereof and the interlayer insulating material, so that the oxide superconducting material has substantially the same thermal expansion coefficient as that of the oxide superconducting material. A non-superconducting material is used as an interlayer film for electrical isolation. Then, after this, a second oxide superconducting material was laminated, and again, like the first oxide superconducting material, unnecessary substances were selectively removed by a laser scribing method or the like. This was repeated to form a coil wound in multiple layers.

本発明において、基体材料としてその後も残存させる場
合は、アルミナ、YSZ(イットリア・スタビライズド・ジ
ルコン)、酸化マグネシウム(MgO),ジルコニア、イット
リア、チタン酸ストロンチウム(SrTiO3)、ガラスまたは
酸化物超電導材料と同一主成分材料の非超電導材料を用
いた。また金属等の基体上に酸化物非超電導薄膜を形成
して複合基体を用いてもよい。
In the present invention, when it is left as a substrate material thereafter, alumina, YSZ (yttria stabilized zircon), magnesium oxide (MgO), zirconia, yttria, strontium titanate (SrTiO 3 ), glass or oxide superconducting material A non-superconducting material having the same main component material as was used. Alternatively, a composite substrate may be used by forming an oxide non-superconducting thin film on a substrate such as metal.

母体上に基体を設け、基体を構成後除去する場合は有機
溶剤でとける有機樹脂を用いた。
When the substrate was provided on the base and removed after the substrate was formed, an organic resin that was soluble in an organic solvent was used.

「作用」 従来、金属の超電導材料を用いる場合、その工程として
まず線材とする。これを所定の基体にまいてゆくことに
よりコイルを構成せしめた。
[Operation] Conventionally, when a metallic superconducting material is used, a wire is first used as a process. A coil was constructed by spreading this on a predetermined substrate.

しかし、本発明の酸化物超電導体を用いるコイルに関し
ては、最終形状を有する基体、例えば円板または円筒状
(ボビン)構造を用いる。この基体上に帯状に超電導を
熱処理の後、超電導を呈すべき酸化物超電導材料を膜状
に形成する。そしてこの膜に対し選択的に第1のパター
ニングを行うことにより他部の残存した領域により帯状
のコイルを構成せしめる。さらにその上面に酸化物超電
導材料と同一主成分材料を酸化物非超電導材料を形成す
る。すると同一主成分であるため、クラック等が発生し
にくく、高信頼性を得ることができる。さらにこの酸化
物非超電導材料の連結部にて連結しつつ、第2の酸化物
超電導薄膜を形成する。この薄膜に対し、第2のパター
ニングを行う。酸化物超電導材料および非超電導材料の
熱アニールまたは酸化処理はこれをすべての工程を行っ
た後に行っても、またそれぞれの工程毎に行ってもよ
い。
However, for the coil using the oxide superconductor of the present invention, a substrate having a final shape, such as a disc or a cylinder,
(Bobbin) structure is used. After band-shaped superconducting heat treatment is performed on this substrate, an oxide superconducting material that exhibits superconducting properties is formed into a film. Then, by selectively performing the first patterning on this film, a strip-shaped coil is constituted by the remaining region of the other portion. Further, an oxide non-superconducting material having the same main component material as the oxide superconducting material is formed on the upper surface thereof. Then, since the main components are the same, cracks are less likely to occur, and high reliability can be obtained. Further, the second oxide superconducting thin film is formed while connecting at the connecting portion of the oxide non-superconducting material. Second patterning is performed on this thin film. The thermal annealing or oxidation treatment of the oxide superconducting material and the non-superconducting material may be performed after performing all the steps, or may be performed in each step.

以下に実施例に従って本発明を説明する。The present invention will be described below with reference to examples.

