JPH0292806A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH0292806A
JPH0292806A JP63242822A JP24282288A JPH0292806A JP H0292806 A JPH0292806 A JP H0292806A JP 63242822 A JP63242822 A JP 63242822A JP 24282288 A JP24282288 A JP 24282288A JP H0292806 A JPH0292806 A JP H0292806A
Authority
JP
Japan
Prior art keywords
thin film
substrate
grooves
oxide superconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63242822A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Mikio Nakagawa
中川 三紀夫
Yasuhiro Iijima
康弘 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63242822A priority Critical patent/JPH0292806A/en
Publication of JPH0292806A publication Critical patent/JPH0292806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor of high performance having reduced cracking in the direction crossing the current-flowing direction and high Jc by laminating a thin film of oxide super conductor on the surface of the base which has grooves formed beforehand along the electric current flowing direction and treating them with heat. CONSTITUTION:A plurality of grooves 2 are formed in parallel lines along the prescribed current-flowing direction, in a square wave or wave form on the surface of the base plate 1 made of, e.g., SrTiO3 or MgO. The width and depth of these grooves are preferably 0.1 to 1 micrometer. A thin film of oxide superconductor such as Y1Ba2Cu3Ox is laminated on the base by the sputtering process, the CVD process, electron beam vaporization process, and heat-treated to give the objective oxide superconductor. According to the present invention, when stress caused by the difference in thermal expansion coefficients in the heat treatment is generated, the cracks along the grooves are induced to reduce the cracks crossing the current-flowing direction.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、基板の表面に酸化物超電導薄膜を積層形成し
てなり、ジョセフソン素子などの超電導回路、磁気シー
ルド材、電力輸送用等に使用される酸化物超電導体の製
造方法に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is made by laminating an oxide superconducting thin film on the surface of a substrate, and is used in superconducting circuits such as Josephson elements, magnetic shielding materials, power transportation, etc. The present invention relates to a method for manufacturing the oxide superconductor used.

「従来の技術 1 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
超電導体が種々発見されている。この種の酸化物超電導
体は、一般式A −B −Cu−0(ただしAは、Y、
Sc、La、Yb、Er、Eu、Ho、Dy等の周期律
表I[1a族元素の1種以上を示し、Bは、Mg。
"Prior Art 1" Recently, various oxide superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature.This type of oxide superconductor The body has the general formula A-B-Cu-0 (where A is Y,
Sc, La, Yb, Er, Eu, Ho, Dy, etc. in the periodic table I [represents one or more of group 1a elements, B is Mg.

Ca、Sr、Ba等の周期律表Ha族元素の1種以上を
示す。)で示される酸化物であり、液体ヘリウムで冷却
することが必要であった従来の合金系あるいは金属間化
合物系の超電導体と比較して格段に有利な冷却条件で使
用できることから、実用上極めて有望な超電導材料とし
て研究がなされている。
One or more elements of the Ha group of the periodic table, such as Ca, Sr, and Ba. ), and can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium, making it extremely useful in practice. It is being studied as a promising superconducting material.

そして、このような酸化物超電導材料を用いて基板上に
超電導回路を形成するには、セラミックスあるいは金属
の基板の表面に、スパッタリング法などの薄膜形成手段
を用いて酸化物超電導材料からなる超電導薄膜を形成す
る。スパッタリング法などの薄膜形成手段を用いて形成
された薄膜は、非晶質状g!4(アモルファス状態)の
酸化物超電導体からなり、そのままの状態では超電導性
を示さない。このため、超電導性を有する酸化物超電導
体を得るには、基板の表面に酸化物超電導薄膜を形成し
た後に、酸素含有雰囲気中800℃以上の熱処理を施す
必要がある。
In order to form a superconducting circuit on a substrate using such an oxide superconducting material, a superconducting thin film made of an oxide superconducting material is formed on the surface of a ceramic or metal substrate using a thin film forming method such as sputtering. form. Thin films formed using thin film forming means such as sputtering are amorphous g! 4 (amorphous state), and does not exhibit superconductivity in its original state. For this reason, in order to obtain an oxide superconductor having superconductivity, it is necessary to form an oxide superconducting thin film on the surface of a substrate and then perform heat treatment at 800° C. or higher in an oxygen-containing atmosphere.

