JPH01276605A - Manufacture of superconducting magnet - Google Patents

Manufacture of superconducting magnet

Info

Publication number
JPH01276605A
JPH01276605A JP10685588A JP10685588A JPH01276605A JP H01276605 A JPH01276605 A JP H01276605A JP 10685588 A JP10685588 A JP 10685588A JP 10685588 A JP10685588 A JP 10685588A JP H01276605 A JPH01276605 A JP H01276605A
Authority
JP
Japan
Prior art keywords
layer
superconducting layer
oxide superconducting
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10685588A
Other languages
Japanese (ja)
Inventor
Noriyuki Yoshida
葭田 典之
Norikata Hayashi
憲器 林
Satoru Takano
悟 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hokuriku Electric Power Co, Shikoku Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP10685588A priority Critical patent/JPH01276605A/en
Publication of JPH01276605A publication Critical patent/JPH01276605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To leave an oxide superconducting layer of a spiral shape and to use it as a coil for a superconducting magnet by a method wherein the oxide superconducting layer is formed in a shape close to a final shape and the part other than the spiral shape is removed or made to lose its superconductive property. CONSTITUTION:A magnesium oxide layer 2 as an intermediate layer is formed on a cylindrical base material 1; an oxide superconducting layer 3 is formed on this magnesium oxide layer 2. A region 3b other than a spiral-shaped part refers to a hatched region that is sandwiched between two-dotted chain lines; the oxide superconducting layer in this part is removed; alternatively, superconductivity at an operating temperature of the oxide superconducting layer in this part is lost. That is to say, even when the oxide superconducting layer 3 is not removed at all, its superconductive property is lost. By this setup, a superconducting magnet that uses the oxide superconducting layer 3 as a coil can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物高温超電導材料を用いて超電導マグ
ネットを製造するための製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a manufacturing method for manufacturing a superconducting magnet using an oxide high temperature superconducting material.

[従来の技術および発明が解決しようとする課題]酸化
物高温超電導材料は、90に程度の高い臨界温度を示す
ことから、液体窒素温度以上の温度で動作する超電導マ
グネットの材料として極めて有望視されている。
[Prior art and problems to be solved by the invention] Oxide high-temperature superconducting materials exhibit a critical temperature as high as 90° C., and therefore are considered to be extremely promising as materials for superconducting magnets that operate at temperatures above liquid nitrogen temperature. ing.

しかしながら、酸化物高温超電導材料は可撓性に乏しい
ため、テープ状や線状に加工した後コイル状に曲げ加工
しようとすると、超電導材料の部分に歪が生じ、さらに
はクラックが発生して電流を流すことができない状態と
なる場合があった。
However, oxide high-temperature superconducting materials have poor flexibility, so when they are processed into tapes or wires and then bent into coils, distortion occurs in the superconducting material, cracks occur, and the current In some cases, it became impossible to run the flow.

このため、コイルサイズの小さな超電導マグネットを製
造することができないという問題を生じた。
For this reason, a problem arose in that a superconducting magnet with a small coil size could not be manufactured.

このような問題は、特に大きな電流を流す目的で超電導
層を厚くすればするほど重大な間通となった。
These problems became more serious as the thickness of the superconducting layer was increased to allow a larger current to flow.

この発明の目的は、超電導層に歪を与えることなく、超
電導層の厚みを厚くしあるいは小型化することのできる
超電導マグネットの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a superconducting magnet that can increase the thickness of a superconducting layer or reduce its size without imparting strain to the superconducting layer.

[課題を解決するための手段] この発明の製造方法では、円筒状基材の外周面のまわり
に酸化物超電導層を形成した後、該酸化物超電導層を円
筒状基材の外周面のまわりで螺旋状に残すように、螺旋
状部以外の領域の酸化物超電導層を除去するかまたは螺
旋状部以外の領域の酸化物超電導層の使用温度における
超電導性を失わせ、超電導マグネットを製造することを
特徴としている。
[Means for Solving the Problems] In the manufacturing method of the present invention, after forming an oxide superconducting layer around the outer peripheral surface of a cylindrical base material, the oxide superconducting layer is formed around the outer peripheral surface of the cylindrical base material. A superconducting magnet is manufactured by removing the oxide superconducting layer in the area other than the spiral part so that it remains in a spiral shape, or by causing the oxide superconducting layer in the area other than the spiral part to lose its superconductivity at the operating temperature. It is characterized by

螺旋状部以外の領域の酸化物超電導層を除去する方法と
しては、たとえばレーザ加工によるエツチングや、フォ
トレジストとリン酸もしくは塩酸等によるエツチングな
どによる方法が挙げられる。
Examples of methods for removing the oxide superconducting layer in areas other than the spiral portion include etching by laser processing, etching using photoresist and phosphoric acid or hydrochloric acid, and the like.