「実施例1」 第1図は本発明の実施例を示す 第1図(A)において、母体(1)は後から除去できる材料、
例えば超電導材料が溶解せず、かつ母体が溶去できる材
料を用いればよい。さらにその上に材料(1)上に ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0.1〜1.0,y=2.0〜4.0,z=1.0〜4.0,w=4.0〜1
0.0を有し、A′はY(イットリウム),Gd(ガドリニウム),Y
b(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),
Dy(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),T
m(ツリウム),Lu(ルテチウム),Sc(スカンジウム)および
その他のランタノイドより選ばれた1種または複数種の
元素よりなり、B′はBa(バリウム),Sr(ストロンチウ
ム),Ca(カルシウム)より選ばれた元素を有するととも
に、A″,B″またはXはMg(マグネシウム),Be(ベリリ
ウム),Al(アルミニウム),Fe(鉄),Co(コバルト),Ni(ニッ
ケル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr(ジルコ
ニウム)より選ばれた1つまたは複数種類の元素を1〜
20体積%含む酸化物非超電導膜(1′)を約10〜5000μm
例えば20μmの厚さに形成したものを用いた。すると、
その上面には酸化物超電導薄膜と同程度(±50%以内)の
熱膨張係数の差を作ることができる。この差が大きすぎ
るとアニール後応力歪を有し、超電導を呈する温度が小
さく、また膜に生ずるクラックにより超電導が観察され
なくなってしまう。この実施例では円板状を有する基体
(1)上に、スパッタ法または印刷法例えばスクリーン印
刷法により0.1〜50μm例えば20μmの厚さに酸化物超
電導薄膜(2)を形成した。
"Example 1" Fig. 1 shows an example of the present invention. In Fig. 1 (A), the matrix (1) is a material that can be removed later,
For example, a material in which the superconducting material does not dissolve and the matrix can be removed may be used. Further on that, on the material (1), ((A'pA " 1-P ) 1-x (B'qB" 1-q )
x) y (CurX 1-r ) zOw x = 0.1 to 1.0, y = 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 1.
Has 0.0, A'is Y (yttrium), Gd (gadolinium), Y
b (ytterbium), Eu (europium), Tb (terbium),
Dy (dysprosium), Ho (holmium), Er (erbium), T
Consists of one or more elements selected from m (thulium), Lu (lutetium), Sc (scandium) and other lanthanoids. B'is derived from Ba (barium), Sr (strontium) and Ca (calcium). In addition to having selected elements, A ″, B ″ or X is Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt), Ni (nickel), Cr (chromium). 1 to 1 or more kinds of elements selected from, Ti (titanium), Mn (manganese), and Zr (zirconium)
About 10-5000 μm of oxide non-superconducting film (1 ') containing 20% by volume
For example, the one formed to a thickness of 20 μm was used. Then,
A difference in the coefficient of thermal expansion of the same degree (within ± 50%) as that of the oxide superconducting thin film can be created on the upper surface. If this difference is too large, there is stress strain after annealing, the temperature at which superconductivity is exhibited is low, and cracks that occur in the film prevent superconductivity from being observed. In this embodiment, a disk-shaped substrate
An oxide superconducting thin film (2) having a thickness of 0.1 to 50 μm, for example 20 μm, was formed on (1) by a sputtering method or a printing method such as a screen printing method.

それを酸素雰囲気で加熱処理を行った。500〜1000゜C例
えば900゜Cで15時間行った。その後、200゜C/分以下の降
温例えば10゜C/分で徐冷し、さらに450゜C,1時間保存し
て酸化処理を行った。かくして酸化物超電導膜を形成さ
せた。この後、エキシマレーザ(254nm)(4)をレーザスク
ライブを行うために照射した。このレーザ光を第1図で
は左端より中央部に走査(11)し、かつ円板状基体を回転
(12)した。かくして開溝(3)を作製した。レーザ光はピ
ーク出力は106〜108W/秒であった。これを強くしすぎ
ると基体(1),(1)′をも損傷させてしまうため注意を要
する。
It was heat-treated in an oxygen atmosphere. It was carried out at 500 to 1000 ° C, for example 900 ° C for 15 hours. Then, the temperature was lowered to 200 ° C / min or less, for example, slow cooling was performed at 10 ° C / min, and the product was further stored at 450 ° C for 1 hour for oxidation treatment. Thus, an oxide superconducting film was formed. Then, an excimer laser (254 nm) (4) was irradiated for laser scribing. In Fig. 1, this laser light is scanned from the left end to the center (11), and the disk-shaped substrate is rotated.
(12) I did. Thus, the open groove (3) was prepared. The laser light had a peak output of 10 6 to 10 8 W / sec. If this is made too strong, the bases (1), (1) 'will also be damaged, so care must be taken.