「発明が解決しようとする課題」 しかしながら、超電導薄膜を形成した基板に、800℃
以上の温度で熱処理を施すと、基板の材料と超電導薄膜
との熱膨張率の差によって応力が加わって、超電導薄膜
に割れが発生し、この割れによって臨界電流密度(Jc
)などの超電導特性が劣化してしまう問題があった。
``Problem to be solved by the invention'' However, when a substrate on which a superconducting thin film is formed is heated to 800°C,
When heat treatment is performed at a temperature above, stress is applied due to the difference in thermal expansion coefficient between the substrate material and the superconducting thin film, causing cracks in the superconducting thin film, and these cracks cause critical current density (Jc
), there was a problem of deterioration of superconducting properties.

また、この割れと通電方向の関係は、第6図の図中符号
Aで示すように、基板C上の超電導薄膜りに、通電方向
Eに沿う方向に割れが生じた場合には超電導薄膜りの全
体としては損失増加がほとんどないが、通電方向Eに交
差する方向、特に図中符号Bで示すように通電方向Eと
直交する方向に生成した割れが発生した場合には、超電
導薄膜りの臨界電流密度が著しく低下してしまう。
Furthermore, the relationship between this crack and the direction of current flow is as shown by the symbol A in FIG. Overall, there is almost no increase in loss, but if a crack occurs in a direction that intersects the direction of current flow E, especially in a direction perpendicular to the direction of current flow E as shown by the symbol B in the figure, the loss of the superconducting thin film increases. The critical current density will drop significantly.

本発明は、上記事情に鑑みてなされたもので、高い臨界
電流密度が得られる高性能の酸化物超電導体を製造する
ことのできる製造方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manufacturing method capable of manufacturing a high-performance oxide superconductor that can obtain a high critical current density.

「課題を解決するための手段」 上記目的達成の手段として、本発明は、基板の表面に酸
化物超電導薄膜を積層形成してなる酸化物超電導体の製
造方法であって、予め通電方向に沿って溝が形成された
基板の表面に酸化物超電導薄膜を積層形成し、次いで熱
処理を施す方法である。
"Means for Solving the Problems" As a means for achieving the above object, the present invention provides a method for manufacturing an oxide superconductor in which an oxide superconductor thin film is laminated on the surface of a substrate. In this method, an oxide superconducting thin film is laminated on the surface of a substrate in which grooves have been formed, and then heat treatment is performed.

「作用 」 予め通電方向に沿って溝が形成された基板の表面に酸化
物超電導体からなる薄膜を積層形成することによって、
薄膜形成時にこの溝部分で薄膜が通電方向に沿って分列
された状態で形成され、この基板に熱処理を施す際に、
薄膜と基板との熱膨張率の格差に起因する応力が加わっ
た時に溝に沿って薄膜に割れを導入することにより、通
電方向と交差する方向の割れの発生を減少させることが
できる。
``Operation'' By laminating a thin film made of an oxide superconductor on the surface of a substrate on which grooves have been previously formed along the current direction,
At the time of thin film formation, the thin film is formed in a state where it is divided into rows along the current direction in this groove part, and when heat-treating this substrate,
By introducing cracks into the thin film along the grooves when stress is applied due to the difference in coefficient of thermal expansion between the thin film and the substrate, it is possible to reduce the occurrence of cracks in the direction intersecting the current direction.

「実施例」 第1図および第2図は本発明方法の一実施例を説明する
ための図であって、これらの図中符号1は基板である。
Embodiment FIGS. 1 and 2 are diagrams for explaining an embodiment of the method of the present invention, and reference numeral 1 in these figures represents a substrate.

この基板lは、所定の通電方向Eに沿って直線状の複数
本の溝2を形成してなるしのである。
This substrate 1 has a plurality of linear grooves 2 formed along a predetermined current direction E. As shown in FIG.

この基板1の材料としては5rTiOs、MgO。The material of this substrate 1 is 5rTiOs and MgO.

