JPH0292807A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH0292807A
JPH0292807A JP63242823A JP24282388A JPH0292807A JP H0292807 A JPH0292807 A JP H0292807A JP 63242823 A JP63242823 A JP 63242823A JP 24282388 A JP24282388 A JP 24282388A JP H0292807 A JPH0292807 A JP H0292807A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconductor
substrate
slits
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63242823A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Mikio Nakagawa
中川 三紀夫
Yasuhiro Iijima
康弘 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63242823A priority Critical patent/JPH0292807A/en
Publication of JPH0292807A publication Critical patent/JPH0292807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor of high critical current density having reduced cracks in the direction crossing the current flow by laminating a thin film of oxide superconductor on the base surface, forming slits along the current-flowing direction and heat-treating them. CONSTITUTION:A thin film of oxide superconductor 2 is laminated on the base 1 made of ceramic or metal by the sputtering process, or the CVD process. The thin film is cut with diamond needles or sintered hard alloy needles along the current-flowing direction E to form a plurality of slits 3. The depth of the slits may correspond to the whole or partial thickness of the film. Then, the laminated base is heat-treated in an oxygen-containing atmosphere to give the subject oxide superconductor.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、基板の表面に酸化物超電導薄膜を積層形成し
てなり、ジョセフソン素子などの超電導回路、磁気シー
ルド材、電力輸送用等に使用される酸化物超電導体の製
造方法に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is made by laminating an oxide superconducting thin film on the surface of a substrate, and is used in superconducting circuits such as Josephson elements, magnetic shielding materials, power transportation, etc. The present invention relates to a method for manufacturing the oxide superconductor used.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(Tc)が液体窒素温度を超える値を示す酸化物超
電導体が種々発見されている。この種の酸化物超電導体
は、一般式A −B −Cu−0(ただしAは、Y、S
c、La、Yb、Er、Eu、Ho、Dy等の周期律表
111a族元素の1種以上を示し、Bは、Mg。
"Prior Art" Recently, various oxide superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conducting state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide superconductor has the general formula A-B-Cu-0 (where A is Y, S
B represents Mg.

Ca、Sr、Ba等の周期律表Ha族元素の1種以上を
示す。)で示される酸化物であり、液体ヘリウムで冷却
することが必要であった従来の合金系あるいは金属間化
合物系の超電導体と比較して格段に有利な冷却条件で使
用できることから、実用上極めて有望な超電導材料とし
て研究がなされている。
One or more elements of the Ha group of the periodic table, such as Ca, Sr, and Ba. ), and can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium, making it extremely useful in practice. It is being studied as a promising superconducting material.

そして、このような酸化物超電導材料を用いて基板上に
超電導回路を形成するには、セラミックスあるいは金属
の基板の表面に、スパッタリング法などの薄膜形成手段
を用いて酸化物超電導材料からなる超電導薄膜を形成す
る。スパッタリング法などの薄膜形成手段を用いて形成
された薄膜は、非晶質状態(アモルファス状態)の酸化
物超電導体からなり、そのままの状態では超電導性を示
さない。このため、超電導性を有する酸化物超電導体を
得るには、基板の表面に酸化物超電導薄膜を形成した後
に、酸素含有雰囲気中800℃以上の熱処理を施す必要
がある。
In order to form a superconducting circuit on a substrate using such an oxide superconducting material, a superconducting thin film made of an oxide superconducting material is formed on the surface of a ceramic or metal substrate using a thin film forming method such as sputtering. form. A thin film formed using a thin film forming method such as a sputtering method is made of an oxide superconductor in an amorphous state, and does not exhibit superconductivity in that state. For this reason, in order to obtain an oxide superconductor having superconductivity, it is necessary to form an oxide superconducting thin film on the surface of a substrate and then perform heat treatment at 800° C. or higher in an oxygen-containing atmosphere.

「発明が解決しようとする課題」 しかしながら、超電導薄膜を形成した基板に、800℃
以上の温度で熱処理を施すと、基板の材料と超電導薄膜
との熱膨張率の差によって応力が加わって、超電導薄膜
に割れが発生し、この割れによって臨界電流密度(Jc
)などの超電導特性が劣化してしまう問題があった。
``Problem to be solved by the invention'' However, when a substrate on which a superconducting thin film is formed is heated to 800°C,
When heat treatment is performed at a temperature above, stress is applied due to the difference in thermal expansion coefficient between the substrate material and the superconducting thin film, causing cracks in the superconducting thin film, and these cracks cause critical current density (Jc
), there was a problem of deterioration of superconducting properties.