第1図(B)は、第1図(A)の1層配線の後、これらの全面
に ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0〜1.0,y=2.0〜4.0,z=1.0〜4.0,w=4.0〜10.
0を有し、A′はY(イットリウム),Gd(ガドリニウム),Yb
(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),D
y(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),Tm
(ツリウム),Lu(ルテチウム),Sc(スカンジウム)および
その他のランタノイドより選ばれた1種または複数種の
元素よりなり、B′はBa(バリウム),Sr(ストロンチウ
ム),Ca(カルシウム)より選ばれた元素を有するととも
に、A″,B″またはXはMg(マグネシウム),Be(ベリリ
ウム),Al(アルミニウム),Fe(鉄),Co(コバルト),Ni(ニッ
ケル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr(ジルコ
ニウム)より選ばれた1つまたは複数種類の元素を1〜
20体積%含有する酸化物非超電導膜(6)を形成し、さら
に第2の(A1-xBx)yCuzOw x=0〜1.0,y=2.0〜4.0,
z=1.0〜4.0,w=4.0〜10.0を有し、AはY(イットリウ
ム),Gd(ガドリニウム),Yb(イッテルビウム),Eu(ユーロ
ピウム),Tb(テルビウム),Dy(ジスプロシウム),Ho(ホル
ミウム),Er(エルビウム),Tm(ツリウム),Lu(ルテチウ
ム),Sc(スカンジウム)およびその他のランタノイドよ
り選ばれた1種または複数種の元素よりなり、BはBa
(バリウム),Sr(ストロンチウム),Ca(カルシウム)より
選ばれた1種または複数種の元素酸化物超電導薄膜(7)
を積層した。第1図(A)のA-A′の断面に対応する。
FIG. 1 (B) shows that ((A'pA " 1-P ) 1-x (B'qB" 1-q ) is formed on the entire surface after the single-layer wiring of FIG. 1 (A).
x) y (CurX 1-r ) zOw x = 0 to 1.0, y = 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 10.
Has 0, A ′ is Y (yttrium), Gd (gadolinium), Yb
(Ytterbium), Eu (europium), Tb (terbium), D
y (dysprosium), Ho (holmium), Er (erbium), Tm
(Thulium), Lu (Lutetium), Sc (Scandium) and other lanthanoids, consisting of one or more elements, B'is selected from Ba (Barium), Sr (Strontium), Ca (Calcium) In addition to having the above elements, A ″, B ″ or X is Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt), Ni (nickel), Cr (chromium), 1 to 1 or more kinds of elements selected from Ti (titanium), Mn (manganese) and Zr (zirconium)
An oxide non-superconducting film (6) containing 20% by volume is formed, and the second (A 1-x Bx) yCuzOw x = 0 to 1.0, y = 2.0 to 4.0,
z = 1.0 to 4.0, w = 4.0 to 10.0, A is Y (yttrium), Gd (gadolinium), Yb (ytterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium). ), Er (erbium), Tm (thulium), Lu (lutetium), Sc (scandium) and one or more elements selected from other lanthanoids, and B is Ba
(Barium), Sr (strontium), Ca (calcium) one or more elemental oxide superconducting thin film (7)
Were laminated. It corresponds to the cross section of AA ′ in FIG. 1 (A).

図面より明らかな如く、第1の酸化物超電導薄膜は帯状
に(5-1),(5-2)・・・として残存してコイルを構成す
る。そして連結部(8)にて第2の酸化物超電導薄膜をレ
ーザスクライブしたコイル(7-1),(7-2)・・・に連結し
ている。
As is clear from the drawing, the first oxide superconducting thin film remains in the form of strips (5-1), (5-2) ... And constitutes a coil. The second oxide superconducting thin film is connected to the laser-scribed coils (7-1), (7-2) ... At the connecting portion (8).

かくして円板状に帯状線を配線し、かつその多層まきが
可能となった。
Thus, it becomes possible to wire the strip-shaped wire in a disc shape and to perform the multi-layer winding.

第1、第2の帯状の超電導薄膜の上または下に銀等の金
属を設けた多層膜としてもよい。
A multi-layer film in which a metal such as silver is provided on or under the first and second strip-shaped superconducting thin films may be used.

「実施例2」 第2図は本発明の他の実施例を示す。Second Embodiment FIG. 2 shows another embodiment of the present invention.