YSZ、Zr01A l t Osなどの各種セラミッ
クスやAg、 PL、 Auおよび合金などの金属が好
適に使用される。この溝2の幅および深さは、酸化物超
電導薄膜を溝部分でセパレートできるように適宜選択さ
れるが、通常、溝幅0.1−1μm程度、溝深さ0.1
〜1μm程度が望ましい。
Various ceramics such as YSZ and Zr01AltOs, and metals such as Ag, PL, Au, and alloys are preferably used. The width and depth of this groove 2 are appropriately selected so that the oxide superconducting thin film can be separated at the groove portion, but usually the groove width is about 0.1-1 μm and the groove depth is about 0.1 μm.
~1 μm is desirable.

先の基板lを用いて酸化物超電導体を作成するには、ま
ずこの基板1の表面に、スパッタリング法、CVD法、
電子ビーム蒸着法、レーザ蒸着法などの薄膜形成手段を
用いて酸化物超電導薄膜3を形成する。
To create an oxide superconductor using the above substrate 1, first, the surface of this substrate 1 is subjected to sputtering, CVD,
The oxide superconducting thin film 3 is formed using a thin film forming method such as electron beam evaporation or laser evaporation.

本発明において好適に使用される酸化物超電導薄膜3の
材料としては、一般式 A −B −Cu−0(ただし
Aは、Y、Sc、La、Yb、Er、Eu、Ho、Dy
等の周期律表IIIa族元素の1種以上またはBiなど
の周期率表vb族元素の1種以上またはTIなどの周期
率表111b族元素の1種以上を示し、Bは、Mg、C
a。
The material of the oxide superconducting thin film 3 preferably used in the present invention has the general formula A-B-Cu-0 (where A is Y, Sc, La, Yb, Er, Eu, Ho, Dy
One or more elements of group IIIa of the periodic table such as Bi, one or more elements of group Vb of the periodic table such as Bi, or one or more elements of group 111b of the periodic table such as TI, B is Mg, C
a.

Sr、Ba等の周期律表Ila族元素の1種以上を示す
One or more elements of group Ila of the periodic table, such as Sr and Ba.

)などの酸化物超電導体であり、例えば、YtBatC
u、、0x1BitSrtCayCuaOx (B1−
5r−CaCu−P b−0系を含む)、T ltc 
a*B arc u30 xなどが好適に使用される。
), for example, YtBatC
u,, 0x1BitSrtCayCuaOx (B1-
5r-CaCu-P b-0 system), Tltc
A*B arc u30x etc. are preferably used.

基板lの表面に形成する酸化物超電導薄膜3の厚さは、
酸化物超電導体の使用目的や薄膜形成手段の成膜速度な
どの各条件により適宜に選択され、例えば基板lの表面
にY IB atc u、o xの酸化物超電導薄膜を
スパッタリング法で形成する場合の膜厚は、10000
人程度に設定される。この基板lの表面に形成される酸
化物超電導薄膜3は、溝2の部分で通電方向Eに沿って
分列された状態で形成される。
The thickness of the oxide superconducting thin film 3 formed on the surface of the substrate l is:
It is selected as appropriate depending on various conditions such as the purpose of use of the oxide superconductor and the film formation rate of the thin film forming means. For example, when forming an oxide superconducting thin film of Y IB atcu, o x on the surface of the substrate l by sputtering method. The film thickness is 10000
It is set to about a person. The oxide superconducting thin film 3 formed on the surface of the substrate l is formed in a state where it is divided into rows along the current conduction direction E at the groove 2 portion.