また、この割れと通電方向の関係は、第6図の図中符号
Aで示すように、基板C上の超電導薄膜りに、通電方向
Eに沿う方向に割れが生じた場合には超電導薄膜りの全
体としては損失増加がほとんどないが、通電方向Eに交
差する方向、特に図中符号Bで示すように通電方向Eと
直交する方向に割れが発生した場合には、超電導薄膜り
の臨界電流密度が著しく低下してしまう。
Furthermore, the relationship between this crack and the direction of current flow is as shown by the symbol A in FIG. Overall, there is almost no increase in loss, but if a crack occurs in a direction that intersects the direction of current flow E, especially in a direction perpendicular to the direction of current flow E as shown by the symbol B in the figure, the critical current of the superconducting thin film will increase. The density will drop significantly.

本発明は、上記事情に鑑みてなされたらので、高い臨界
電流密度が得られる高性能の酸化物超電導体を製造する
ことのできる製造方法の提供を目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a manufacturing method capable of manufacturing a high-performance oxide superconductor that can obtain a high critical current density.

「課題を解決するための手段」 上記目的達成の手段として、本発明は、基板の表面に酸
化物超電導薄膜を積層形成してなる酸化物超電導体の製
造方法であって、基板の表面に酸化物超電導薄膜を積層
形成し、次いでこの酸化物超電導薄膜に、通電方向に沿
ってスリットを形成し、次いで熱処理を施す方法である
"Means for Solving the Problems" As a means for achieving the above object, the present invention provides a method for manufacturing an oxide superconductor by laminating an oxide superconducting thin film on the surface of a substrate, the method comprising: forming an oxide superconductor on the surface of the substrate; This is a method in which oxide superconducting thin films are laminated, slits are formed in the oxide superconducting thin film along the current direction, and then heat treatment is performed.

「作用 」 基板の表面に酸化物超電導薄膜を積層形成し、この薄膜
に通電方向に沿ってスリットを形成し、薄膜がスリット
部分で通電方向に沿って分列された状態とした後に熱処
理を施すことによって、薄膜と基板との熱膨張率の格差
に起因する応力が加わった時に、スリットに沿って薄膜
に割れを導入することにより、通電方向と交差する方向
の割れの発生を減少させることができる。
"Operation" Form a layered oxide superconducting thin film on the surface of the substrate, form slits in this thin film along the direction of current flow, and perform heat treatment after the thin film is divided into arrays along the direction of current flow at the slits. As a result, when stress is applied due to the difference in thermal expansion coefficient between the thin film and the substrate, by introducing cracks into the thin film along the slits, it is possible to reduce the occurrence of cracks in the direction crossing the current direction. can.

「実施例」 第1図は本発明方法の一実施例を説明するための図であ
る。
"Example" FIG. 1 is a diagram for explaining an example of the method of the present invention.

この例では、まず、基板1の表面に、スパッタリング法
、CVD法、電子ビーム蒸着法、レーザ蒸着法などの薄
膜形成手段を用いて酸化物超電導薄膜2を形成する。基
板lの材料としてはS rT iO5、MgO1ALO
s、Zr01YSZなどの各種セラミックスやAg、 
PL、 Auやその合金などの金属か好適に使用される
In this example, first, the oxide superconducting thin film 2 is formed on the surface of the substrate 1 using a thin film forming method such as sputtering, CVD, electron beam evaporation, or laser evaporation. The material of the substrate l is S rT iO5, MgO1ALO.
Various ceramics such as s, Zr01YSZ, Ag,
Metals such as PL, Au, and alloys thereof are preferably used.

また本発明において好適に使用される酸化物超電導薄膜
2の材料としては、一般式A −B −Cu−0(ただ
しAは、Y 、Sc、I、a、Yb、Er、Eu、Ho
、Dy等の周期律表■a族元素の1種以上またはBiな
どの周期率表vb族元素の■種以上またはTIなどの周
期率表mb族元素の1種以上を示し、Bは、Mg。
Further, the material of the oxide superconducting thin film 2 suitably used in the present invention has the general formula A-B-Cu-0 (where A is Y, Sc, I, a, Yb, Er, Eu, Ho
, represents one or more elements of group ■A of the periodic table such as Dy, or one or more elements of group VB of the periodic table such as Bi, or one or more elements of group M of the periodic table such as TI, and B is Mg. .

