JP3361016B2 - Superconducting member and manufacturing method thereof - Google Patents
Superconducting member and manufacturing method thereofInfo
- Publication number
- JP3361016B2 JP3361016B2 JP25408096A JP25408096A JP3361016B2 JP 3361016 B2 JP3361016 B2 JP 3361016B2 JP 25408096 A JP25408096 A JP 25408096A JP 25408096 A JP25408096 A JP 25408096A JP 3361016 B2 JP3361016 B2 JP 3361016B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- less
- superconductor
- film
- oxide superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000002887 superconductor Substances 0.000 claims description 79
- 239000000203 mixture Substances 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 238000010030 laminating Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 description 74
- 239000010936 titanium Substances 0.000 description 27
- 229910002367 SrTiO Inorganic materials 0.000 description 16
- 230000007423 decrease Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910052788 barium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は酸化物超電導体上に
酸化物膜を積層した超電導部材及びその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting member in which an oxide film is laminated on an oxide superconductor and a method for manufacturing the same.
【0002】[0002]
【従来の技術】酸化物超電導体が発見されて以来、冷却
コストが安いことから、電力機器ばかりでなく、マイク
ロエレクトロニクス、あるいは高周波機器など広い分野
での応用が試みられている。しかし酸化物超電導体は酸
に溶け易い、水が付着すると超電導特性が劣化するとい
う欠点がある。特にY系超電導体はこの欠点が顕著であ
り、数日間大気中に露出させておくだけで、臨界電流密
度Jcは半分になってしまう。この欠点を解決するため
に超電導体の表面を耐環境性に優れた材料で被覆するこ
とが考えられている。耐環境性に優れた材料を酸化物超
電導体表面に成膜するためには、一般に真空中で基板温
度を高くしなければならない。しかしながら真空中で基
板温度が高い条件下では、超電導体の結晶中に含まれる
酸素が抜け易く、臨界温度Tcや臨界電流密度Jcが低
下するという問題がある。例えばY系超電導体上に保護
膜としてMgO,YSZ,Al2O 3等の結晶化した膜を積層した場
合、積層する前は臨界温度Tcが87Kであったのにも
関わらず積層後は80Kまで低下し、臨界電流密度Jc
も1 ×106 A/cm 2から1 ×104 A/cm 2にまで低下した。2. Description of the Related Art Since the discovery of oxide superconductors, the cooling cost has been low, so that they have been attempted to be applied in a wide range of fields such as microelectronics or high frequency equipment as well as electric power equipment. However, oxide superconductors have the drawbacks that they are easily dissolved in acid and that the superconducting properties deteriorate when water adheres. In particular, this defect is remarkable in the Y-based superconductor, and the critical current density Jc is halved only by exposing it to the atmosphere for several days. In order to solve this drawback, it has been considered to coat the surface of the superconductor with a material having excellent environmental resistance. In order to form a material having excellent environmental resistance on the surface of an oxide superconductor, it is generally necessary to raise the substrate temperature in vacuum. However, under the condition that the substrate temperature is high in vacuum, there is a problem that oxygen contained in the crystal of the superconductor easily escapes, and the critical temperature Tc and the critical current density Jc decrease. For example, when a crystallized film of MgO, YSZ, Al 2 O 3 or the like is laminated as a protective film on a Y-based superconductor, the critical temperature Tc was 87K before the lamination but 80K after the lamination. Critical current density Jc
Also decreased from 1 × 10 6 A / cm 2 to 1 × 10 4 A / cm 2 .
【0003】そこで例えばアモルファスのSiO 2,SiC,Si
3N 4など低温で成膜できる保護膜を用いることも行わ
れているが、これらの膜はヒートショックにより剥がれ
易く長期間に渡り効果発揮するものではない。またギガ
ヘルツ帯の高周波機器に応用する素子を作成するため
に、超電導体表面に誘電体を積層する場合にも同様に臨
界温度Tcや臨界電流密度Jcが低下するという問題が
起こる。Therefore, for example, amorphous SiO 2 , SiC, Si
Although a protective film that can be formed at a low temperature such as 3 N 4 is also used, these films are easily peeled off by heat shock and do not exert their effects for a long period of time. Further, when a dielectric is laminated on the surface of a superconductor in order to manufacture an element applied to a high frequency device in the gigahertz band, similarly, there arises a problem that the critical temperature Tc and the critical current density Jc decrease.
【0004】[0004]
【発明が解決しようとする課題】上述したように酸化物
超電導体表面に保護膜や誘電体を成膜すると、臨界温度
Tcや臨界電流密度Jcが低下するという問題がある。
本発明は上記問題点に鑑みてなされたもので、耐環境性
に優れ高い臨界温度と臨界電流密度を有する超電導部材
とその製造方法を提供することを目的とする。As described above, when the protective film or the dielectric film is formed on the surface of the oxide superconductor, there is a problem that the critical temperature Tc and the critical current density Jc are lowered.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting member having excellent environment resistance, a high critical temperature and a critical current density, and a manufacturing method thereof.
【0005】[0005]
【0006】また、本発明は、酸化物超電導体と、前記
酸化物超電導体上に形成され、複数の価数をとり得る元
素を含有し、化学量論組成からずれている酸化物膜とを
具備することを特徴とする超電導部材を提供する。The present invention also provides an oxide superconductor and an oxide film formed on the oxide superconductor, the oxide film containing an element having a plurality of valences and deviating from the stoichiometric composition. Provided is a superconducting member.
【0007】[0007]
【0008】[0008]
【0009】また、本発明は、酸化物超電導体と、前記
酸化物超電導体上の一部に形成され、複数の価数をとり
得る元素を含有し、化学量論組成からずれている酸化物
膜とを具備し、前記酸化物膜が形成された領域の前記酸
化物超電導体の臨界温度及び臨界電流密度の少なくとも
一方が大きいことを特徴とする超電導部材を提供する。The present invention also includes an oxide superconductor and an oxide which is formed on a part of the oxide superconductor and which has a plurality of valences and which deviates from the stoichiometric composition. A superconducting member comprising a film, wherein at least one of a critical temperature and a critical current density of the oxide superconductor in a region where the oxide film is formed is large.
【0010】また、本発明は、基板と、前記基板上に形
成に形成された酸化物超電導体と、前記酸化物超電導体
上の一部に形成され、500オングストローム以上の膜
厚で、複数の価数をとり得る元素を含有する酸化物膜と
を具備し、前記酸化物膜が形成された領域の前記酸化物
超電導体の臨界温度及び臨界電流密度の少なくとも一方
が大きく、前記酸化物超電導体の臨界温度及び臨界電流
密度の少なくともいずれか一方が小さい領域に電力の入
力及び出力の少なくとも一方を行なうことを特徴とする
超電導部材を提供する。The present invention also provides a substrate and a substrate formed on the substrate.
Formed oxide superconductor, and the oxide superconductor
A film of 500 angstroms or more formed on the upper part
A thick oxide film containing an element that can have multiple valences
And the oxide in the region where the oxide film is formed.
At least one of the critical temperature and the critical current density of the superconductor
The superconducting member is characterized in that at least one of input and output of electric power is performed in a region where the oxide superconductor has a large temperature and at least one of the critical temperature and the critical current density of the oxide superconductor is small.