次いで、酸化物超電導薄膜3を形成した基板1を、酸素
含有雰囲気中において熱処理を施す。この熱処理条件は
、酸化物超電導薄膜の材料によって適宜に選択されるが
、薄膜材料としてY + B a tCu、Oxを用い
る場合には850〜900℃で数時間程度、B i、S
 rtc atc Li2OX (7)場合1: 1t
830〜900℃で数時間程度、またT lyc at
B atc L!30 Kの場合には850〜900℃
で数時間程度の熱処理を施すのが望ましい。
Next, the substrate 1 on which the oxide superconducting thin film 3 is formed is subjected to heat treatment in an oxygen-containing atmosphere. The conditions for this heat treatment are appropriately selected depending on the material of the oxide superconducting thin film, but when using Y + B a tCu or Ox as the thin film material, the heat treatment conditions are heated at 850 to 900°C for several hours, and Bi, S
rtc atc Li2OX (7) Case 1: 1t
At 830 to 900°C for several hours, or at T lyc at
B atc L! 850-900℃ for 30K
It is desirable to perform heat treatment for several hours.

この熱処理によって、酸化物超電導薄膜3の結晶構造が
非晶質状態から超電導性を有する結晶質に変態し、基板
lの表面に超電導性を有する酸化物超電導薄膜が形成さ
れた酸化物超電導体が作成される。
Through this heat treatment, the crystal structure of the oxide superconducting thin film 3 is transformed from an amorphous state to a crystalline state having superconductivity, and an oxide superconductor with an oxide superconducting thin film having superconductivity formed on the surface of the substrate l is formed. Created.

この熱処理時には、酸化物超電導薄膜3が溝2の部分で
通電方向Eに沿って分列された状態で形成されているた
めに、酸化物超電導薄膜3と基板lとの熱膨張率の格差
に起因する応力が加わった時に、溝に沿って酸化物超電
導薄膜3に割れを導入することにより、通電方向Eと交
差する方向の割れの発生を減少させることができる。
During this heat treatment, since the oxide superconducting thin film 3 is formed in a divided state along the current conduction direction E at the groove 2 portion, the difference in thermal expansion coefficient between the oxide superconducting thin film 3 and the substrate l is caused. By introducing cracks into the oxide superconducting thin film 3 along the grooves when the resulting stress is applied, it is possible to reduce the occurrence of cracks in the direction intersecting the current direction E.

したがって、この例による酸化物超電導体の製造方法で
は、熱処理時に発生する割れによる臨界電流密度の損失
が少な(なり、高い臨界電流密度を有する高性能の酸化
物超電導体を得ることができる。
Therefore, in the method for manufacturing an oxide superconductor according to this example, there is less loss of critical current density due to cracks that occur during heat treatment, and a high-performance oxide superconductor with a high critical current density can be obtained.

なお、先の例では、通電方向Eに沿って直線状の溝2を
形成した基板1を用いたが、基板の表面に形成する溝の
形状はこれに限定されることなく、第3図ないし第5図
に示すような形状としても良い。
In the previous example, the substrate 1 in which the linear groove 2 was formed along the current direction E was used, but the shape of the groove formed on the surface of the substrate is not limited to this, and can be any shape shown in FIG. It may also have a shape as shown in FIG.

第3図は、基板の第1の変形例を示す図であって、この
基板4は、通電方向Eに沿って矩形波形の溝5を複数本
形成してなるものである。
FIG. 3 is a diagram showing a first modified example of the substrate, and this substrate 4 is formed by forming a plurality of rectangular waveform grooves 5 along the current direction E. FIG.

また第4図は、基板の第2の変形例を示す図であって、
この基板6は、通電方向Eに沿って波形の溝7を複数本
形成してなるしのである。
Further, FIG. 4 is a diagram showing a second modification example of the substrate,
This substrate 6 is formed by forming a plurality of wave-shaped grooves 7 along the current direction E.

また第5図は、基板の第3の変形例を示す図であって、
この基板8は、通電方向Eに沿って半円を結んでなる半
円波形の溝9を複数本形成したものである。
Further, FIG. 5 is a diagram showing a third modification example of the substrate,
This substrate 8 has a plurality of semicircular wave-shaped grooves 9 formed by connecting semicircles along the current direction E.