Ca、Sr、Ba等の周期律表■a族元素の1種以上を
示す。)などの酸化物超電導体であり、例えば、Y +
BazCu、0xSB its rICa、Cu30x
 (B i−S rCa−Cu−P b−0系を含む)
、TltcatBalcusoxなどが好適に使用され
る。
Indicates one or more elements of group Ⅰa of the periodic table, such as Ca, Sr, and Ba. ), for example, Y +
BazCu, 0xSB its rICa, Cu30x
(Including B i-S rCa-Cu-P b-0 system)
, TltcatBalcusox, etc. are preferably used.

基板!の表面に形成する酸化物超電導薄膜2の厚さは、
酸化物超電導体の使用目的や薄膜形成手段の成膜速度な
どの各条件により適宜に選択され、例えば基板1の表面
に’i IB at CLls Oxの酸化物超電導薄
膜をスパッタリング法で形成する場合の膜厚は、too
oo人程度に設定される。
substrate! The thickness of the oxide superconducting thin film 2 formed on the surface of
It is selected as appropriate depending on various conditions such as the purpose of use of the oxide superconductor and the film formation rate of the thin film forming means. The film thickness is too
It is set to about oo people.

次いで、酸化物超電導薄膜2に、複数本の直線状のスリ
ット3を形成する。このスリット3は、通電方向Eに沿
って形成され、またスリット3の深さは、酸化物超電導
薄膜2の厚さ全部でも一部の深さでも良い。このスリッ
ト3の形成方法としては、基板Iの表面に成膜された酸
化物超電導薄膜2を、ダイヤモンド針や超硬合金針で切
削する方法が好適に使用される。
Next, a plurality of linear slits 3 are formed in the oxide superconducting thin film 2. This slit 3 is formed along the current direction E, and the depth of the slit 3 may be the entire thickness of the oxide superconducting thin film 2 or a part thereof. As a method for forming this slit 3, a method of cutting the oxide superconducting thin film 2 formed on the surface of the substrate I with a diamond needle or a cemented carbide needle is preferably used.

次いでこの基板lを、酸素含有雰囲気中において熱処理
を施す。この熱処理条件は、酸化物超電導薄膜の材料に
よって適宜に選択されるが、薄膜材料としてY+Bat
CusOxを用いる場合には850〜900℃で数時間
程度、B izs rtc atc uso Xの場合
には830〜900℃で数時間程度、また、TitCa
t B at Cus OXの場合には850〜900
℃で数時間程度の熱処理を施すのが望、ましい。
Next, this substrate 1 is subjected to heat treatment in an oxygen-containing atmosphere. The heat treatment conditions are appropriately selected depending on the material of the oxide superconducting thin film.
When CusOx is used, it is heated at 850 to 900°C for about several hours, and when Bizs rtc atcuso X is used, it is heated at 830 to 900°C for about several hours.
850-900 in case of t B at Cus OX
It is desirable to perform a heat treatment at a temperature of about several hours.

この熱処理によって、酸化物超電導薄膜2の結晶構造が
非晶質状態から超電導性を有する結晶質に変態し、基板
lの表面に超電導性を有する酸化物超電導薄膜が形成さ
れた酸化物超電導体が作成される。
Through this heat treatment, the crystal structure of the oxide superconducting thin film 2 is transformed from an amorphous state to a crystalline state having superconductivity, and an oxide superconductor with an oxide superconducting thin film having superconductivity formed on the surface of the substrate l is formed. Created.

この熱処理時には、酸化物超電導薄膜2がスリット3の
部分で通電方向Eに沿って分列された状態で形成されて
いるために、酸化物超電導薄膜2と基板lとの熱膨張率
の格差に起因する応力が加わった時に、スリット3に沿
って酸化物超電導薄膜2に割れを導入することにより、
通電方向Eと交差する方向の割れの発生を減少させるこ
とができる。
During this heat treatment, since the oxide superconducting thin film 2 is formed in a divided state along the current conduction direction E at the slit 3, the difference in thermal expansion coefficient between the oxide superconducting thin film 2 and the substrate l is caused. By introducing cracks into the oxide superconducting thin film 2 along the slit 3 when the resulting stress is applied,
The occurrence of cracks in the direction intersecting the current direction E can be reduced.

したがって、この例による酸化物超電導体の製造方法で
は、熱処理時に発生する割れによる臨界電流密度の損失
が少なくなり、高い臨界電流密度を有する高性能の酸化
物超電導体を得ることができる。
Therefore, in the method for manufacturing an oxide superconductor according to this example, the loss of critical current density due to cracks generated during heat treatment is reduced, and a high-performance oxide superconductor having a high critical current density can be obtained.