【0011】また、本発明は、複数の価数をとり得る元
素を含有する固体原料を用意する工程と、酸化物超電導
体を500℃以上800℃以下に加熱する工程と、0.01
Torr 以上2 Torr以下の酸素分圧下で、ピークフルーエ
ンスの10%以上50%以下のフルーエンスを有する領
域が全照射面積の10%以上70%以下であるパルスレ
ーザーを前記固体原料に照射し、前記酸化物超電導体上
に酸化物膜を積層する工程とを具備することを特徴とす
る超電導部材の製造方法を提供する。The present invention also provides a step of preparing a solid raw material containing an element capable of having a plurality of valences, a step of heating the oxide superconductor to 500 ° C. or higher and 800 ° C. or lower, 0.01
Under the oxygen partial pressure of Torr or more and 2 Torr or less, the solid raw material is irradiated with a pulse laser in which a region having a fluence of 10% or more and 50% or less of the peak fluence is 10% or more and 70% or less of the total irradiation area, and the oxidation is performed. And a step of laminating an oxide film on the object superconductor.
【0012】また、本発明は、前記固体原料は、前記複
数の価数をとり得る元素と、この複数の価数をとり得る
元素と結合する元素を少なくとも有し、前記元素のうち
蒸気圧の低い元素が化学量論組成より少なくてもよい。
ここで複数の価数をとり得る元素と結合する元素は、複
数の価数をとり得る元素でもいいし、そうでなくてもよ
い。またこれら2種の元素以外の元素を含有してもよ
い。Further, in the present invention , the solid raw material has at least an element capable of having a plurality of valences and an element bonded to the element capable of having a plurality of valences. Lower elements may be less than stoichiometric.
Here, the element that binds to the element having a plurality of valences may or may not be the element having a plurality of valences. Moreover, you may contain elements other than these two kinds of elements.
【0013】さらに、本発明は、複数の価数をとり得る
元素を含有する固体原料を用意する工程と、表面に酸化
物超電導体が形成された基板を500℃以上800℃以
下に加熱する工程と、0.01 Torr 以上2 Torr以下の酸素
分圧下で、ピークフルーエンスの10%以上50%以下
のフルーエンスを有する領域が全照射面積の10%以上
70%以下であるパルスレーザーを前記固体原料に照射
し、前記酸化物超電導体上に酸化物膜を積層する工程
と、前記酸化物膜を積層する工程の後、前記基板の裏面
に酸化物超電導体を積層する工程とを具備することを特
徴とする超電導部材の製造方法を提供する。Further, according to the present invention , a step of preparing a solid raw material containing an element capable of having a plurality of valences, and a step of heating a substrate having an oxide superconductor formed on the surface thereof at 500 ° C. or higher and 800 ° C. or lower. And, under an oxygen partial pressure of 0.01 Torr or more and 2 Torr or less, the solid raw material is irradiated with a pulse laser in which a region having a fluence of 10% or more and 50% or less of the peak fluence is 10% or more and 70% or less of the entire irradiation area. , laminating an oxide film on the oxide superconductor, after the step of laminating the oxide film, characterized by comprising a step of laminating an oxide superconductor on a back surface of the substrate A method for manufacturing a superconducting member is provided.
【0014】[0014]
【発明の実施の形態】本発明者らは、酸化物超電導体上
に、成膜の際に複数の価数をとり得るとともに酸素と結
合しやすい元素を含む酸化物膜を積層すると、酸化物超
電導体の臨界温度Tcと臨界電流密度Jcが低下しない
或いは低下の度合いが低くなる現象を発見した。例えば
Tiのように三価と四価をとり得る元素からなる材料の薄
膜を酸化雰囲気中で酸化物超電導体上に積層すると、5
00℃以上の高温で行なう表面被覆のプロセス中におい
て起こりやすい酸化物超電導体からの酸素の脱離を防ぐ
ことができ、臨界温度Tcが低下せず場合によっては向
上する現象を見出した。複数の価数をとり得る元素を含
む酸化物材料としてSrTiO 3、YSZ 等の複合酸化物があ
る。これらの膜を真空プロセスで作製した場合にも同様
に臨界温度Tcや臨界電流密度Jcが低下しない効果を
確認した。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that when an oxide film containing an element that can have multiple valences during film formation and that easily binds to oxygen is stacked on an oxide superconductor, It has been discovered that the critical temperature Tc and the critical current density Jc of the superconductor do not decrease or the degree of decrease decreases. For example
When a thin film of a material composed of an element that can have trivalent and tetravalent elements such as Ti is laminated on an oxide superconductor in an oxidizing atmosphere, 5
It has been found that the desorption of oxygen from the oxide superconductor, which is likely to occur during the process of surface coating performed at a high temperature of 00 ° C. or higher, can be prevented, and the critical temperature Tc does not decrease, but improves in some cases. Complex oxides such as SrTiO 3 and YSZ are examples of oxide materials containing an element that can have multiple valences. Even when these films were produced by the vacuum process, it was confirmed that the critical temperature Tc and the critical current density Jc did not decrease.
【0015】YSZ の場合、Yの量が少ない方がTcの低
下が少ない。従ってYの量は0モル%よりも多く、1モ
ル%以下好ましくは0.2 モル%以下が望ましい。またSr
TiO 3では、化学量論組成からずらしTiを多くするとよ
り、Tcの低下を少なくすることができる。In the case of YSZ, the smaller the amount of Y, the smaller the decrease in Tc. Therefore, the amount of Y is more than 0 mol% and 1 mol% or less, preferably 0.2 mol% or less. Also Sr
With TiO 3 , the decrease in Tc can be reduced by increasing the amount of Ti deviated from the stoichiometric composition.
【0016】Ti/Sr 比で1.01以上では被覆によりTcの
向上が見られた。この場合電気的特性に変化が生じるの
で、高周波機器の誘電体膜に応用しようとするにはずれ
があまり大きいと誘電率が低下し誘電損失が大きくなる
ので好ましくない。またTi/Sr が3を超えた場合には耐
環境性は向上しない。以下にTiとSrの比に対する誘電率
の変化を示す。When the Ti / Sr ratio was 1.01 or more, Tc was improved by coating. In this case, the electrical characteristics are changed, and if the deviation is too large for application to the dielectric film of the high frequency device, the dielectric constant decreases and the dielectric loss increases, which is not preferable. If Ti / Sr exceeds 3, the environment resistance will not improve. The change in the dielectric constant with respect to the ratio of Ti and Sr is shown below.
【0017】[0017]
【表1】 [Table 1]
【0018】実用には誘電率の低下は多くとも30%以
下好ましくは20%以下が望まれこの結果より膜中に含
まれるTiはSrの1.5 倍以下好ましくは1.1 倍以下である
ことが判る。For practical use, the decrease in the dielectric constant is desired to be at most 30% or less, preferably 20% or less. From this result, it is understood that Ti contained in the film is 1.5 times or less, preferably 1.1 times or less of Sr.
【0019】またこの材料においてはSrを多くすると緻
密な膜となるためか、耐環境性が向上する現象も見出し
た。30℃湿度85%の環境下において1ヶ月間常電導
状態で焼損しない程度の電流を通電する加速試験を行な
った結果、SrとTiの比が1.01以上の膜で覆った試料のJ
c(77K、0T)の低下は10%以下であった。また
比が1.05以上の膜で覆った試料のJcの低下は5%以下
であった。ただし誘電率の低下を考慮するとこの比は1.