図面において基体(1)は円筒状(ボビン形状)を有す
る。ここに実施例1と同様に膜状に酸化物超電導材料
(2)を形成する。
In the drawing, the substrate (1) has a cylindrical shape (bobbin shape). Here, as in Example 1, a film-shaped oxide superconducting material was formed.
Form (2).

この作製はスプレー法でこの円筒の母体(50)上に
((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0.1〜1.0,y=2.0〜4.0,z=1.0〜4.0,w=4.0〜1
0.0を有し、A′はY(イットリウム),Gd(ガドリニウム),Y
b(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),
Dy(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),T
m(ツリウム),Lu(ルテチウム),Sc(スカンジウム)および
その他のランタノイドより選ばれた1種または複数種の
元素よりなり、B′はBa(バリウム),Sr(ストロンチウ
ム),Ca(カルシウム)より選ばれた元素を有するととも
に、A″,B″,XはMg(マグネシウム),Be(ベリリウ
ム),Al(アルミニウム),Fe(鉄),Co(コバルト),Ni(ニッケ
ル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr(ジルコニ
ウム)より選ばれた1種または複数種の元素よりなる酸
化物非超電導材料を作製して基体とした。この後この母
体(50)を除去し、円筒状の基体とした。さらにこの基体
(1)を矢印(12)に示す如くに回転しつつディポジッショ
ンすればよい。
This preparation was carried out by spraying on the matrix (50) of this cylinder ((A'pA " 1-P ) 1-x (B'qB" 1-q )
x) y (CurX 1-r ) zOw x = 0.1 to 1.0, y = 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 1.
Has 0.0, A'is Y (yttrium), Gd (gadolinium), Y
b (ytterbium), Eu (europium), Tb (terbium),
Dy (dysprosium), Ho (holmium), Er (erbium), T
Consists of one or more elements selected from m (thulium), Lu (lutetium), Sc (scandium) and other lanthanoids. B'is derived from Ba (barium), Sr (strontium) and Ca (calcium). In addition to having selected elements, A ″, B ″, and X are Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt), Ni (nickel), Cr (chromium). An oxide non-superconducting material composed of one or more elements selected from Ti, Tn, Mn, and Zr was prepared as a substrate. After this, the mother body (50) was removed to obtain a cylindrical substrate. Furthermore this substrate
The deposit may be made while rotating (1) as shown by the arrow (12).

このスプレー法では超電導材料を構成する元素の硝酸
塩、臭酸塩または塩酸塩を水で十分混合し、アンモニア
で中和した極微粒子を構成させる。これらを被塗布面に
コートし、乾燥させた後焼成する。
In this spray method, the nitrates, bromates or hydrochlorides of the elements constituting the superconducting material are sufficiently mixed with water to form ultrafine particles neutralized with ammonia. The surface to be coated is coated with these, dried and then baked.

この焼成をオゾン中で行うことにより、より低温化する
ことは有効である。さらにこのスプレー作業を磁場を加
えたオゾンまたは活性酸素中で被塗布面に形成して膜を
構成させればよい。
It is effective to lower the temperature by performing this firing in ozone. Further, this spraying work may be formed on the surface to be coated in ozone or active oxygen to which a magnetic field is applied to form a film.

次にこれら膜を熱アニールさせた後、この膜にYAGレー
ザ(3)ビーム(径50μm)を照射しつつ、このレーザ光を
(11)の方向に徐々に移す。同時に円筒状基体(1)を矢印
(12)の方向に回転させる。するとこの円筒状基体に対し
一本の連続した帯状のスクライブライン(3)を構成させ
ることができる。この開溝によりそれぞれの酸化物超電
導材料が帯状に(5-1),(5-2)として形成され、それぞれ
は電気的に分離されて、超電導領域を構成させ得る。こ
こではこの超電導領域はコイル状を有し、実質的に超電
導マグネットコイルを構成させることができた。
Next, after annealing these films by thermal annealing, while irradiating this film with a YAG laser (3) beam (diameter 50 μm),
Gradually move in the direction of (11). Simultaneously with the arrow on the cylindrical substrate (1)
Rotate in the direction of (12). Then, one continuous strip-shaped scribe line (3) can be formed on this cylindrical substrate. By this groove, each oxide superconducting material is formed into a band shape as (5-1) and (5-2), and each is electrically separated to form a superconducting region. Here, this superconducting region had a coil shape, and a superconducting magnet coil could be substantially constituted.