これら各変形例においては、谷溝5,7.9を曲線で形
成したことにより、第1図に示す基板lの直線状の溝2
に比べ、酸化物超電導薄膜3を形成して熱処理を施す際
に通電方向Eと直交する方向の熱歪を溝5.7.9で吸
収緩和することができ、直線状の溝2に比べ、通電方向
Eと直交する方向に沿う割れの発生を少なくすることが
できる。
In each of these modified examples, by forming the valley grooves 5, 7.9 in curved lines, the linear grooves 2 of the substrate l shown in FIG.
When forming the oxide superconducting thin film 3 and performing heat treatment, the grooves 5, 7, and 9 can absorb and relax the thermal strain in the direction perpendicular to the current direction E, and compared to the linear grooves 2, The occurrence of cracks along the direction perpendicular to the current direction E can be reduced.

以下、本発明方法の製造例を示し、本発明の効果を明確
化する。
Hereinafter, production examples of the method of the present invention will be shown to clarify the effects of the present invention.

(製造例り 厚さ0 、1 mmで10mm角の5rTiOs基板の
表面に、半径1mmの半円をつないで第5図に示した基
板と同様の半円波形の3本の溝を形成した。溝の深さは
約1μm1溝幅はlμlとした。
(Manufacturing example: On the surface of a 10 mm square 5rTiOs substrate with a thickness of 0.1 mm, three grooves with a semicircular waveform similar to that of the substrate shown in FIG. 5 were formed by connecting semicircles with a radius of 1 mm. The depth of the groove was approximately 1 μl and the width of each groove was 1 μl.

この基板の表面にY +B atc Li2OXなる組
成のスパッタリング薄膜を10時間かけてlμl作成し
た。次いで、この基板を酸素気流中で890℃、3時間
の熱処理を行ったが、走査電子顕微鏡観察では溝中に連
続した薄膜の割れは見られたが、他の基板上には割れが
見られなかった。
On the surface of this substrate, 1 μl of a thin film having a composition of Y + B atc Li2OX was formed by sputtering over a period of 10 hours. Next, this substrate was heat-treated at 890°C for 3 hours in an oxygen stream, but scanning electron microscopy showed continuous thin film cracks in the grooves, but no cracks were observed on other substrates. There wasn't.

一方、従来の溝なしの基板に同様に薄膜を形成し、熱処
理を施したところ、この薄膜には無数の縦横のクラック
が確認された。
On the other hand, when a thin film was similarly formed on a conventional substrate without grooves and subjected to heat treatment, numerous vertical and horizontal cracks were observed in the thin film.

これらを液体窒素に浸漬し、臨界電流密度(Jc)を測
定した。基板に予め溝を形成したものでは、溝に沿う方
向のJc=2X105A/cm”と高い値を示した。ま
た従来基板のサンプルではJc=lX10 ’ A/a
m’と低い値となった。これは明らかに薄膜の割れの影
響と判断される。
These were immersed in liquid nitrogen and the critical current density (Jc) was measured. The substrate with grooves formed in advance showed a high value of Jc = 2X105 A/cm'' in the direction along the groove. In addition, the sample of the conventional substrate showed Jc = lX10' A/a.
The value was as low as m'. This is clearly determined to be the effect of cracks in the thin film.

(製造例2 ) 厚さ0.1++m”2?10mm角+7)MgO製基板
の表面に、深さ約0.5μ膳、溝幅lμ饋の第3図に示
す基板の溝と同様の矩形波形の溝を5本作成した。次い
でこの基板表面にB its rtc arc Li2
OXなる組成の薄膜を、電子ビーム蒸着法により1ビー
ム4クルージプルでそれぞれの酸化物を100人づつ形
成した。次いでこの基板を酸素雰囲気中、850℃で1
0時間の熱処理を施した。
(Production Example 2) A rectangular waveform similar to the groove of the substrate shown in Fig. 3 with a depth of about 0.5μ and a groove width of lμ is formed on the surface of an MgO substrate (thickness 0.1++m”2?10mm square +7). Five grooves were created.Next, Bits rtc arc Li2 was formed on the surface of this substrate.
A thin film having a composition of OX was formed by electron beam evaporation using 1 beam and 4 cruzi pulls for 100 people of each oxide. This substrate was then heated at 850°C in an oxygen atmosphere for 1
Heat treatment was performed for 0 hours.