5 以下、好ましくは1.1 以下であることが望まれる。Ti
/Sr 比と誘電率の関係を以下の表に示す。Further, in this material, it was also found that the environment resistance is improved, probably because a dense film is formed when Sr is increased. As a result of conducting an acceleration test in which a current that does not cause burnout is applied for 1 month in an environment of 30 ° C and 85% humidity, the J value of the sample covered with a film having a Sr / Ti ratio of 1.01 or more is shown.
The decrease in c (77K, 0T) was 10% or less. The decrease in Jc of the sample covered with the film having the ratio of 1.05 or more was 5% or less. However, this ratio is 1.
It is desired to be 5 or less, preferably 1.1 or less. Ti
The relationship between the / Sr ratio and the dielectric constant is shown in the table below.
【0020】[0020]
【表2】 [Table 2]
【0021】更に酸化物材料が複数の価数をとり得る複
数の元素で構成されている場合には、化学量論組成から
ずれていればどちらの元素が多くともTcを低下させな
い効果がある。ただし多くの酸素と結合しやすい元素の
多いほうが効果は大きいという実験結果が得られてい
る。Further, when the oxide material is composed of a plurality of elements capable of having a plurality of valences, if there is a deviation from the stoichiometric composition, there is an effect that Tc is not lowered even if either element is a large amount. However, experimental results have been obtained that the effect is greater when there are more elements that are more likely to bond with oxygen.
【0022】ところで複合酸化物における化学量論組成
からのずれは、酸素を除く原子の合計に対する化学量論
比からのずれで表せる。例えばTi/Sr 比が1.1 のチタン
酸ストロンチウムの場合TiとSrの合計が2になるように
表すとTi:Sr=1.05:0.95 となる。したがってTi/(Ti+S
r) =0.525 となり化学量論比 0.5からのずれは5%と
なる。この表し方によれば好適な化学量論組成からのず
れは25%以下好ましくは5%以下となる。一方、この
ような膜はスパッタリング、MBE、CVD、レーザー
蒸着などの方法により作製することができるが、超電導
特性の劣化を引き起こしにくい方法としては成膜時の酸
素雰囲気が高いCVDとレーザー蒸着が適している。更
に成長温度が低く廃ガス処理設備が不要という点でレー
ザー蒸着が最も適している。レーザー蒸着はターゲット
と呼ばれる固体原料に波長の短いパルスレーザーを照射
して蒸発させる方法である。蒸発粒子の運動エネルギー
が非常に大きいため、通常の物理蒸着とはくらべものに
ならない高い酸素雰囲気中で緻密な膜を作製することが
できる。この時使用するレーザーに照射面におけるフル
ーエンスに照射面積の10%以上70%以下の面積でピ
ークフルーエンスに対して10%以上50%以下のフル
ーエンス領域があるように分布を持たせると、化学量論
組成の固体材料を用いた場合、化学量論組成よりTiが多
い膜が得られる。その原理を以下に示す。The deviation from the stoichiometric composition of the composite oxide can be expressed by the deviation from the stoichiometric ratio with respect to the total number of atoms excluding oxygen. For example, in the case of strontium titanate with a Ti / Sr ratio of 1.1, Ti: Sr = 1.05: 0.95 if the total of Ti and Sr is 2. Therefore Ti / (Ti + S
r) = 0.525 and the deviation from the stoichiometric ratio of 0.5 is 5%. According to this expression, the deviation from the preferable stoichiometric composition is 25% or less, preferably 5% or less. On the other hand, such a film can be produced by a method such as sputtering, MBE, CVD, or laser vapor deposition. As a method that is unlikely to cause deterioration of superconducting properties, CVD and laser vapor deposition with a high oxygen atmosphere during film formation are suitable. ing. Furthermore, laser deposition is most suitable because the growth temperature is low and waste gas treatment equipment is not required. Laser vapor deposition is a method in which a solid material called a target is irradiated with a pulsed laser having a short wavelength to evaporate it. Since the kinetic energy of the vaporized particles is very large, it is possible to form a dense film in a high oxygen atmosphere, which is not comparable to ordinary physical vapor deposition. If the laser used at this time has a distribution such that the fluence on the irradiated surface has a fluence region of 10% or more and 50% or less of the peak fluence in the area of 10% or more and 70% or less of the irradiation area, stoichiometry When a solid material having a composition is used, a film having more Ti than the stoichiometric composition is obtained. The principle is shown below.
【0023】エキシマレーザーのように波長の短いレー
ザーを固体物質に照射するとその物質の結合に関与して
いる電子が励起され、たたき出されるため結合が切れ
る。この時構成元素の多くはイオンとなる。その後、そ
れらは互いに反発し固体表面から飛び出すことで蒸発が
起こる。また蒸発が起こっている付近ではこれらのイオ
ンおよび電子が高密度に存在するプラズマが形成され、
かなりの反応熱が生じる。ただしこのような現象はある
一定値以上のフルーエンスをもつレーザーが照射された
場合に起こる。それ以下のフルーエンスのレーザーが照
射された場合には、結合が切れ構造が破壊されても部分
的で密度が低いと蒸発にまでは至らない。しかし照射さ
れた物質の蒸気圧が高い場合には熱的に蒸発しやすい状
態になる。蒸気圧の異なる複数の元素から成る膜を作製
する場合、ターゲットに照射したレーザーのフルーエン
スに、しきい値以上の領域とそれ以下の領域を合わせ持
つように分布を持たせると、フルーエンスの低いレーザ
ーが照射された領域からは蒸気圧の高い元素だけが、し
きい値以上のレーザー光が作りだしたプラズマの熱によ
り蒸発する。従ってターゲット上に蒸気圧の低い元素が
残り表面での組成にずれが生じている領域が照射したレ
ーザーのフルーエンス分布に応じて形成される。成膜中
にターゲットを回転させていると、このようにして形成
された組成ずれした領域に、しきい値以上のフルーエン
スを持つレーザーが再度照射されるため膜の組成をずら
すことができるのである。このようにして蒸気圧の低い
元素をターゲット組成よりも多く膜中に含ませることが
できる。一方フルーエンスが均一で、しきい値以上のレ
ーザーをターゲットに照射する場合はターゲットの組成
と同じ組成の膜が得られる。従って化学量論組成からず
れた膜を得ようとする場合には、ターゲット組成も化学
量論組成からずらす必要がある。通常ターゲットは10
00℃程度の高温で焼結して作製するが材料によっては
異相が析出し、それがレーザーの1パルス当たりの照射
面積と比較して無視できない大きさに成長しているとパ
ルスごとに蒸発組成が変わることがあるので、好ましく
ない。本発明による作製方法によればターゲット組成を
変えることなく、レーザーのフルーエンス分布を制御す
ることで、所望の組成の膜を得ることができるので好ま
しい。以下にレーザーのフルーエンスと照射面積の膜組
成、比誘電率及び下層の酸化物超電導体の臨界温度に及
ぼす影響を示す。When a solid substance is irradiated with a laser having a short wavelength such as an excimer laser, the electrons involved in the bond of the substance are excited and knocked out, so that the bond is broken. At this time, most of the constituent elements become ions. Then, they repel each other and jump off the surface of the solid, causing evaporation. In the vicinity of evaporation, a plasma in which these ions and electrons are present at high density is formed,
A considerable reaction heat is generated. However, such a phenomenon occurs when a laser having a fluence of a certain value or more is irradiated. When a laser with a fluence of less than that is irradiated, even if the bond is broken and the structure is broken, evaporation does not occur even if it is partial and the density is low. However, when the vapor pressure of the irradiated substance is high, the substance is easily thermally evaporated. When producing a film consisting of multiple elements with different vapor pressures, if the distribution of the fluence of the laser irradiated on the target has both the region above the threshold and the region below it, the laser with low fluence can be obtained. Only the element with high vapor pressure evaporates from the area irradiated by the heat of the plasma generated by the laser light above the threshold. Therefore, an element having a low vapor pressure remains on the target and a region where the composition is deviated on the surface is formed according to the fluence distribution of the irradiated laser. When the target is rotated during film formation, the composition-shifted region formed in this way is irradiated again with a laser having a fluence above the threshold, and the composition of the film can be shifted. . In this way, the element having a low vapor pressure can be contained in the film more than the target composition. On the other hand, when the target is irradiated with a laser having a uniform fluence and a threshold value or more, a film having the same composition as that of the target is obtained. Therefore, in order to obtain a film deviated from the stoichiometric composition, it is necessary to shift the target composition from the stoichiometric composition. Normal target is 10
It is produced by sintering at a high temperature of about 00 ° C, but depending on the material, a different phase precipitates, and if it grows to a size that cannot be ignored compared to the irradiation area per pulse of the laser, the evaporation composition at each pulse May change, which is not preferable. According to the manufacturing method of the present invention, a film having a desired composition can be obtained by controlling the fluence distribution of the laser without changing the target composition, which is preferable. The effects of laser fluence and irradiation area on the film composition, relative permittivity and critical temperature of the underlying oxide superconductor are shown below.