この実施例はかかる工程の後これら全体を酸素中で焼成
し、(A1-xBx)yCuzOw x=0.1〜1.0,y=2.0〜4.0,z=
1.0〜4.0,w=4.0〜10.0を有し、AはY(イットリウム),
Gd(ガドリニウム),Yb(イッテルビウム),Eu(ユーロピウ
ム),Tb(テルビウム),Dy(ジスプロシウム),Ho(ホルミウ
ム),Er(エルビウム),Tm(ツリウム),Lu(ルテチウム),Sc
(スカンジウム)およびその他のランタノイドより選ばれ
た1種または複数種の元素よりなり、BはBa(バリウ
ム),Sr(ストロンチウム),Ca(カルシウム)より選ばれた
1種類または複数種類の元素よりなる酸化物超電導材料
に変成した。そして超電導マグネットとさせることがで
きた。このコイルの始点と終点とを超電導線で連結する
ことにより、エネルギ蓄積装置とすることが可能であ
る。
In this example, after these steps, the whole of these was baked in oxygen, and (A 1-x Bx) yCuzOw x = 0.1 to 1.0, y = 2.0 to 4.0, z =
1.0 to 4.0, w = 4.0 to 10.0, A is Y (yttrium),
Gd (gadolinium), Yb (ytterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium), Sc
Consists of one or more elements selected from (scandium) and other lanthanoids, and B is composed of one or more elements selected from Ba (barium), Sr (strontium) and Ca (calcium) It was transformed into an oxide superconducting material. And I was able to make it a superconducting magnet. An energy storage device can be obtained by connecting the start point and the end point of this coil with a superconducting wire.

第2図(B)は第2図(A)のA-A′の断面図に対応する。第
2図(A)は図面の複雑化を避けるため1層目のみを示し
た。本発明はこれを多層化せしめたものである。第2図
(B)において、 ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0〜1.0,y=2.0〜4.0,z=1.0〜4.0,w=4.0〜10.
0を有し、A′はY(イットリウム),Gd(ガドリニウム),Yb
(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),D
y(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),Tm
(ツリウム),Lu(ルテチウム),Sc(スカンジウム)および
その他のランタノイドより選ばれた1種または複数種の
元素よりなり、B′はBa(バリウム),Sr(ストロンチウ
ム),Ca(カルシウム)より選ばれた元素を有するととも
に、A″,B″,XはMg(マグネシウム),Be(ベリリウ
ム),Al(アルミニウム),Fe(鉄),Co(コバルト),Ni(ニッケ
ル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr(ジルコニ
ウム)より選ばれた1つまたは複数種類の元素よりなる
酸化物非超電導薄膜(1)′を有する基体(1)上に、第2図
(A)に示した如くにして酸化物超電導材料を帯状に形成
する。さらにこれら全体を同一元素を有する酸化物非超
電導薄膜を同様の方法のスプレー法で形成する。連結部
(8)で開穴を行った後、これら全体に第2の酸化物超電
導薄膜を形成する。さらに第1の超電導薄膜と同様にレ
ーザスクライブをして帯状に(7-1),(7-2)・・・を作
る。さらに第2の酸化物超電導薄膜(6′)を形成し、さ
らに第3の酸化物超電導材料(8′)にて連結し、帯状に
形成した。外部取り出しは(10),(11)で行っている。こ
れを繰り返し行うことにより、3層だけではなく任意の
多層とすることができる。
FIG. 2 (B) corresponds to the cross-sectional view of AA ′ in FIG. 2 (A). FIG. 2 (A) shows only the first layer in order to avoid complication of the drawing. The present invention has a multilayer structure. Fig. 2
In (B), ((A'pA " 1-P ) 1-x (B'qB" 1-q )
x) y (CurX 1-r ) zOw x = 0 to 1.0, y = 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 10.
Has 0, A ′ is Y (yttrium), Gd (gadolinium), Yb
(Ytterbium), Eu (europium), Tb (terbium), D
y (dysprosium), Ho (holmium), Er (erbium), Tm
(Thulium), Lu (Lutetium), Sc (Scandium) and other lanthanoids, consisting of one or more elements, B'is selected from Ba (Barium), Sr (Strontium), Ca (Calcium) A ″, B ″, X are Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt), Ni (nickel), Cr (chromium), As shown in FIG. 2 on the substrate (1) having the oxide non-superconducting thin film (1) ′ composed of one or more kinds of elements selected from Ti (titanium), Mn (manganese) and Zr (zirconium).
The oxide superconducting material is formed into a strip shape as shown in (A). Further, an oxide non-superconducting thin film containing the same element is formed on the whole by a spray method of the same method. Connection
After making holes in (8), a second oxide superconducting thin film is formed on all of them. Further, similarly to the first superconducting thin film, laser scribing is performed to form strips (7-1), (7-2) .... Further, a second oxide superconducting thin film (6 ') was formed and further connected by a third oxide superconducting material (8') to form a strip. External extraction is done in (10) and (11). By repeating this, it is possible to form not only three layers but also arbitrary layers.