なお、先の例では、酸化物超電導薄膜2に、通電方向E
に沿って直線状のスリット3を形成したが、スリット3
の形状はこれに限定されることなく、第2図ないし第4
図に示すような形状としても良い。
In addition, in the previous example, the oxide superconducting thin film 2 is energized in the direction E.
A linear slit 3 was formed along the slit 3.
The shape of
The shape may be as shown in the figure.

第2図は、スリットの第1の変形例を示す図であって、
この例では、酸化物超電導薄膜2に、通電方向Eに沿っ
て矩形波形のスリット4を複数本形成し、熱処理を施し
て酸化物超電導体を作成する。
FIG. 2 is a diagram showing a first modification of the slit,
In this example, a plurality of rectangular waveform slits 4 are formed in the oxide superconducting thin film 2 along the current direction E, and a heat treatment is performed to create an oxide superconductor.

また第3図は、スリットの第2の変形例を示す図であっ
て、この例では、酸化物超電導薄膜2に、通電方向Eに
沿って波形のスリット5を複数本形成し、熱処理を施し
て酸化物超電導体を作成する。
FIG. 3 is a diagram showing a second modification of the slit. In this example, a plurality of wave-shaped slits 5 are formed in the oxide superconducting thin film 2 along the current direction E, and heat treatment is performed. to create an oxide superconductor.

また第4図は、スリットの第3の変形例を示を図であっ
て、この例では、酸化物超電導薄膜2に、通電方向Eに
沿って半円を結んでなる半円波形のスリット6を複数本
形成し、熱処理を施して酸化物超電導体を作成する。
FIG. 4 shows a third modification of the slit. In this example, the slit 6 has a semicircular waveform formed by connecting semicircles along the current direction E in the oxide superconducting thin film 2. A plurality of oxide superconductors are formed and heat treated to create an oxide superconductor.

これら各変形例においては、各溝スリット4゜5.6を
曲線で形成したことにより、第1図に示す直線状のスリ
ット3に比べ、熱処理を施す際に酸化物超電導薄膜2の
通電方向Eと直交する方向の熱歪をスリット4.5.6
で吸収緩和することができ、直線状のスリット3に比べ
、通電方向Eと直交する方向に沿う割れの発生を少なく
することができる。
In each of these modified examples, since each groove slit 4°5.6 is formed in a curved line, compared to the linear slit 3 shown in FIG. The thermal strain in the direction perpendicular to the slit 4.5.6
Therefore, compared to the linear slit 3, the occurrence of cracks in the direction perpendicular to the current direction E can be reduced.

以下、本発明方法の製造例を示し、本発明の効果を明確
化する。
Hereinafter, production examples of the method of the present invention will be shown to clarify the effects of the present invention.

(製造例り 厚さ0 、1 amでl0I11111角の5rTiO
a基板の表面に、Y +B atCu30 Xなる組成
のF(Fスパッタリング薄膜を10時間かけて1μm作
成した。次いで、この薄膜に、ダイヤモンド針を用い、
半径11113の半円をつないで半円波形の3本のスリ
ットを形成した。次いで、この基板を酸素気流中で89
0℃、3時間の熱処理を施して超電導体を作成した。
(Manufacturing example: 5rTiO of 10I11111 square with thickness 0 and 1 am.
On the surface of the a substrate, a 1 μm thin film of F (F) having a composition of Y + B atCu30
Three slits with a semicircular waveform were formed by connecting semicircles with a radius of 11,113. Next, this substrate was heated for 89 hours in an oxygen stream.
A superconductor was created by heat treatment at 0° C. for 3 hours.

一方、基板の表面に同様に薄膜を形成し、スリットを形
成せずに熱処理を施して、従来方法の超電導体を作成し
た。
On the other hand, a thin film was similarly formed on the surface of the substrate, and heat treatment was performed without forming slits to create a superconductor using the conventional method.

これらの超電導体を液体窒素に浸漬し、臨界電流密度(
Jc)を測定した。その結果、スリットを形成した超電
導体ではJc=3 x i O’ A/am″と高い値
を示した。また従来方法の超電導体ではJc= l x
 103A/cm’と低い値となった。
These superconductors are immersed in liquid nitrogen, and the critical current density (
Jc) was measured. As a result, the superconductor with slits showed a high value of Jc = 3 x i O'A/am''. In addition, the superconductor using the conventional method showed Jc = l x
The value was as low as 103 A/cm'.