そして溝を形成したちの及Q溝のないものを液体中に浸
漬し、臨界電流密度を測定した。その結果、溝を形成し
たものは溝に沿う方向のJcが10 ’ A/cm”を
示したが、溝のないらのはJc−10!^/clIl″
と低い値であった。
Then, the material with the grooves but without the Q-groove was immersed in a liquid, and the critical current density was measured. As a result, the one with grooves showed a Jc of 10'A/cm'' in the direction along the groove, but the one without grooves showed Jc-10!^/clIl''
This was a low value.

(製造例3 ) 厚さ0 、1 ll1mで1oIIlffl角のS r
T io 3製基板の表面に、深さ0.5μm、溝幅0
.5μmの直線状の溝を4本作成した。次いでこの基板
表面にBatCuaO6とCaOとT 1.0 、を3
ターゲツトとしてイオンビームスパッタを行った。次い
で、酸素雰囲気中、880℃で1時間の熱処理を施して
、基板の表面にT LB ayc arc u+o X
なる組成の厚さ1μmの超電導薄膜を備えた超電導体を
作成した。
(Manufacturing Example 3) S r with thickness 0, 1 ll 1 m and 1 o II ffl angle
A groove with a depth of 0.5 μm and a groove width of 0 is formed on the surface of the T io 3 substrate.
.. Four 5 μm linear grooves were created. Next, 3 layers of BatCuaO6, CaO, and T 1.0 were applied to the surface of this substrate.
Ion beam sputtering was performed as a target. Next, heat treatment was performed at 880° C. for 1 hour in an oxygen atmosphere to form T LB ayc arc u+o X on the surface of the substrate.
A superconductor with a 1 μm thick superconducting thin film having the following composition was created.

得られた超電導体を液体堅木に浸漬し、溝に沿う方向の
Jcを測定した結果、Jc= l 03A/cn+鵞で
あった。
The obtained superconductor was immersed in liquid hardwood, and the Jc in the direction along the groove was measured. As a result, Jc=l03A/cn+goose.

一方、溝を形成しない基板を用いて同様に超電導体を作
成し、Jcを測定した結果、 Jc=5X10 ” A
/cttr”であった。
On the other hand, a superconductor was similarly created using a substrate without grooves, and Jc was measured, and as a result, Jc=5X10'' A
/cttr”.

溝を形成した基板を用いた超電導体は、溝を形成しない
基板を用いた超電導体に比べ、2倍のJcが得られたが
、先の製造例1および製造例2の結果に比べ、基板の溝
形成による効果が少ない。
The superconductor using a substrate with grooves had twice the Jc compared to the superconductor using a substrate without grooves, but compared to the results of Production Example 1 and Production Example 2, the The effect of groove formation is small.

これは、溝が直線状であると、酸化物超電導薄膜を形成
し熱処理を施す際に、通電方向に直交する方向の熱歪を
吸収できないため、通電方向と直交する方向に若干割れ
が発生してしまうためと推測される。
This is because if the groove is straight, it cannot absorb the thermal strain in the direction perpendicular to the current direction when forming the oxide superconducting thin film and performing heat treatment, so some cracks may occur in the direction perpendicular to the current direction. It is assumed that this is because the