その他は実施例1と同様である。Others are the same as in the first embodiment.

「効果」 本発明によりこれまでまったく不可能とされていた酸化
物超電導材料を実質的にコイル状に基体上に選択的に残
存させることが可能となった。
"Effect" The present invention makes it possible to selectively leave the oxide superconducting material, which has been heretofore impossible at all, substantially in the form of a coil on the substrate.

かくして、曲げるとすぐわれてしまうセラミックス超電
導材料をして導線、電極または超電導素子を構成させる
ためのアイソレイションをして膜状または帯状に作るこ
とができた。
Thus, the ceramic superconducting material that would be easily bent can be isolated to form a conductor, an electrode or a superconducting element, and can be formed into a film or strip.

本発明をマイクロエレクトロニクス分野に応用し、超電
導薄膜を形成した後、公知のフォトリソグラフィ技術を
用い、所定のパターニンイグをして超電導素子または超
電導配線としてもよい。しかしこの工程中で用いる液体
により劣化しやすいため、本発明の方法が優れている。
The present invention may be applied to the field of microelectronics to form a superconducting thin film, and then, using a known photolithography technique, predetermined patterning may be performed to form a superconducting element or a superconducting wiring. However, the method of the present invention is excellent because it easily deteriorates depending on the liquid used in this step.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の酸化物超電導材料を用いた超
電導コイルの実施例を示す。 1・・・基板 2・・・酸化物超電導材料 3・・・開溝 4・・・レーザ光 5・・・超電導を呈する領域 6,9・層間分離膜 7・・・第2の酸化物超電導材料
1 and 2 show examples of superconducting coils using the oxide superconducting material of the present invention. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Oxide superconducting material 3 ... Open groove 4 ... Laser light 5 ... Region which exhibits superconductivity 6,9 / Interlayer separation film 7 ... Second oxide superconductivity material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基体上に(A1-XBx)yCUzOwx=0.1〜1.0,y
=2.0〜4.0,z=1.0〜4.0,w=4.0〜10.0を有し、AはY
(イットリウム),Gd(ガドリニウム),Yb(イッテルビウ
ム),Eu(ユーロピウム),Tb(テルビウム),Dy(ジスプロシ
ウム),Ho(ホルミウム),Er(エルビウム),Tm(ツリウム),L
u(ルテチウム),Sc(スカンジウム)及びその他のランタ
ノイドより選ばれた1種または複数種の元素よりなり、
BはBa(バリウム),Sr(ストロンチウム),Ca(カルシウ
ム)より選ばれた1種または複数種の元素を有する酸化
物超電導材料を帯状に設け、該酸化物超電導材料上に ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOwx=0〜1.0,y=2.0〜
4.0,z=1.0〜4.0,w=4.0〜10.0を有し、A′はY(イッ
トリウム),Gd(ガドリニウム),Yb(イッテルビウム),Eu
(ユーロピウム),Tb(テルビウム),Dy(ジスプロシウム),H
o(ホルミウム),Er(エルビウム),Tm(ツリウム),Lu(ルテ
チウム),Sc(スカンジウム)およびその他のランタノイ
ドより選ばれた1種または複数種より選ばれた元素より
なり、B′はBa(バリウム),Sr(ストロンチウム),Ca(カル
シウム)より選ばれた1種または複数種の元素を有する
とともに、A″,B″またはXはMg(マグネシウム),Be
(ベリリウム),Al(アルミニウム),Fe(鉄),Co(コバルト),
Ni(ニッケル),Cr(クロム),Ti(チタン),Mn(マンガン),Zr
(ジルコニウム)より選ばれた1種または複数種の元素
が添加された非超電導特性を有する材料を積層して設
け、該材料上に前記酸化物超電導材料の一端部に連結し
て、第2の(A1-xBx)yCuzOw x=0.1〜1.0,y=2.0〜4.
0,z=1.0〜4.0,W=4.0〜10.0を有し、AはY(イットリ
ウム),(ガドリニウム)Yb(イッテルビウム),Eu(ユーロピ
ウム),Tb(テリビウム),Dy(ジスプロシウム)、Ho(ホルミ
ウム),Er(エルビウム),Tm(ツリウム),Lu(ルテチウム),S
c(スカンジウム)およびその他のランタノイドより選ば
れた1種または複数種の元素よりなり、BはBa(バリウ
ム),Sr(ストロンチウム),Ca(カルシウム)より選ばれた
1種類または複数種類の元素を有する酸化物超電導材料
を帯状に設けたことを特徴とする超電導コイル。
1. (A 1-X Bx) y CUzOwx = 0.1 to 1.0, y on a substrate
= 2.0 to 4.0, z = 1.0 to 4.0, w = 4.0 to 10.0, and A is Y
(Yttrium), Gd (gadolinium), Yb (ytterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), L
consisting of one or more elements selected from u (lutetium), Sc (scandium) and other lanthanoids,
B is a band-shaped oxide superconducting material containing one or more elements selected from Ba (barium), Sr (strontium), and Ca (calcium), and ((A'pA " 1-P ) 1-x (B'qB" 1-q )
x) y (CurX 1-r ) zOwx = 0 to 1.0, y = 2.0 to