螺旋状部以外の領域の酸化物超電導層の使用温度におけ
る超電導性を失わせる方法としては、たとえば加熱によ
る超電導性の破壊などが挙げられる。このような加熱は
、たとえばレーザ光照射による加熱で行なうことができ
る。
Examples of methods for causing the oxide superconducting layer in regions other than the helical portion to lose superconductivity at the operating temperature include destruction of superconductivity by heating. Such heating can be performed, for example, by heating by laser beam irradiation.

[作用] この発明の製造方法では、酸化物超電導層を最終形状に
近い形状で形成し、螺旋状部以外の部分を除去するかあ
るいは超電導性を失わせることによって、超電導層を螺
旋状に残し超電導マグネットのコイルとしている。
[Operation] In the manufacturing method of the present invention, the oxide superconducting layer is formed in a shape close to the final shape, and the superconducting layer is left in a spiral shape by removing the portion other than the spiral portion or losing superconductivity. It is used as a superconducting magnet coil.

したがって、従来の超電導マグネットの製造方法のよう
に、曲げ加工をする必要がなく、酸化物超電導層に歪や
クラックを与えることがない。
Therefore, there is no need for bending as in conventional methods of manufacturing superconducting magnets, and no distortion or cracks are caused to the oxide superconducting layer.

[実施例] 第1図は、この発明の一実施例により製造された超電導
マグネットを示す斜視図である。円筒状基材1の外周面
上には、中間層としての酸化マグネシウム層2が形成さ
れており、この酸化マグネシウム層2の上に酸化物超電
導層の螺旋状部3aが形成されている。この螺旋状部3
aが超電導マグネットのコイルをなしている。
[Example] FIG. 1 is a perspective view showing a superconducting magnet manufactured according to an example of the present invention. A magnesium oxide layer 2 as an intermediate layer is formed on the outer peripheral surface of the cylindrical base material 1, and a spiral portion 3a of an oxide superconducting layer is formed on this magnesium oxide layer 2. This spiral part 3
A is a coil of a superconducting magnet.

以下、この第1図の実施例を製造する工程を第2図〜第
4図を示して説明する。
Hereinafter, the process of manufacturing the embodiment shown in FIG. 1 will be explained with reference to FIGS. 2 to 4.

第2図は、この実施例に用いられる円筒状基材を示す斜
視図である。この実施例では、円筒状基材としてステン
レスSUSを用いている。
FIG. 2 is a perspective view showing the cylindrical base material used in this example. In this embodiment, stainless steel SUS is used as the cylindrical base material.

第3図に斜視図で示すように、この円筒状基材〕の上に
中間層としての酸化マグネシウム層2が形成される。こ
の実施例では、スパッタ法により酸化マグネシウム層2
を形成している。
As shown in a perspective view in FIG. 3, a magnesium oxide layer 2 as an intermediate layer is formed on this cylindrical base material. In this example, a magnesium oxide layer 2 is formed by sputtering.
is formed.

第4図に斜視図で示すように、この酸化マグネシウム層
2の上に、酸化物超電導層3が形成される。この実施例
では、YBa2 Cu、07の組成の酸化物超電導層を
、スパッタ法により形成した。
As shown in a perspective view in FIG. 4, an oxide superconducting layer 3 is formed on this magnesium oxide layer 2. In this example, an oxide superconducting layer having a composition of YBa2Cu, 07 was formed by sputtering.

次に、螺旋状部3a以外の領域3bの酸化物超電導層を
エツチングにより除去して、第1図に示すような超電導
マグネットを得る。この実施例ではレーザ加工によりエ
ツチングし螺旋状部以外の領域3bを除去した。なお、
この発明で超電導層を除去する方法としては、レーザ加
工によるエツチングに限定されるものではなく、たとえ
ば、リン酸や塩酸等によるエツチングも可能である。こ
の際には、フォトレジストと組合わせておこなうことが
できる。
Next, the oxide superconducting layer in the region 3b other than the spiral portion 3a is removed by etching to obtain a superconducting magnet as shown in FIG. In this example, the region 3b other than the spiral portion was removed by laser etching. In addition,
In the present invention, the method for removing the superconducting layer is not limited to etching using laser processing, but etching using phosphoric acid, hydrochloric acid, etc., for example, is also possible. In this case, it can be performed in combination with a photoresist.

なお、酸化物超電導層3の部分のみを除去するか、ある
いは酸化マグネシウム層2の部分をも除去するかは、除
去方法の種類や条件によって定めることができる。
Note that whether only the oxide superconducting layer 3 is removed or the magnesium oxide layer 2 is also removed can be determined depending on the type and conditions of the removal method.