また、これらの超電導体の表面を走査電子顕微t1.1
1察した結果、スリットを形成した超電導体ではスリッ
ト形成方向と直交する方向に殆ど割れが発生していなか
ったが、従来方法の超電導体では無数の割れがJc測定
方向およびそれと直交する方向に発生しているのが観察
された。
In addition, the surfaces of these superconductors were examined using a scanning electron microscope (t1.1).
As a result, we found that in the superconductor in which slits were formed, almost no cracks occurred in the direction perpendicular to the direction in which the slits were formed, but in the superconductor prepared using the conventional method, numerous cracks occurred in the Jc measurement direction and in the direction orthogonal to it. was observed doing so.

(製造例2 ) 厚さ0゜1mmで10mm角のMgO製基板の表面に、
B l!S rzc ayc uzOXなる組成の薄膜
を、電j−ビーム蒸着法により1ビーム4クルージプル
でそれぞれの酸化物をlOO八づ・っ形成した。次いで
、この薄膜にダイヤモンド針を用いて5本の矩形波形の
スリットを形成した。次いでこの基板を酸素雰囲気中、
850℃で10時間の熱処理を施して超電導体を作成し
た。
(Production Example 2) On the surface of a 10 mm square MgO substrate with a thickness of 0°1 mm,
Bl! A thin film having a composition of S rzc ayc uzOX was formed by an electric J-beam evaporation method using 1 beam and 4 cruzi pulls of each oxide. Next, five rectangular wave-shaped slits were formed in this thin film using a diamond needle. Next, this substrate was placed in an oxygen atmosphere.
A superconductor was produced by heat treatment at 850° C. for 10 hours.

一方、基板の表面に同様に薄膜を形成し、スリットを形
成せずに熱処理を施して、従来方法の超電導体を作成し
た。
On the other hand, a thin film was similarly formed on the surface of the substrate, and heat treatment was performed without forming slits to create a superconductor using the conventional method.

これらの超電導体のJcを先の製造例のものと同様に測
定した。その結果、スリット・を形成した超電導体では
J c= 10 ’ A/c+n’を示したが、従来方
法の超電導体ではJ c= I O’ A/cm’と低
い値であった。
The Jc of these superconductors was measured in the same manner as in the previous manufacturing example. As a result, the superconductor in which the slits were formed showed J c = 10'A/c+n', but the superconductor prepared by the conventional method showed a low value of J c = I O'A/cm'.

(製造例3 ) 厚さ0 、1 +nmで10mm角のSrTiO3製基
板の表面に、B as CL120 sとCaOとT 
two ffを3ターゲツトとしてイオンビームスパッ
タを行って薄膜を形成した。次いでこの薄膜にダイヤモ
ンド針を用いて、第5図に示すように5本の矩形波形の
スリットを形成した。次いで、酸素雰囲気中、880℃
で1時間の熱処理を施して、基板の表面に’I’1lB
atCat C1130xなる組成の超電導薄膜を生成
させて超電導体を作成した。
(Manufacturing Example 3) On the surface of a 10 mm square SrTiO3 substrate with a thickness of 0 and 1 + nm, B as CL120s, CaO and T
Ion beam sputtering was performed using two off as three targets to form a thin film. Next, using a diamond needle, five rectangular wave-shaped slits were formed in this thin film as shown in FIG. Then, in an oxygen atmosphere at 880°C
Heat treatment was performed for 1 hour at
A superconductor was created by producing a superconducting thin film having a composition of atCat C1130x.

得られた超電導体を液体窒素に浸漬し、第5図の図中符
号P、Gで示した基板の縦横2方向のJcを測定した。
The obtained superconductor was immersed in liquid nitrogen, and Jc in two directions, vertical and horizontal, of the substrate, indicated by symbols P and G in FIG. 5, was measured.

その結果、FおよびG方向の各Jc値は殆ど差がなく、
J c= I O’A/am’であった。
As a result, there is almost no difference between the Jc values in the F and G directions,
J c = I O'A/am'.