4.0, z = 1.0 to 4.0, w = 4.0 to 10.0, A ′ is Y (yttrium), Gd (gadolinium), Yb (ytterbium), Eu
(Europium), Tb (Terbium), Dy (Dysprosium), H
O (holmium), Er (erbium), Tm (thulium), Lu (lutetium), Sc (scandium) and one or more selected from other lanthanoids, B'is Ba ( It has one or more elements selected from barium), Sr (strontium) and Ca (calcium), and A ″, B ″ or X is Mg (magnesium), Be
(Beryllium), Al (aluminum), Fe (iron), Co (cobalt),
Ni (nickel), Cr (chrome), Ti (titanium), Mn (manganese), Zr
A material having non-superconducting properties, to which one or more elements selected from (zirconium) are added, is provided in a laminated manner, and is connected to one end of the oxide superconducting material on the material, (A 1-x Bx) yCuzOw x = 0.1 to 1.0, y = 2.0 to 4.
0, z = 1.0 to 4.0, W = 4.0 to 10.0, A is Y (yttrium), (gadolinium) Yb (ytterbium), Eu (europium), Tb (terribium), Dy (dysprosium), Ho (holmium). ), Er (erbium), Tm (thulium), Lu (lutetium), S
Consists of one or more elements selected from c (scandium) and other lanthanoids, and B is one or more elements selected from Ba (barium), Sr (strontium), and Ca (calcium). A superconducting coil, characterized in that the oxide superconducting material has a strip shape.
【請求項2】特許請求の範囲第1項において、基体は ((A′pA″1−P1−x(B′qB″1−q
x)y(CurX1−r)zOw x=0〜1.0,y=2.0〜4.0,Z=1.0〜4.0,W=4.0〜10.0
を有し、A′はY(イットリウム),Gd(ガドリニウム),Yb
(イッテルビウム),Eu(ユーロピウム),Tb(テルビウム),D
y(ジスプロシウム),Ho(ホルミウム),Er(エルビウム),Tm
(ツリウム),Lu(ルテチウム),Sc(スカンジウム)及びそ
の他のランタノイドより選ばれた1種または複数種の元
素よりなり、B′はBa(バリウム),Sr(ストロンチウム),C
a(カルシウム)より選ばれた1種または複数種の元素を
有するとともに、A″,B″またはXはMg(マグネシウ
ム),Be(ベリリウム),Al(アルミニウム),Fe(鉄),Co(コバ
ルト),Ni(ニッケル),Cr(クロム),Ti(チタン),Mn(マンガ
ン),Zr(ジルコニウム)より選ばれた1つまたは複数種
類の元素を含むことを特徴とする超電導コイル。
2. The substrate according to claim 1, wherein the substrate is ((A'pA " 1-P ) 1-x (B'qB" 1-q ).
x) y (CurX 1-r ) zOw x = 0 to 1.0, y = 2.0 to 4.0, Z = 1.0 to 4.0, W = 4.0 to 10.0
And A ′ is Y (yttrium), Gd (gadolinium), Yb
(Ytterbium), Eu (europium), Tb (terbium), D
y (dysprosium), Ho (holmium), Er (erbium), Tm
(Thulium), Lu (lutetium), Sc (scandium) and other lanthanoids, consisting of one or more elements, B'is Ba (barium), Sr (strontium), C
In addition to having one or more elements selected from a (calcium), A ″, B ″ or X is Mg (magnesium), Be (beryllium), Al (aluminum), Fe (iron), Co (cobalt). ), Ni (nickel), Cr (chromium), Ti (titanium), Mn (manganese), Zr (zirconium), or a superconducting coil containing one or more kinds of elements.
JP62222622A 1987-08-31 1987-09-06 Superconducting coil Expired - Lifetime JPH063765B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62222622A JPH063765B2 (en) 1987-09-06 1987-09-06 Superconducting coil
US07/236,925 US5079222A (en) 1987-08-31 1988-08-26 Superconducting ceramic circuits and manufacturing method for the same
EP88308048A EP0306287B1 (en) 1987-08-31 1988-08-31 Superconducting ceramic circuits and manufacturing method for the same
DE3854754T DE3854754T2 (en) 1987-08-31 1988-08-31 Ceramic superconducting circuits and process for their manufacture.
US07/757,993 US5225394A (en) 1987-08-31 1991-09-12 Method for manufacturing high Tc superconducting circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62222622A JPH063765B2 (en) 1987-09-06 1987-09-06 Superconducting coil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3094819A Division JP2654555B2 (en) 1991-04-01 1991-04-01 Superconducting device manufacturing method