第4図において、螺旋状部以外の領域3bは、二点鎖線
で挾まれたハツチングで示す領域であるが、この発明で
はこの部分の酸化物超電導層を除去してもよいし、この
部分の酸化物超電導層の使用温度における超電導性を失
わせてもよい。すなわち、必ずしも酸化物超電導層を除
去せずとも、その超電導性を失わせることにより酸化物
超電導層をコイルとした超電導マグネットとすることが
できる。酸化物超電導層の使用温度における超電導性を
失わせる方法としては、たとえばレーザ照射による加熱
がある。螺旋状部以外の領域3bの部分にレーザ光を照
射し、その部分の温度を上げることによって、組成等に
変化を与え超電導性を失わさせることができる。なお、
この超電導性は、超電導マグネットが使用される温度で
の超電導性を意味する。
In FIG. 4, the region 3b other than the spiral portion is the region indicated by hatching between two-dot chain lines, but in the present invention, the oxide superconducting layer in this region may be removed, or the oxide superconducting layer in this region may be removed. The oxide superconducting layer may lose its superconductivity at the operating temperature. That is, without necessarily removing the oxide superconducting layer, by losing its superconductivity, a superconducting magnet using the oxide superconducting layer as a coil can be obtained. As a method for causing the oxide superconducting layer to lose its superconductivity at the operating temperature, there is, for example, heating by laser irradiation. By irradiating a portion of the region 3b other than the spiral portion with a laser beam and increasing the temperature of that portion, the composition etc. can be changed and superconductivity can be lost. In addition,
This superconductivity means superconductivity at the temperature at which the superconducting magnet is used.

この実施例では、中間層としての酸化マグネシウム層を
円筒状基材と酸化物超電導層との間に形成している。こ
の酸化マグネシウム層は、(100)方向に自然配向し
て形成されやすいため、この酸化物層上に形成される酸
化物超電導層も(100)配向となるように結晶性が制
御される。このため、形成される酸化物超電導層の超電
導特性を向上させることができる。また、酸化マグネシ
ウム層は、円筒状基材と酸化物超電導層との間で生じる
相互拡散を防止する役割も果たしている。
In this example, a magnesium oxide layer as an intermediate layer is formed between the cylindrical base material and the oxide superconducting layer. Since this magnesium oxide layer is likely to be formed with natural orientation in the (100) direction, the crystallinity of the oxide superconducting layer formed on this oxide layer is also controlled so as to have the (100) orientation. Therefore, the superconducting properties of the formed oxide superconducting layer can be improved. The magnesium oxide layer also plays a role in preventing mutual diffusion between the cylindrical base material and the oxide superconducting layer.

しかしながら、この発明においては、酸化マグネシウム
層以外のたとえばチタン酸ストロンチウムなどのような
その他の中間層でもよく、またこのような中間層を設け
ずに直接に円筒状基材上に酸化物超電導層を設けてもよ
い。
However, in the present invention, other intermediate layers other than the magnesium oxide layer, such as strontium titanate, may be used, and the oxide superconducting layer may be directly formed on the cylindrical substrate without providing such an intermediate layer. It may be provided.

この発明で用いられる円筒状基材は、実施例で述べたス
テンレスに限定されることはなく、たとえばニッケルな
どの金属も用いることができる。
The cylindrical base material used in this invention is not limited to the stainless steel described in the examples, and metals such as nickel can also be used.

また、金属以外の材質で゛あってもよい。円筒状基材は
、磁性を有しないことが好ましい。
Further, it may be made of a material other than metal. It is preferable that the cylindrical base material has no magnetism.

上述の実施例では、超電導層としてYBa2 Cu、0
.の組成のものを例示したが、それ以外の酸化物超電導
層であってもよいことは言うまでもない。
In the above embodiment, YBa2Cu,0 is used as the superconducting layer.
.. Although the oxide superconducting layer having the composition is shown as an example, it goes without saying that other oxide superconducting layers may be used.