【0024】[0024]
【表3】 [Table 3]
【0025】この結果よりフルーエンスがピーク値の1
0%以上50%以下である領域が照射面積の10%以上
70%以下の面積である時に得られるSrTiO 3膜をYB
CO膜上に積層した場合に高い臨界温度が得られること
が分かる。これらの膜はTi/Sr 比で表すと少なくとも1.
01以上1.10以下となり、化学量論組成からのずれで表す
と0.5 %以上5%以下の範囲でTiが多い膜ということに
なる。この範囲以外の条件で作製した場合にはいずれか
の特性に向上が見られないか生産性に問題が有る。例え
ばフルーエンスがピークの0.2 以下の領域の面積が上記
範囲を超えている場合には効果が少なく成膜速度が遅く
なり生産性が低下するので好ましくない。また低フルー
エンスの領域の面積が狭い場合には効果が少なく超電導
体のTcの低下を抑制する効果はあるが向上はしない。From this result, the fluence is 1 of the peak value.
The SrTiO 3 film obtained when the area of 0% or more and 50% or less is 10% or more and 70% or less of the irradiation area is YB
It can be seen that a high critical temperature can be obtained when laminated on the CO film. These films have a Ti / Sr ratio of at least 1.
It is 01 or more and 1.10 or less, and when expressed as a deviation from the stoichiometric composition, it means that the film has a large amount of Ti in the range of 0.5% or more and 5% or less. When the film is manufactured under the conditions other than this range, there is a problem in productivity, whether any of the properties is not improved. For example, if the area of the region where the fluence is 0.2 or less of the peak exceeds the above range, the effect is small and the film formation rate becomes slow, and the productivity is lowered, which is not preferable. Further, when the area of the low fluence region is small, the effect is small and the effect of suppressing the decrease in Tc of the superconductor is exerted, but it is not improved.
【0026】酸化物超電導体表面上に、酸化チタン或い
は化学量論組成より複数の価数をとり得る元素であるS
r,Ti,Ba,Pb,Zrの中から選ばれる少なくとも二種類以上
の元素からなる酸化物材料を超電導体上に積層し、この
膜上に化学量論組成或いはそれに近い組成のSrTiO 3,Ba
TiO3,PZTなどの誘電体を積層することで誘電率の低下が
少なく超電導体のTcの低下を抑制することができる。
酸化物超電導体表面上に積層される膜は、少なくとも10
0A以上好ましくは500A以上が必要でこれ以下では効果が
少ない。上限は5000A 以下好ましくは2000A 以下である
ことが望ましい。一方この膜上に積層される誘電体膜の
厚さは素子のキャパシタンスによって決定される。On the surface of the oxide superconductor, titanium oxide or S which is an element capable of having a plurality of valences depending on the stoichiometric composition
An oxide material consisting of at least two kinds of elements selected from r, Ti, Ba, Pb, and Zr is laminated on a superconductor, and SrTiO 3 , Ba having a stoichiometric composition or a composition close to it is formed on this film.
By stacking dielectrics such as TiO 3 and PZT, the decrease in the dielectric constant is small and the decrease in Tc of the superconductor can be suppressed.
The film deposited on the surface of the oxide superconductor should be at least 10
0A or more, preferably 500A or more is necessary, and less than this is less effective. It is desirable that the upper limit is 5000 A or less, preferably 2000 A or less. On the other hand, the thickness of the dielectric film laminated on this film is determined by the capacitance of the device.
【0027】化学量論組成あるいはそれに近い組成のSr
TiO 3,BaTiO3,PZTなどの誘電体膜を得るには所望の膜組
成よりも蒸気圧の低い元素が少ない組成のターゲット
に、フルーエンスがピーク値の10%以上50%以下で
ある領域が照射面積の10%以上70%以下の面積で合
わせ持つパルスレーザーを照射することで作製できる。Sr of stoichiometric composition or composition close to it
In order to obtain a dielectric film such as TiO 3 , BaTiO 3 or PZT, a target having a composition with a lower vapor pressure than the desired film composition and a small number of elements is irradiated to a region where the fluence is 10% or more and 50% or less of the peak value. It can be manufactured by irradiating a pulsed laser having an area of 10% or more and 70% or less of the area.
【0028】また高周波機器に応用する場合基板の両面
に積層した超電導体の片面をフォトリソグラフィーを用
いて所定の形状に加工し、その上に誘電体膜を積層する
こともあるが、両面に成膜してある試料を加工するのは
レジストの塗布、剥離などの工程において取扱いがしに
くく、加工時に傷をつけ歩留まりを低下させるという不
具合がある。しかし本発明によれば基板の片面だけに成
膜した超電導体を加工したのち上述したような酸化物材
料あるいは誘電体を積層し、その後裏面に超電導体を成
膜しても加工した超電導体の特性は劣化しないので生産
性及び歩留まりを向上させることができる。更に裏面の
超電導体上に上述したような酸化物材料を積層すると耐
環境性に優れ好ましい。また超電導体上に酸化物膜が積
層されている領域の面積は積層されていない領域の面積
よりも広いことが必要で少なくとも2倍以上好ましくは
10倍以上が望まれる。これより少なくなるとJcの高
い領域が狭くなり、素子に流せる電流が少なくなるので
好ましくない。Further, in the case of application to high frequency equipment, one side of a superconductor laminated on both sides of a substrate may be processed into a predetermined shape by photolithography, and a dielectric film may be laminated on the one side. It is difficult to process the filmed sample in steps such as resist coating and peeling, and there is a problem that the sample is scratched during processing and the yield is reduced. However, according to the present invention, the superconductor formed on only one surface of the substrate is processed, then the above oxide material or dielectric is laminated, and then the superconductor is formed on the back surface. Since the characteristics are not deteriorated, the productivity and the yield can be improved. Furthermore, it is preferable to stack the above-mentioned oxide material on the superconductor on the back surface because of excellent environmental resistance. Further, the area of the region where the oxide film is laminated on the superconductor needs to be larger than the area of the region where it is not laminated, and it is desired to be at least 2 times or more, preferably 10 times or more. If it is less than this range, the region where Jc is high is narrowed and the current that can be passed through the element is reduced, which is not preferable.