「発明の効果」 以上説明したように、本発明方法では、基板の表面に酸
化物超電導薄膜を積層形成してなる酸化物超電導体を製
造するに際し、基板の表面に酸化物超電導薄膜を積層形
成し、次いで通電方向に沿ってスリットを形成し、次い
で熱処理を施すことにより、熱処理を施す際に酸化物超
電導薄膜と基板との熱膨張率の格差に起因する応力が加
わった時に、スリットに沿って酸化物超電導薄膜に割れ
を導入して、通電方向と交差する方向の割れの発生を減
少させることができるので、熱処理時に発生する割れに
よる臨界電流密度の損失が少なくなり、高い臨界電流密
度を有する高性能の酸化物超電導体を得ることができる
"Effects of the Invention" As explained above, in the method of the present invention, when manufacturing an oxide superconductor formed by laminating an oxide superconducting thin film on the surface of a substrate, the oxide superconducting thin film is laminated on the surface of the substrate. Then, by forming slits along the current direction and then performing heat treatment, when stress due to the difference in thermal expansion coefficient between the oxide superconducting thin film and the substrate is applied during heat treatment, the slits are formed along the slits. By introducing cracks into the oxide superconducting thin film, it is possible to reduce the occurrence of cracks in the direction that intersects the direction of current flow, which reduces the loss of critical current density due to cracks that occur during heat treatment, making it possible to achieve high critical current density. It is possible to obtain a high-performance oxide superconductor having a high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するための図であ
って、基板の表面に成膜された酸化物超電導薄膜にスリ
ットを形成した状態を示す斜視図、第2図ないし第4図
は第1図に示すスリットの変形例を示す斜視図、第5図
は製造例において作成した超電導体の平面図、第6図は
、酸化物超電導薄膜に発生する割れと通電方向の関係を
説明するための斜視図である。 l・・・基板 2・・・酸化物超電導薄膜 3.4,5.6・・・スリット 第1図 第2図
FIG. 1 is a diagram for explaining one embodiment of the method of the present invention, and is a perspective view showing a state in which slits are formed in an oxide superconducting thin film formed on the surface of a substrate, and FIGS. The figure is a perspective view showing a modified example of the slit shown in Fig. 1, Fig. 5 is a plan view of a superconductor created in the manufacturing example, and Fig. 6 shows the relationship between cracks that occur in the oxide superconducting thin film and the direction of current flow. It is a perspective view for explaining. l... Substrate 2... Oxide superconducting thin film 3.4, 5.6... Slit Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 基板の表面に酸化物超電導薄膜を積層形成してなる酸化
物超電導体の製造方法であって、 基板の表面に酸化物超電導薄膜を積層形成し、次いでこ
の酸化物超電導薄膜に、通電方向に沿ってスリットを形
成し、次いで熱処理を施すことを特徴とする酸化物超電
導体の製造方法。
[Claims] A method for producing an oxide superconductor by laminating an oxide superconducting thin film on the surface of a substrate, comprising: forming an oxide superconducting thin film in a laminated manner on the surface of the substrate; A method for producing an oxide superconductor, which comprises forming slits along the direction of current flow and then subjecting them to heat treatment.
JP63242823A 1988-09-28 1988-09-28 Production of oxide superconductor Pending JPH0292807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242823A JPH0292807A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242823A JPH0292807A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0292807A true JPH0292807A (en) 1990-04-03

Family

ID=17094825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242823A Pending JPH0292807A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0292807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Similar Documents

Publication Publication Date Title
US6114287A (en) Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
US6610413B2 (en) Biaxially textured articles formed by powder metallurgy
US6610414B2 (en) Biaxially textured articles formed by power metallurgy
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JP2007073327A (en) Oxide superconductive conductor
WO2006071542A2 (en) Architecture for coated conductors
JP2011113662A (en) Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire
JP4694965B2 (en) Method for producing metal substrate for oxide superconducting wire and method for producing oxide superconducting wire
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH0292807A (en) Production of oxide superconductor
JPH0472777A (en) Substrate for superconducting device
JPH06219736A (en) Superconductor
JP4619475B2 (en) Oxide superconducting conductor
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH0292806A (en) Production of oxide superconductor
JPH05213699A (en) Production of oxide superconductor
JP2013055061A (en) Metal base for thin film superconductive wire rod, manufacturing method of metal base for thin film superconductive wire rod, and manufacturing method of thin film superconductive wire rod
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
JP2544759B2 (en) How to make a superconducting thin film
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
Yoshino et al. Properties of Ag-Cu alloy substrate for Y-Ba-Cu-O superconducting tape
JPH02239116A (en) Production of superconducting article
JPH01220872A (en) Oxide base superconductive material
JPH0227612A (en) Oxide superconducting wire rod
JP2544760B2 (en) Preparation method of superconducting thin film