[発明の効果] 以上説明したように、この発明の製造方法によれば、酸
化物超電導層を最終形状に近い形状で形成させることが
でき、コイルの形状とするのに曲げ加工等を行なう必要
がない。したがって、酸化物超電導層に歪を与えること
なく超電導マグネットとすることができる。このため、
超電導層の厚みを従来よりも厚くすることができ、また
コイルの曲率を従来よりも小さくして、超電導マグネッ
トを小型化することが可能になる。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, an oxide superconducting layer can be formed in a shape close to the final shape, and there is no need to perform bending work etc. to form a coil shape. There is no. Therefore, a superconducting magnet can be obtained without straining the oxide superconducting layer. For this reason,
The thickness of the superconducting layer can be made thicker than before, and the curvature of the coil can be made smaller than before, making it possible to downsize the superconducting magnet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による超電導マグネット
を示す斜視図である。第2図は、この発明の一実施例に
用いられる円筒状基材を示す斜視図である。第3図は、
この発明の一実施例に用いられる円筒状基材の上に酸化
マグネシウム層を形成した状態を示す斜視図である。第
4図は、この発明の実施例において酸化物超電導層を形
成した後の状態を示す斜視図である。 図において、1は円筒状基材、2は酸化マグネシウム層
、3は酸化物超電導層、3aは螺旋状部、3bは螺旋状
部以外の領域を示す。
FIG. 1 is a perspective view showing a superconducting magnet according to an embodiment of the present invention. FIG. 2 is a perspective view showing a cylindrical base material used in one embodiment of the present invention. Figure 3 shows
FIG. 2 is a perspective view showing a state in which a magnesium oxide layer is formed on a cylindrical base material used in an embodiment of the present invention. FIG. 4 is a perspective view showing a state after forming an oxide superconducting layer in an example of the present invention. In the figure, 1 is a cylindrical base material, 2 is a magnesium oxide layer, 3 is an oxide superconducting layer, 3a is a spiral portion, and 3b is a region other than the spiral portion.

Claims (1)

【特許請求の範囲】[Claims] (1)円筒状基材の外周面のまわりに酸化物超電導層を
形成した後、該酸化物超電導層を前記円筒状基材の外周
面のまわりで螺旋状に残すように、螺旋状部以外の領域
の酸化物超電導層を除去するかまたは螺旋状部以外の領
域の酸化物超電導層の使用温度における超電導性を失わ
せることを特徴とする、超電導マグネットの製造方法。
(1) After forming an oxide superconducting layer around the outer peripheral surface of the cylindrical base material, leave the oxide superconducting layer in a spiral shape around the outer peripheral surface of the cylindrical base material other than the spiral portion. A method for manufacturing a superconducting magnet, comprising removing the oxide superconducting layer in the region or causing the oxide superconducting layer in the region other than the helical portion to lose superconductivity at the operating temperature.
JP10685588A 1988-04-27 1988-04-27 Manufacture of superconducting magnet Pending JPH01276605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685588A JPH01276605A (en) 1988-04-27 1988-04-27 Manufacture of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685588A JPH01276605A (en) 1988-04-27 1988-04-27 Manufacture of superconducting magnet

Publications (1)

Publication Number Publication Date
JPH01276605A true JPH01276605A (en) 1989-11-07

Family

ID=14444209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685588A Pending JPH01276605A (en) 1988-04-27 1988-04-27 Manufacture of superconducting magnet

Country Status (1)

Country Link
JP (1) JPH01276605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061016B2 (en) * 2001-08-24 2011-11-22 3-Cs Ltd Superconducting coil fabrication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459903A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Superconducting coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459903A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061016B2 (en) * 2001-08-24 2011-11-22 3-Cs Ltd Superconducting coil fabrication

Similar Documents

Publication Publication Date Title
JP2008124014A (en) Method for producing superconductor
JP2001110255A (en) High strength orientation multicrystal metal substrate and oxide superconductive wire material
JPH01276605A (en) Manufacture of superconducting magnet
JPH04292810A (en) Heat treatment method of oxide superconductive wire
US5434129A (en) Method for manufacturing high tc superconductor coils
JPS63244526A (en) Manufacture of compound superconductive wire
JPH01189813A (en) Oxide superconductive wire material
JPH05167121A (en) Formation of superconducting element
JP2803685B2 (en) Superconducting coil and manufacturing method thereof
JP2523623B2 (en) Superconducting unit manufacturing method
JPS63224274A (en) Superconductive device
JPH01711A (en) superconducting coil
JPH0465034A (en) Manufacture of oxide superconducting wire
KR20000000707A (en) Different sort metal material bound having cube structure and manufacturing method thereof
JP2585624B2 (en) Superconducting coil fabrication method
JPS639364B2 (en)
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPH01189814A (en) Oxide superconductive wire material
JP2645490B2 (en) How to make superconducting material
JPH02253515A (en) Ceramics superconducting line and manufacture thereof
JPH03247708A (en) Metal-oxide superconducting combined material and manufacture thereof
JPH0292807A (en) Production of oxide superconductor
JPH03261008A (en) Manufacture of oxide superconducting wire
JPH03241707A (en) Current lead and manufacture thereof
JPH01276511A (en) Oxide superconductive wire rod