【0029】尚本発明に用いられる酸化物超電導体はY
BCOに限らず、Bi系及びTl系などでもよい。以下に本
発明の実施例を説明する。The oxide superconductor used in the present invention is Y
Not limited to BCO, Bi system and Tl system may be used. Examples of the present invention will be described below.
【0030】(実施例1)図1に示すような減圧に保ち
得る容器1内の上方にSrTiO 3単結晶基板2を取り付
け、所望の温度までヒーター3により加熱する。その
後、容器1内に100SCCMの一定流量で酸素を導入
しつつ排気ポンプ7の排気速度を調節して圧力を0.01 T
orr から1.0 Torrの範囲に保ちながらY,Ba,Cu からなる
固体原料であるターゲット6に平均のフルーエンスが1.
0 J/cm2以上のレーザー光を照射して原料を蒸発せしめ
基板上に1.0 μmの厚さのY系超電導体膜を作製する。
図2に示すように、フォトリソグラフィー技術を用いて
Y系超電導体膜4を加工した後、再度成膜容器内に取り
付け500℃から800℃の範囲になるように加熱す
る。このとき試料の温度が400℃を越えたら酸素を導
入するほうが加工した超電導体から酸素が脱離しないの
で望ましい。また圧力も超電導体を成膜する時と同じか
あるいはそれ以上にするとよい。Example 1 A SrTiO 3 single crystal substrate 2 is attached above a container 1 which can be kept under reduced pressure as shown in FIG. 1, and heated by a heater 3 to a desired temperature. Then, while introducing oxygen at a constant flow rate of 100 SCCM into the container 1, the exhaust speed of the exhaust pump 7 is adjusted to adjust the pressure to 0.01 T.
While maintaining a range of orr to 1.0 Torr, the average fluence of target 6, which is a solid raw material composed of Y, Ba, and Cu, is 1.
The raw material is evaporated by irradiating a laser beam of 0 J / cm 2 or more to form a 1.0 μm thick Y-based superconductor film on the substrate.
As shown in FIG. 2, after the Y-based superconductor film 4 is processed by using the photolithography technique, the Y-based superconductor film 4 is mounted again in the film forming container and heated so as to be in the range of 500 ° C. to 800 ° C. At this time, if the temperature of the sample exceeds 400 ° C., it is preferable to introduce oxygen because oxygen is not desorbed from the processed superconductor. Also, the pressure may be the same as or higher than that when the superconductor is formed.
【0031】次にTiの酸化物からなる焼結体ターゲット
に平均のフルーエンスが0.6 J/cm2以上のレーザーを照
射して5000A の酸化チタン膜5を積層した。この試料の
Tcは91KでありY系超電導体本来の値に近く、被覆
の工程において劣化のないことが確認された。Next, a sintered target made of an oxide of Ti was irradiated with a laser having an average fluence of 0.6 J / cm 2 or more to deposit a titanium oxide film 5 of 5000A. The Tc of this sample was 91 K, which was close to the original value of the Y-based superconductor, and it was confirmed that there was no deterioration in the coating process.
【0032】(実施例2)図1に示すように、減圧に保
ち得る容器1内の上方にSrTiO 3単結晶基板2を取り付
け、所望の温度までヒーター3により加熱する。その
後、容器1内に100SCCMの一定流量で酸素を導入
しつつ排気ポンプ7の排気速度を調節して圧力を0.01 T
orr から1.0 Torrの範囲に保ちながらY,Ba,Cu からなる
固体原料であるターゲット6に平均のフルーエンスが1.
0 J/cm2以上のレーザー光を照射して原料を蒸発せしめ
基板2上に1.0 μmの厚さのを作製する。Example 2 As shown in FIG. 1, a SrTiO 3 single crystal substrate 2 is attached above a container 1 which can be kept under reduced pressure, and heated to a desired temperature by a heater 3. Then, while introducing oxygen at a constant flow rate of 100 SCCM into the container 1, the exhaust speed of the exhaust pump 7 is adjusted to adjust the pressure to 0.01 T.
While maintaining a range of orr to 1.0 Torr, the average fluence of target 6, which is a solid raw material composed of Y, Ba, and Cu, is 1.
Laser light of 0 J / cm 2 or more is irradiated to evaporate the raw material to form a substrate having a thickness of 1.0 μm.
【0033】次に図2に示すようにフォトリソグラフィ
ー技術を用いてY系超電導体膜4を加工した後、再度成
膜容器1内に取り付け500℃から800℃の範囲にな
るように加熱する。このとき試料の温度が400℃を越
えたら酸素を導入するほうが加工した超電導体から酸素
が脱離しないので望ましい。また圧力も超電導体を成膜
する時と同じかあるいはそれ以上にするとよい。Next, as shown in FIG. 2, after the Y-based superconductor film 4 is processed by using the photolithography technique, the Y-based superconductor film 4 is mounted again in the film forming container 1 and heated to a temperature in the range of 500 ° C. to 800 ° C. At this time, if the temperature of the sample exceeds 400 ° C., it is preferable to introduce oxygen because oxygen is not desorbed from the processed superconductor. Also, the pressure may be the same as or higher than that when the superconductor is formed.
【0034】次にSr,Ti の酸化物からなる焼結体ターゲ
ット6に照射面積の66%の面積で1.0 J/cm2のピーク
フルーエンスに対して40%のフルーエンス領域がある
レーザーを照射して5000A のTiが化学量論組成より多い
SrTiO 3膜を積層した。この試料のTcは91Kであり
Y系超電導体本来の値に近く、被覆の工程において劣化
のないことが確認された。Next, a sintered target 6 made of an oxide of Sr, Ti is irradiated with a laser having a fluence region of 40% with respect to a peak fluence of 1.0 J / cm 2 in an area of 66% of the irradiation area. 5000A Ti is more than stoichiometric
A SrTiO 3 film was laminated. The Tc of this sample was 91 K, which was close to the original value of the Y-based superconductor, and it was confirmed that there was no deterioration in the coating process.
【0035】(実施例3)図1に示すように、減圧に保
ち得る容器1内の上方に巾10mmの主として銀からな
るテープを長手方向で移動可能なように取り付け、所望
の温度までヒーター3により加熱する。その後、容器1
内に100SCCMの一定流量で酸素を導入しつつ排気
ポンプ7の排気速度を調節して圧力を0.01 Torr から1.
0 Torrの範囲に保ちながらY,Ba,Cu からなる固体原料で
あるターゲット6に平均のフルーエンスが1.0 J/cm2以
上のレーザー光を照射して原料を蒸発せしめ一定速度
(1cm/分)で移動している基板2上に1.0 μmの厚
さのY系超電導体膜を作製する。(Embodiment 3) As shown in FIG. 1, a tape mainly made of silver and having a width of 10 mm is attached to the upper part of a container 1 which can be kept under reduced pressure so as to be movable in a longitudinal direction, and a heater 3 is heated to a desired temperature. To heat. Then container 1
While introducing oxygen at a constant flow rate of 100 SCCM, the exhaust speed of the exhaust pump 7 is adjusted to adjust the pressure from 0.01 Torr to 1.