「発明の効果」 以上説明したように、本発明方法では、基板の表面に酸
化物超電導薄膜を積層形成してなる酸化物超電導体を製
造するに際し、予め通電方向に沿って溝が形成された基
板の表面に酸化物超電導薄膜を積層形成し、次いで熱処
理を施すことにより、酸化物超電導薄膜が溝の部分で通
電方向に沿って分列された状態で形成され、熱処理を施
す際に酸化物超電導薄膜と基板との熱膨張率の格差に起
因する応力が加わった時に、溝に沿って酸化物超電導薄
膜に割れを導入して、通電方向と交差する方向の割れの
発生を減少させることができるので、熱処理時に発生す
る割れによる臨界電流密度の損失が少なくなり、高い臨
界電流密度を有する高性能の酸化物超電導体を得ること
ができる。
"Effects of the Invention" As explained above, in the method of the present invention, when manufacturing an oxide superconductor formed by laminating oxide superconducting thin films on the surface of a substrate, grooves are formed in advance along the current direction. By laminating the oxide superconducting thin film on the surface of the substrate and then performing heat treatment, the oxide superconducting thin film is formed in a state where it is divided into rows along the current conduction direction at the groove part, and when the heat treatment is performed, the oxide superconducting thin film is When stress is applied due to the difference in coefficient of thermal expansion between the superconducting thin film and the substrate, it is possible to introduce cracks into the oxide superconducting thin film along the grooves, thereby reducing the occurrence of cracks in the direction crossing the direction of current flow. As a result, loss of critical current density due to cracks generated during heat treatment is reduced, and a high-performance oxide superconductor with a high critical current density can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第五図および第2図は本発明方法の一実施例を説明する
ための図であって、第1図は基板の斜視図、第2図は基
板の表面に酸化物超電導薄膜を成膜した状態を示す斜視
図、第3図ないし第5図は第1図に示す基板の変形例を
示す斜視図、第6図は、酸化物超電導薄膜に発生する割
れと通電方向の関係を説明するための斜視図である。 第1図 第2図 1.4.6.8・・・基板、    2.5.7.9・
・・溝、3・・・酸化物超電導薄膜。
5 and 2 are diagrams for explaining one embodiment of the method of the present invention, in which FIG. 1 is a perspective view of a substrate, and FIG. 2 is a diagram showing an oxide superconducting thin film formed on the surface of the substrate. FIGS. 3 to 5 are perspective views showing modified examples of the substrate shown in FIG. 1, and FIG. 6 is for explaining the relationship between cracks that occur in the oxide superconducting thin film and the direction of current flow. FIG. Figure 1 Figure 2 1.4.6.8...Substrate, 2.5.7.9.
...Groove, 3...Oxide superconducting thin film.

Claims (1)

【特許請求の範囲】 基板の表面に酸化物超電導薄膜を積層形成してなる酸化
物超電導体の製造方法であって、 予め通電方向に沿って溝が形成された基板の表面に酸化
物超電導薄膜を積層形成し、次いで熱処理を施すことを
特徴とする酸化物超電導体の製造方法。
[Scope of Claims] A method for producing an oxide superconductor by laminating an oxide superconducting thin film on the surface of a substrate, the method comprising laminating an oxide superconducting thin film on the surface of the substrate in which grooves have been formed in advance along the current direction. 1. A method for producing an oxide superconductor, which comprises laminating and then heat-treating.
JP63242822A 1988-09-28 1988-09-28 Production of oxide superconductor Pending JPH0292806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242822A JPH0292806A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242822A JPH0292806A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0292806A true JPH0292806A (en) 1990-04-03

Family

ID=17094810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242822A Pending JPH0292806A (en) 1988-09-28 1988-09-28 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0292806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004457A (en) * 2011-06-21 2013-01-07 Fujikura Ltd Superconductive wire material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004457A (en) * 2011-06-21 2013-01-07 Fujikura Ltd Superconductive wire material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH0474714A (en) Tl superconductor material
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
WO2007040567A2 (en) Method for improving performance of high temerature superconductors within a magnetic field
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH0292806A (en) Production of oxide superconductor
JPH01100022A (en) Preparation of superconducting thin film
JPH01166419A (en) Manufacture of superconductive membrane
JP2544759B2 (en) How to make a superconducting thin film
JPH0292807A (en) Production of oxide superconductor
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2544760B2 (en) Preparation method of superconducting thin film
JPH0446098A (en) Superconducting member
JPH0337913A (en) Oxide superconductor film material
JP2604665B2 (en) Superconducting magnetic shield container and method of manufacturing the same
JPH01170060A (en) Semiconductor substrate having superconductor layer
JPH01167218A (en) Production of superconducting thin film
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH02227911A (en) High magnetic field generating superconductor and manufacture thereof
JPH0227612A (en) Oxide superconducting wire rod
JPH03210711A (en) Manufacture of oxide superconductive conductor
JPH02389A (en) Semiconductor substrate with superconductor layer
JPH04231399A (en) Formation of oxide superconducting thin film