Publications (2)

Publication Number Publication Date
JPS6465806A JPS6465806A (en) 1989-03-13
JPH063765B2 true JPH063765B2 (en) 1994-01-12

Family

ID=16785337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62222622A Expired - Lifetime JPH063765B2 (en) 1987-08-31 1987-09-06 Superconducting coil

Country Status (1)

Country Link
JP (1) JPH063765B2 (en)

Also Published As

Publication number Publication date
JPS6465806A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
EP0306287B1 (en) Superconducting ceramic circuits and manufacturing method for the same
JPS63250881A (en) Manufacture of superconductor
JP2004501493A (en) Structure for supercritical current superconducting tape
JP5427554B2 (en) Manufacturing method of low AC loss multifilament type superconducting wire
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
WO2011052552A1 (en) Tape base material for a superconducting wire rod, and superconducting wire rod
JP2585624B2 (en) Superconducting coil fabrication method
JP2645490B2 (en) How to make superconducting material
JPH063765B2 (en) Superconducting coil
JP2654555B2 (en) Superconducting device manufacturing method
JP2630362B2 (en) Superconducting coil
JP2645489B2 (en) Superconductor fabrication method
JP3361016B2 (en) Superconducting member and manufacturing method thereof
JP3015389B2 (en) Superconducting coil manufacturing method
JP4128358B2 (en) Manufacturing method of oxide superconductor
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JPH063766B2 (en) Superconducting coil manufacturing method
CN111183493A (en) Connection structure of oxide superconducting wire
JPH0812819B2 (en) Superconductor fabrication method
JP2005001935A (en) Method for producing thin oxide film
JPWO2013015328A1 (en) Superconducting thin film substrate, superconducting thin film, and method of manufacturing superconducting thin film
JP2004244263A (en) Method for forming superconducting oxide thin film having high critical current density
JPH07114296B2 (en) Superconductor
WO2021241282A1 (en) Superconductor, and method for producing same
JP2002266072A (en) Laminated film and film deposition method