While maintaining the range of 0 Torr, the target 6 which is a solid raw material composed of Y, Ba and Cu is irradiated with a laser beam having an average fluence of 1.0 J / cm 2 or more to evaporate the raw material at a constant speed (1 cm / min). A Y-based superconductor film having a thickness of 1.0 μm is formed on the moving substrate 2.
【0036】その後同じ容器内にてSr,Ti の酸化物から
なる焼結体ターゲット6に照射面積の66%の面積で1.
0 J/cm2のピークフルーエンスに対して40%のフルー
エンス領域があるレーザーを照射して5000A のTiが化学
量論組成より多いSrTiO 3膜を続けて積層した。この試
料のTcは91KでありY系超電導体本来の値に近く、
被覆の工程において劣化のないことが確認された。この
試料を超電導線として電力機器に応用したところ長期間
に渡って良好な特性を示した。Then, in the same container, a sintered body target 6 made of an oxide of Sr and Ti was irradiated with 1.
A laser having a fluence region of 40% with respect to a peak fluence of 0 J / cm 2 was irradiated to continuously deposit a SrTiO 3 film having a Ti content of 5000 A higher than the stoichiometric composition. The Tc of this sample is 91K, which is close to the original value of the Y-based superconductor,
It was confirmed that there was no deterioration in the coating process. When this sample was applied to power equipment as a superconducting wire, it showed good characteristics over a long period of time.
【0037】(実施例4)図1に示すように、減圧に保
ち得る容器1内の上方にLaAlO 3単結晶基板2を取り付
け、所望の温度までヒーター3により加熱する。その
後、容器1内に100SCCMの一定流量で酸素を導入
しつつ排気ポンプ7の排気速度を調節して圧力を0.01 T
orr から1.0 Torrの範囲に保ちながらY,Ba,Cu からなる
固体原料であるターゲット6に平均のフルーエンスが1.
0 J/cm2以上のレーザー光を照射して原料を蒸発せしめ
基板2上に1.0 μmの厚さのY系超電導体膜4を作製す
る。この膜を図3に示すようなパターンにフォトリソグ
ラフィー技術を用いて加工した後、再度成膜容器1内に
取り付け500℃から800℃の範囲になるように加熱
する。このとき試料の温度が400℃を越えたら酸素を
導入するほうが加工した超電導体から酸素が脱離しない
ので望ましく、圧力も超電導体を成膜する時と同じかあ
るいはそれ以上にするとよい。Example 4 As shown in FIG. 1, a LaAlO 3 single crystal substrate 2 is attached above a container 1 which can be kept under reduced pressure, and heated to a desired temperature by a heater 3. Then, while introducing oxygen at a constant flow rate of 100 SCCM into the container 1, the exhaust speed of the exhaust pump 7 is adjusted to adjust the pressure to 0.01 T.
While maintaining a range of orr to 1.0 Torr, the average fluence of target 6, which is a solid raw material composed of Y, Ba, and Cu, is 1.
The raw material is evaporated by irradiating a laser beam of 0 J / cm 2 or more to form a 1.0 μm thick Y-based superconductor film 4 on the substrate 2. This film is processed into a pattern as shown in FIG. 3 by using a photolithography technique, and then mounted again in the film forming container 1 and heated so as to be in the range of 500 ° C. to 800 ° C. At this time, if the temperature of the sample exceeds 400 ° C., it is preferable to introduce oxygen because oxygen is not desorbed from the processed superconductor, and the pressure may be the same as or higher than that at the time of film formation of the superconductor.
【0038】次にSr,Ti の酸化物からなる焼結体ターゲ
ット6に照射面積の66%の面積で1.0 J/cm2のピーク
フルーエンスに対して40%のフルーエンス領域がある
レーザーを照射して500AのTiが化学量論組成より10%
多いSrTiO 3膜を積層し、さらにSrが化学量論組成より
多いターゲットを用いて化学量論組成に近いSrTiO 3膜
を5000A 積層した。この試料のTcは91KでありY系
超電導体本来の値に近く、被覆の工程において劣化のな
いことが確認された。この試料をストリップライン型の
共振器として使用したところ高いQ値を示し長期間に渡
って良好な特性を示した。Next, a sintered body target 6 made of an oxide of Sr, Ti is irradiated with a laser having a fluence region of 40% with respect to a peak fluence of 1.0 J / cm 2 in an area of 66% of the irradiated area. Ti of 500A is 10% from stoichiometric composition
We deposited a large amount of SrTiO 3 film, and further deposited 5000 A of SrTiO 3 film having a stoichiometric composition close to the stoichiometric composition by using a target having a Sr content higher than the stoichiometric composition. The Tc of this sample was 91 K, which was close to the original value of the Y-based superconductor, and it was confirmed that there was no deterioration in the coating process. When this sample was used as a stripline type resonator, it showed a high Q value and showed good characteristics for a long period of time.
【0039】(実施例5)本実施例では、同一面内にあ
る超電導体のTc及びJcを部分的に変えて作成した。
図4に示すように、電流パスの一部にTiが化学量論組成
より多いSrTiO 3膜を積層した後全体を化学量論組成に
近いSrTiO 3膜で覆うと、Tiが化学量論組成より多いSrT
iO 3膜を積層した部分のTcが高く多くの場合Jcも高
くなる。このようにしてTcが87Kの部分と91Kの
部分を同一面内に作製し電流制限用素子として使用した
ところ動作時におけるインピーダンスの発生のしかた
も、ほどよく緩やかになり、焼損する事故が起こらなく
なった。その理由を以下に説明する。Example 5 In this example, Tc and Jc of the superconductor in the same plane were partially changed.
As shown in FIG. 4, if a SrTiO 3 film having a Ti content higher than the stoichiometric composition is stacked on a part of the current path and then the whole is covered with an SrTiO 3 film having a stoichiometric composition, Ti is Many SrT
The Tc of the portion where the iO 3 film is laminated is high, and in many cases, Jc is also high. In this way, when the Tc portion of 87K and the portion of 91K were made in the same plane and used as a current limiting element, the impedance during operation was moderately moderated and no accident of burning occurred. It was The reason will be described below.
【0040】超電導体を用いた電流制限用素子は電源系
統に直列に挿入し、どこかで短絡事故が発生して定格電
流(臨界電流)以上の電流が流れようとした時に常電導
に転移して抵抗を発するものである。しかし酸化物超電
導体の常電導状態における抵抗は金属と比較するとかな
り大きく動作時に急激に抵抗が発生し、電源系統のイン
ピーダンスが激しく変動するという問題があり、焼損す
る事故も多発していた。しかし図4に示したように素子
の電流パスにTc及びJcの低い部分があると最初にT
cの低い領域が転移するが、この部分だけの抵抗はさほ
ど高くなく、またそこで発生した熱が廻りにひろがりク
エンチが徐々に伝搬するのでインピーダンスの発生のし
かたがほどよく緩やかになるのである。A current limiting element using a superconductor is inserted in series with a power supply system, and when a short circuit accident occurs somewhere and a current higher than the rated current (critical current) is about to flow, it shifts to normal conduction. To generate resistance. However, the resistance of the oxide superconductor in the normal conducting state is considerably larger than that of metal, and the resistance suddenly occurs during operation, which causes a problem that the impedance of the power supply system fluctuates drastically, and there are many accidents of burning out. However, as shown in FIG. 4, when there is a portion where Tc and Jc are low in the current path of the device, T
Although the region of low c is transferred, the resistance of this part is not so high, and the heat generated there spreads around and the quench is gradually propagated, so that the impedance generation is moderately moderated.
【0041】尚、Tc及びまたはJcの異なる領域を作
製するには一部分にだけSrTiO 3を積層した後真空中あ
るいは窒素、またはアルゴンなどの稀ガス雰囲気中で5
00℃以上に加熱してSrTiO 3を積層していない領域か
ら酸素を脱離させてもよい。処理温度及びまたは積層し
たSrTiO 3の組成によりTc、Jcの差を制御すること
ができる。また積層によりTcが高い領域の面積は積層
していないためにTcが低い領域の面積より広い方が良
く少なくとも2倍以上1000倍以下、好ましくは10
倍以上100倍以下が望まれる。In order to form regions having different Tc and / or Jc, SrTiO 3 is laminated only on a part of the region, and then it is vacuumed or in a rare gas atmosphere such as nitrogen or argon.
Oxygen may be desorbed from the region where SrTiO 3 is not stacked by heating at 00 ° C. or higher. The difference between Tc and Jc can be controlled by the treatment temperature and / or the composition of the laminated SrTiO 3 . Since the area of the region having a high Tc is not stacked due to the lamination, it is preferable that the area is larger than the area of the region having a low Tc, and at least 2 times or more and 1000 times or less, preferably 10
It is desired to be more than twice and less than 100 times.
【0042】Tcが高い領域の面積が少ないと通電容量
が少なくなり好ましくない。また多すぎる場合には動作
時のインピーダンス発生のしかたをほどよく緩やかにす
る効果が少なくなり好ましくない。If the area of the region having a high Tc is small, the current carrying capacity becomes small, which is not preferable. On the other hand, if the amount is too large, the effect of moderately easing the impedance generation during operation is reduced, which is not preferable.
【0043】以上に述べたように本発明は電流制限用素
子以外にも同一面内でTc及びまたはJcが部分的に異
なる超電導体を用いた超電導部材を作製するのに適して
いる。As described above, the present invention is suitable for producing a superconducting member using a superconductor other than the current-limiting element, in which Tc and / or Jc are partially different in the same plane.
【0044】図5は本発明による電流制御素子である。
図のようにMgO,STOなどからなる基板上にY系の
酸化物超電導材が形成されている。この酸化物超電導材
上には、STOで覆われたTcの高い領域と、STOで
覆われていないTcの低い領域が形成されている。この
STOの覆われていないTcの低い領域にはそれぞれ入
力用電流リードと出力用電流リードがハンダ等の導電性
材料により接続されている。素子全体は封止樹脂により
封止されている。FIG. 5 shows a current control element according to the present invention.
As shown in the figure, a Y-based oxide superconducting material is formed on a substrate made of MgO, STO, or the like. A region of high Tc covered with STO and a region of low Tc not covered with STO are formed on the oxide superconducting material. An input current lead and an output current lead are respectively connected to the uncovered low Tc regions of the STO by a conductive material such as solder. The entire element is sealed with a sealing resin.
【0045】この素子では、電流の入力部分及び出力部
分以外の領域をTiが化学量論組成より多いSrTiO 3膜あ
るいは化学量論組成に近いSrTiO 3膜で覆った後に電流
リードを取付ける。このように作製した超電導部材にお
いては電流の入出力部分のTc及びまたはJcが低くな
っているため、過電流あるいは外的要因によって超電導
がクエンチしようとした場合、ここから始まる。この領
域は超電導体上に電流リードとともにハンダ等の導電性
材料で覆われているため、接触抵抗が小さければクエン
チによる発熱で焼損することがない。またJcが低いた
めに少ない電流でクエンチすることも、同様の効果をも
たらす。その後他の領域に徐々にクエンチが伝搬するの
で焼損及び放電により破壊されることがなくなる。また
電流リード部分の耐環境性を向上させるにはこの部分あ
るいは全体を樹脂等で封止するとよい。In this device, a region other than the current input part and the current output part is covered with an SrTiO 3 film in which Ti is more than the stoichiometric composition or a SrTiO 3 film having a stoichiometric composition, and then a current lead is attached. In the superconducting member thus manufactured, the Tc and / or Jc of the input / output portion of the electric current are low. Therefore, when superconducting is about to be quenched by an overcurrent or an external factor, it starts from here. Since this region is covered with a conductive material such as solder on the superconductor together with the current leads, it will not burn out due to heat generation by quenching if the contact resistance is small. Further, quenching with a small amount of current due to low Jc brings about the same effect. After that, the quench gradually propagates to other regions, so that it is prevented from being destroyed by burnout and discharge. To improve the environment resistance of the current lead portion, this portion or the whole may be sealed with resin or the like.
【0046】[0046]
【発明の効果】以上説明したように本発明による超電導
部材およびその作製方法は、酸化物超電導体の特性を劣
化させることなく表面を被覆する事ができ、長期間に渡
って良好な特性を示すという特徴を有する。As described above, the superconducting member and the method for producing the same according to the present invention can coat the surface without deteriorating the characteristics of the oxide superconductor, and exhibit good characteristics for a long period of time. It has the feature.
【図1】 レーザー蒸着装置の概略図FIG. 1 is a schematic diagram of a laser deposition apparatus.
【図2】 本発明の超電導部材の断面図FIG. 2 is a sectional view of the superconducting member of the present invention.
【図3】 本発明の超電導部材の上面図及び断面図FIG. 3 is a top view and a sectional view of a superconducting member of the present invention.
【図4】 本発明の超電導部材の上面図及び断面図FIG. 4 is a top view and a sectional view of the superconducting member of the present invention.
【図5】 本発明の超電導部材の上面図及び断面図FIG. 5 is a top view and a sectional view of the superconducting member of the present invention.
【符号の説明】 1…蒸着容器 2…基板 3…ヒーター 4…酸化物超電導体 5…酸化物膜 6…ターゲット 7…排気ポンプ[Explanation of symbols] 1 ... Vapor deposition container 2 ... Substrate 3 ... heater 4 ... Oxide superconductor 5 ... Oxide film 6 ... Target 7 ... Exhaust pump
フロントページの続き (56)参考文献 特開 平1−126205(JP,A) 特開 昭64−57767(JP,A) 特開 平1−181444(JP,A) 特開 平4−137677(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/24 ZAA C01G 1/00 C04B 35/495 ZAA H01B 12/06 ZAA H01L 39/02 ZAA Continuation of front page (56) Reference JP-A-1-126205 (JP, A) JP-A-64-57767 (JP, A) JP-A-1-181444 (JP, A) JP-A-4-137677 (JP , A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 39/24 ZAA C01G 1/00 C04B 35/495 ZAA H01B 12/06 ZAA H01L 39/02 ZAA
Claims (6)
る元素を含有し、化学量論組成からずれている酸化物膜
とを具備することを特徴とする超電導部材。 1. An oxide superconductor, and an oxide film formed on the oxide superconductor, containing an element capable of having a plurality of valences, and deviating from the stoichiometric composition. Characteristic superconducting member.
とり得る元素を含有し、化学量論組成からずれている酸
化物膜とを具備し、 前記酸化物膜が形成された領域の前記酸化物超電導体の
臨界温度及び臨界電流密度の少なくとも一方が大きいこ
とを特徴とする超電導部材。 2. An oxide superconductor, and an oxide film formed on a part of the oxide superconductor, containing an element capable of having a plurality of valences, and deviating from the stoichiometric composition. At least one of the critical temperature and the critical current density of the oxide superconductor in the region where the oxide film is formed is large.
ストローム以上の膜厚で、複数の価数をとり得る元素を
含有する酸化物膜とを具備し、 前記酸化物膜が形成された領域の前記酸化物超電導体の
臨界温度及び臨界電流密度の少なくとも一方が大きく、
前記酸化物超電導体の臨界温度及び臨界電流密度の少な
くともいずれか一方が小さい領域に電力の入力及び出力
の少なくとも一方を行なうことを特徴とする超電導部
材。 3. A substrate, an oxide superconductor formed on the substrate, and 500 angstroms formed on a part of the oxide superconductor.
An element that can have multiple valences with a film thickness of more than strom
An oxide film containing the oxide film of the oxide superconductor in the region where the oxide film is formed.
At least one of the critical temperature and the critical current density is large,
A superconducting member, wherein at least one of input and output of electric power is performed in a region where at least one of critical temperature and critical current density of the oxide superconductor is small.
原料を用意する工程と、 酸化物超電導体を500以上800以下に加熱する工程
と、 0.01Torr以上2Torr以下の酸素分圧下で、
ピークフルーエンスの10%以上50%以下のフルーエ
ンスを有する領域が全照射面積の10%以上70%以下
であるパルスレーザーを前記固体原料に照射し、前記酸
化物超電導体上に酸化物膜を積層する工程とを具備する
ことを特徴とする超電導部材の製造方法。 4. A step of preparing a solid raw material containing an element capable of having a plurality of valences, a step of heating an oxide superconductor to 500 or more and 800 or less, and an oxygen partial pressure of 0.01 Torr or more and 2 Torr or less. ,
The solid raw material is irradiated with a pulse laser in which a region having a fluence of 10% or more and 50% or less of the peak fluence is 10% or more and 70% or less of the total irradiation area, and an oxide film is laminated on the oxide superconductor. And a step of manufacturing a superconducting member.
る元素と、この複数の価数をとり得る元素と結合する元
素を少なくとも有し、前記元素のうち蒸気圧の低い元素
が化学量論組成より少ないことを特徴とする請求項7記
載の超電導部材の製造方法。 Wherein said solid material has an element that can take the number plurality of valence has at least an element that binds to the plurality of valences the possible elements, low elemental vapor pressure of the element is chemically The method for producing a superconducting member according to claim 7, wherein the superconducting member is less than the stoichiometric composition.
原料を用意する工程と、 表面に酸化物超電導体が形成された基板を500以上8
00以下に加熱する工程と、 0.01Torr以上2Torr以下の酸素分圧下で、
ピークフルーエンスの10%以上50%以下のフルーエ
ンスを有する領域が全照射面積の10%以上70%以下
であるパルスレーザーを前記固体原料に照射し、前記酸
化物超電導体上に酸化物膜を積層する工程と、 前記酸化物膜を積層する工程の後、前記基板の裏面に酸
化物超電導体を積層する工程とを具備することを特徴と
する超電導部材の製造方法。 6. A step of preparing a solid raw material containing an element capable of having a plurality of valences, and a substrate having an oxide superconductor formed on its surface is 500 or more 8
Heating to 00 or less, and under an oxygen partial pressure of 0.01 Torr or more and 2 Torr or less,
The solid raw material is irradiated with a pulse laser in which a region having a fluence of 10% or more and 50% or less of the peak fluence is 10% or more and 70% or less of the total irradiation area, and an oxide film is laminated on the oxide superconductor. process and, after the step of laminating the oxide film, method of manufacturing a superconducting member, characterized by comprising a step of laminating an oxide superconductor on a back surface of the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25408096A JP3361016B2 (en) | 1996-09-26 | 1996-09-26 | Superconducting member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25408096A JP3361016B2 (en) | 1996-09-26 | 1996-09-26 | Superconducting member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10107334A JPH10107334A (en) | 1998-04-24 |
JP3361016B2 true JP3361016B2 (en) | 2003-01-07 |
Family
ID=17259954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25408096A Expired - Fee Related JP3361016B2 (en) | 1996-09-26 | 1996-09-26 | Superconducting member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3361016B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006101585A (en) * | 2004-09-28 | 2006-04-13 | Internatl Superconductivity Technology Center | Superconducting bearing and magnetically levitating device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4811552B2 (en) * | 2004-03-30 | 2011-11-09 | 独立行政法人科学技術振興機構 | Neutron detector using superconducting elements |
JP4732390B2 (en) * | 2007-03-26 | 2011-07-27 | 富士通株式会社 | Manufacturing method of high-temperature superconducting device |
JP2013136815A (en) * | 2011-12-28 | 2013-07-11 | Fujikura Ltd | Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material |
-
1996
- 1996-09-26 JP JP25408096A patent/JP3361016B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006101585A (en) * | 2004-09-28 | 2006-04-13 | Internatl Superconductivity Technology Center | Superconducting bearing and magnetically levitating device |
JP4670094B2 (en) * | 2004-09-28 | 2011-04-13 | 財団法人国際超電導産業技術研究センター | Superconducting bearing and magnetic levitation device |
Also Published As
Publication number | Publication date |
---|---|
JPH10107334A (en) | 1998-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01157579A (en) | Manufacture of superconductor and superconductive circuit | |
JP2000150974A (en) | High-temperature superconducting josephson junction and manufacture thereof | |
JP3188358B2 (en) | Method for producing oxide superconductor thin film | |
JP3361016B2 (en) | Superconducting member and manufacturing method thereof | |
JPS63224116A (en) | Manufacture of thin film superconductor | |
JPH0284782A (en) | Manufacture of josephson element | |
CA2003850C (en) | Process for preparing a perovskite type superconductor film | |
JP3425422B2 (en) | Superconducting element manufacturing method | |
JPH04285012A (en) | Formation of oxide superconductor thin film | |
JP3136765B2 (en) | Thin film photoelectric conversion element and method of manufacturing the same | |
JPH04275470A (en) | Product composed of superconductor/insulator structure and manufacture of said product | |
EP0624910A1 (en) | Superconductor and method of fabricating superconductor | |
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2544390B2 (en) | Oxide superconducting integrated circuit | |
JPH05170448A (en) | Production of thin ceramic film | |
JPH05194095A (en) | Production of thin-film electric conductor | |
JP2532986B2 (en) | Oxide superconducting wire and coil using the same | |
JP2961852B2 (en) | Manufacturing method of thin film superconductor | |
JP3289395B2 (en) | Preparation method of oxide superconducting thin film | |
JP2691065B2 (en) | Superconducting element and fabrication method | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH05194096A (en) | Production of thin-film oxide electric conductor | |
JPH05171414A (en) | Superconducting thin film and its production | |
JPH0437609A (en) | Oxide superconducting thin film and its production | |
JPH04171872A (en) | Josephson device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081018 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081018 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091018 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |