JPH02389A - Semiconductor substrate with superconductor layer - Google Patents
Semiconductor substrate with superconductor layerInfo
- Publication number
- JPH02389A JPH02389A JP63278627A JP27862788A JPH02389A JP H02389 A JPH02389 A JP H02389A JP 63278627 A JP63278627 A JP 63278627A JP 27862788 A JP27862788 A JP 27862788A JP H02389 A JPH02389 A JP H02389A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- superconducting
- composite oxide
- semiconductor substrate
- superconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 54
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 239000002887 superconductor Substances 0.000 title abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 abstract description 26
- 239000002784 hot electron Substances 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000003754 machining Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 239000010409 thin film Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910014454 Ca-Cu Inorganic materials 0.000 description 2
- 230000005668 Josephson effect Effects 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Recrystallisation Techniques (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体基板に関する。より詳細には、酸化物
基板上に、複合酸化物超電導体層を介して形成されたS
i層を具備し、半導体回路の材料として用いるだけでな
く、ジョセフソン素子あるいは超電導トランジスターや
ホットエレクトロントランジスター等の超電導体素子材
料として用いることができる新規な半導体基板の構成に
関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor substrates. More specifically, S formed on an oxide substrate via a composite oxide superconductor layer
The present invention relates to the structure of a novel semiconductor substrate that includes an i-layer and can be used not only as a material for semiconductor circuits but also as a material for superconductor devices such as Josephson devices, superconducting transistors, and hot electron transistors.
従来の技術
電子の相転移であるといわれる遭電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。即ち、超電導下では、超電導体に電流
を流しても電力損失が全く無く、密度の高い電流が永久
に流れ続ける。従って、例えば送電技術に超電導を応用
すれば、現在送電に伴って生じているといわれる約7%
の不可避な送電損失を大幅に減少できる。また、高磁場
発生用電磁石としての応用は、発電技術の分野ではMH
D発電、電動機等と共に、起動に発電堡以上の電力を消
費するともいわれる核融合反応の実現を有利に促進する
技術として期待されている。BACKGROUND OF THE INVENTION The electrical conduction phenomenon, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic property. That is, under superconductivity, there is no power loss at all even when current is passed through a superconductor, and a high-density current continues to flow forever. Therefore, for example, if superconductivity is applied to power transmission technology, the approximately 7%
This can significantly reduce unavoidable power transmission losses. In addition, in the field of power generation technology, MH
Along with D power generation and electric motors, it is expected to be a technology that advantageously promotes the realization of nuclear fusion reactions, which are said to consume more power than the power generator to start up.
また磁気浮上列車、電磁気推進船舶等の動力として、更
に、計測・医療の分野でもNMR1π中間子治療、高エ
ネルギー物理実験装置などへの利用が期待されている。It is also expected to be used as a power source for magnetic levitation trains, electromagnetic propulsion ships, etc., and also for use in NMR 1π meson therapy, high-energy physics experiment equipment, etc. in the measurement and medical fields.
更に、上述のような大型の装置における利用とは別に、
超電導材料は各種の電子素子への応用も提案されている
。代表的なものとしては、超電導材料どうしを弱く接合
した場合に印加電流によって量子効果が巨視的に現れる
ジョセフソン効果を利用した素子が挙げられる。トンネ
ル接合型ジョセフソン素子は、超電導材料のエネルギー
ギャップが小さいことから、極めて高速な低電力消費の
スイッチング素子として期待されている。また、電磁波
や磁場に対するジョセフソン効果が正確な量子現象とし
て現れることから、ジョセフソン素子を磁場、マイクロ
波、放射線等の超高感度センサとして利用することも期
待されている。更に、電子回路の集積度が高くなるにつ
れて単位面積当たりの消費電力が冷却能力の限界に達す
るものと見られている。そこで超高速計算機には超電導
素子の開発が要望されている。Furthermore, apart from the use in large-scale equipment as mentioned above,
Applications of superconducting materials to various electronic devices have also been proposed. A typical example is an element that utilizes the Josephson effect, in which quantum effects appear macroscopically due to applied current when superconducting materials are weakly bonded together. Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. Furthermore, as the degree of integration of electronic circuits increases, it is expected that power consumption per unit area will reach the limit of cooling capacity. Therefore, there is a need for the development of superconducting elements for ultra-high-speed computers.
従来、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb、Geの23Kを越
えることができなかった。これに対して、1986年に
、ベドノーツおよびミューラー等によって、複合酸化物
系超電導材料が高いTcを有することが発見されるに至
って、高温超電導の可能性が大きく開けてきた( Be
dnorz、 Mtlller、”Z、Phys。Conventionally, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K for Nb and Ge for a long period of time. On the other hand, in 1986, Bednautz and Mueller et al. discovered that complex oxide superconducting materials have a high Tc, greatly opening up the possibility of high-temperature superconductivity (Be
dnorz, Mtller, “Z, Phys.
864、1986.189” )。864, 1986.189”).
これまでにも複合酸化物系のセラミック材料が超電導特
性を示すということ自体は知られていた。It has been known for some time that composite oxide ceramic materials exhibit superconducting properties.
例えば、米国特許第3.932.315号には、Ba
−Pb −Bi系の複合酸化物が超電導特性を示すとい
うことが記載されており、また、特開昭60−173.
885号公報にはBa−B1系の複合酸化物が超電導特
性を示すということが記載されている。しかし、これま
でに知られていた複合酸化物超電導材料のT。は、10
に以下と全般的に極めて低く、超電導現象を得るには高
価且つ稀少な液体ヘリウム(沸点4.2 K )の使用
が不可避であった。For example, in U.S. Pat. No. 3.932.315, Ba
It has been described that -Pb-Bi-based composite oxides exhibit superconducting properties, and also in JP-A-60-173.
Publication No. 885 describes that a Ba-B1-based composite oxide exhibits superconducting properties. However, the T of the complex oxide superconducting materials known so far. is 10
In order to obtain the superconducting phenomenon, the use of expensive and rare liquid helium (boiling point 4.2 K) was unavoidable.
ベドノーツおよびミューラー等によって発見された酸化
物超電導体は、(La、 Ba) 2cu 04なる組
成を有し、K2NiF、型の結晶構造を有するものと見
られている。この複合酸化物系超電導材料は、従来から
知られていたペロブスカイト型酸化物系超電導材料と結
晶構造が類似しているが、Toは従来の超電導材料に比
べて飛躍的に高い約30にという値であった。The oxide superconductor discovered by Bednautz and Mueller et al. has a composition of (La, Ba) 2cu 04 and is thought to have a K2NiF type crystal structure. This composite oxide-based superconducting material has a crystal structure similar to that of previously known perovskite-type oxide-based superconducting materials, but its To value is approximately 30, which is significantly higher than that of conventional superconducting materials. Met.
また、1987年2月に、チュー等によって90に級の
臨界温度を示すHa−Y−Cu系の複合酸化物が発見さ
れた。このYBCOと通称される複合酸化物はY +B
a2Cuz Ch−xで表される組成を有すると考えら
れている。Furthermore, in February 1987, Chu et al. discovered a Ha-Y-Cu-based composite oxide that exhibits a critical temperature of 90 degrees. This complex oxide commonly known as YBCO is Y + B
It is thought to have a composition represented by a2Cuz Ch-x.
更に、続いて発見されたBi −5r −Ca−Cu系
およびTI −Ba −(、a−Cu系複合酸化物は、
Tcが100に以上であるばかりでなく化学的にも安定
しており、YBCO等のような超電導特性の経時的劣化
が少ないことから実用に向いているのではないかと期待
されている。Furthermore, the subsequently discovered Bi-5r-Ca-Cu-based and TI-Ba-(, a-Cu-based composite oxides were
Not only does it have a Tc of 100 or more, but it is also chemically stable, and its superconducting properties do not deteriorate over time as much as YBCO and the like, so it is expected to be suitable for practical use.
これらの新しい複合酸化物系超電導材料の発見によって
高温超電導体実現の機運が昨今俄かに高まっている。The discovery of these new composite oxide-based superconducting materials has recently increased the momentum for realizing high-temperature superconductors.
発明が解決しようとする課題
ところで、今日の電子技術分野で広く使用されている半
導体集積回路は、一般にシリコン等の半導体単結晶基板
上に絶縁膜を形成し、更に所定のパターンに従って熱拡
散、イオン注入等のドーピングを行う等して所望の素子
あるいは回路を形成している。このような回路における
配線パターンは、金属材料を蒸着することにより形成さ
れているが、断面積が非常に微小であることから信号電
流の損失が極めて大きい。また、電流の損失は熱として
放散されるので、従来の技術を使用する限り、集積度あ
るいは動作速度には限界がある。Problems to be Solved by the Invention Incidentally, semiconductor integrated circuits widely used in today's electronic technology field generally form an insulating film on a semiconductor single crystal substrate such as silicon, and then heat diffusion and ionization according to a predetermined pattern. A desired element or circuit is formed by performing doping such as implantation. The wiring patterns in such circuits are formed by vapor-depositing metal materials, but their cross-sectional areas are extremely small, resulting in extremely large signal current losses. Furthermore, since current loss is dissipated as heat, there is a limit to the degree of integration or operating speed using conventional techniques.
従って、このうよな集積回路の分野において、配線を超
電導化することによって、これらの集積回路の特性の限
界を越えることが可能になる。Therefore, in the field of integrated circuits, by making wiring superconducting, it becomes possible to overcome the limits of the characteristics of these integrated circuits.
また、超電導体と半導体とを組み合わせたトランジスタ
ーやホットエレクトロントランジスター等の超電導体と
半導体を組み合わせた素子、あるいはジョセフソン素子
等の超電導現象を利用した素子が種々提案されているが
、具体的にこれを作製し得る部材は現在知られていない
。In addition, various devices have been proposed that combine superconductors and semiconductors, such as transistors that combine superconductors and semiconductors, hot electron transistors, and devices that utilize superconductivity phenomena such as Josephson devices. Currently, there are no known members that can be used to make this.
そこで、本発明の目的は、超電導配線あるいは超電導素
子の作製に使用することのできる超電導層を含む新規な
半導体基板を提供することにある。Therefore, an object of the present invention is to provide a novel semiconductor substrate including a superconducting layer that can be used for producing superconducting wiring or superconducting elements.
問題点を解決するための手段
本発明に従い、酸化物基板と、該基板上に形成された酸
化物超電導層と、該酸化物超電導材料層の上に形成され
たSi単結晶層とを具備することを特徴とする半導体基
板が提供される。Means for Solving the Problems According to the present invention, an oxide substrate, an oxide superconducting layer formed on the substrate, and a Si single crystal layer formed on the oxide superconducting material layer are provided. A semiconductor substrate is provided.
作用
本発明に係る半導体基板は、酸化物基板上に形成された
複合酸化物超電導体層と、この複合酸化物系超電導材料
層の上に形成されたSi層とをそれぞれ具備することを
その主要な特徴としており、超電導現象を利用した新規
な半導体デバイスの基本材料となるものである。The main feature of the semiconductor substrate according to the present invention is that it includes a composite oxide superconductor layer formed on an oxide substrate and a Si layer formed on this composite oxide superconducting material layer. These characteristics make it a basic material for new semiconductor devices that utilize superconductivity phenomena.
尚、上記Si単結晶層を積層する前に、超電導薄膜上に
バッファ層を形成させることも好ましい。It is also preferable to form a buffer layer on the superconducting thin film before laminating the Si single crystal layer.
このバッファ層は、半導体を構成する原子、分子が超電
導体薄膜内に拡散するのを防止したり、また、半導体単
結晶層を形成し易くさせる機能を有する。従って、格子
定数が、積層する半導体単結晶のそれと近いことが好ま
しい。上記のバッファ層としては、例えばptが好まし
い。This buffer layer has the function of preventing atoms and molecules constituting the semiconductor from diffusing into the superconductor thin film and facilitating the formation of a semiconductor single crystal layer. Therefore, it is preferable that the lattice constant is close to that of the semiconductor single crystals to be laminated. For example, PT is preferable as the buffer layer.
即ち、本発明に係る半導体基板を加工することによって
、複合酸化物系超電導材料を配線材料としたS1集積回
路を作製することができるのみならず、複合酸化物超電
導体の部分にジョセフソン接合を形成した半導体デバイ
スあるいは半導体基板と超電導体とを組み合わせた超電
導トランジスタやホットエレクトロントランジスタのよ
うな新規な超電導素子を形成するための集積回路基板あ
るいはデバイス用基材として用いることができる。That is, by processing the semiconductor substrate according to the present invention, it is not only possible to fabricate an S1 integrated circuit using a composite oxide superconducting material as a wiring material, but also to form a Josephson junction in the composite oxide superconductor portion. It can be used as an integrated circuit substrate or device substrate for forming a semiconductor device or a new superconducting element such as a superconducting transistor or hot electron transistor that combines a semiconductor substrate and a superconductor.
本発明に係る半導体基板において超電導材料層を形成す
る超電導材料としては、Y −Ba−Cu系あるいはT
l −Ba −Ca−Cu系に代表される酸素欠陥ペロ
ブスカイト結晶構造を有する複合酸化物系超電導材料が
有利に使用できるがこれに限定されるものではなく、公
知の超電導体の中から任意のものを選択して使用するこ
とが可能である。The superconducting material forming the superconducting material layer in the semiconductor substrate according to the present invention may be Y-Ba-Cu based or T
Composite oxide-based superconducting materials having an oxygen-deficient perovskite crystal structure represented by the l-Ba-Ca-Cu system can be advantageously used, but are not limited thereto, and any known superconductor may be used. It is possible to select and use.
尚、これらの複合酸化物系超電導材料は一般に特定の結
晶構造においてのみ優れた超電導特性を発揮することか
ら、その作製に当たっては基板として酸化物系の基板を
使用することが好ましい。In addition, since these composite oxide-based superconducting materials generally exhibit excellent superconducting properties only in a specific crystal structure, it is preferable to use an oxide-based substrate as the substrate when producing them.
即ち、例として上述のY −Ba =Cu系酸化物超電
導材料について説明すると、この複合酸化物系超電導材
料では、結晶のa軸およびb軸で決定される面に平行な
方向に電流が流れ易い。MgO単結晶基板または5rT
i03単結晶基板の(001)面を成膜面として用いる
と、該成膜面上に形成された複合酸化物超電導体薄膜は
、その結晶のC軸が基板成膜面に対し垂直または垂直に
近い角度となるため特に臨界電流密度Jcが大きくなる
。そこで、MgO単結晶基板またはSrTiO3単結晶
基板の(001)面を成膜面として用いることが好まし
い。また、(110)基板を用いて、C軸を基板と平行
にすることにより、膜の深さ方向にも高電流密度を得る
ことが可能である。さらに、MgOおよび5rTiO,
は、熱膨張率が上記の複合酸化物超電導体と近いため加
熱−冷却の過程で薄膜に不必要な応力を加えることがな
く、薄膜を破損する恐れもない。That is, to explain the above-mentioned Y-Ba = Cu-based oxide superconducting material as an example, in this composite oxide-based superconducting material, current tends to flow in a direction parallel to the plane determined by the a-axis and b-axis of the crystal. . MgO single crystal substrate or 5rT
When the (001) plane of the i03 single crystal substrate is used as the film formation surface, the composite oxide superconductor thin film formed on the film formation surface has a crystal C axis that is perpendicular or perpendicular to the substrate film formation surface. Since the angles are close to each other, the critical current density Jc becomes particularly large. Therefore, it is preferable to use the (001) plane of the MgO single crystal substrate or the SrTiO3 single crystal substrate as the film forming surface. Furthermore, by using a (110) substrate and making the C axis parallel to the substrate, it is possible to obtain a high current density also in the depth direction of the film. Furthermore, MgO and 5rTiO,
Since the coefficient of thermal expansion is close to that of the above composite oxide superconductor, unnecessary stress is not applied to the thin film during the heating-cooling process, and there is no risk of damaging the thin film.
更に、本発明に係る半導体基板に使用できる基板材料と
しては、MgO単結晶基板、5rTiO+単結晶基板、
Al2O3単結晶基板、いNbO3単結晶基板、L i
Ta O3単結晶基板またはZrO2単結晶基板等を好
ましいものとして挙げることができる。Furthermore, substrate materials that can be used for the semiconductor substrate according to the present invention include MgO single crystal substrate, 5rTiO+ single crystal substrate,
Al2O3 single crystal substrate, NbO3 single crystal substrate, Li
Preferred examples include a TaO3 single crystal substrate or a ZrO2 single crystal substrate.
また、本発明の半導体基板における超電導材料層を形成
する材料としては、
一般式: (α、−ウβX)γ、02
(但し、αは周期律表[a族に含まれる元素であり、β
は周期律表■、a族に含まれる元素であり、Tは周期律
表Ib、IIb、mb、I’Vaおよび■族から選択さ
れる少な(とも一つの元素であり、x、y、zはそれぞ
れ0.1≦X≦0.9.0.4≦y≦3.0.1≦2≦
5を満たす数である)
で示される組成を有し、ペロブスカイト型または擬似ペ
ロブスカイト型酸化物を主体としたものが挙げられる。Further, the material forming the superconducting material layer in the semiconductor substrate of the present invention has the general formula: (α, -UβX)γ,02 (where α is an element included in group a of the periodic table, and β
is an element included in group ■, a of the periodic table, and T is an element selected from group Ib, IIb, mb, I'Va, and group ■ of the periodic table (both are one element, are 0.1≦X≦0.9.0.4≦y≦3.0.1≦2≦, respectively.
Examples include those having a composition represented by the formula (a number satisfying 5) and mainly consisting of perovskite or pseudo-perovskite oxides.
ここで、上記周期律表[a族元素αとしては、Ba、
Sr、 Ca、 Mg、 Be等を具体的に例示するこ
とができ、更に、特に好ましい元素としてBa、 Sr
を挙げることができ、更に、元素αの10〜80%をM
g1Ca、 Srから選択された1種または2種の元素
で置換することもできる。Here, the periodic table [group a elements α include Ba,
Specific examples include Sr, Ca, Mg, Be, etc., and particularly preferable elements include Ba, Sr, etc.
Furthermore, 10 to 80% of the element α is M
It can also be replaced with one or two elements selected from g1Ca and Sr.
上記元素βとしては、Yの他La5Sc、 Ce、 G
d。In addition to Y, the above element β includes La5Sc, Ce, and G.
d.
Ho、 Er、 Tm、 Yb、 Lu等が具体的に例
示でき、特に好ましいものとしてY、 La、 Ho等
を挙げることができ、更に、元素βのうち、10〜80
%をScまたはランタンイド元素から選択された1種ま
たは2種の元素で置換することもできる。Specific examples include Ho, Er, Tm, Yb, Lu, etc., and particularly preferable ones include Y, La, Ho, etc., and furthermore, among the elements β, 10 to 80
% can also be replaced with one or two elements selected from Sc or lanthanide elements.
元素Tは一般にCuであるが、他にAI、 Fe、 C
o、N1、Zn、 Ag、 Ti等を使用することもで
き、更に、その一部を周期律表Ib、[b、I]Ib、
IVaおよび■族から選択される他の元素、例えば、T
1、■等で置換することもできる。Element T is generally Cu, but may also include AI, Fe, C
o, N1, Zn, Ag, Ti, etc. can also be used, and furthermore, some of them are listed in the periodic table Ib, [b, I] Ib,
IVa and other elements selected from group II, such as T
It can also be replaced with 1, ■, etc.
また、本発明に係る半導体基板の超電導材料層に適用で
きる他の有利な材料として、
式:α4(βl−111Cax)mCuhOp+y(こ
こで、αはBiまたはT1であり、βはαがBiのとき
はSrであり、αがTlのときはBaであり、
mは6≦m≦10を満たし、
nは4≦n≦8を満たし、
p=5+m+nであり、
Xは0.2<x<0.8を満たし、
yは一2≦y≦2を満たす数を表す)
で表される組成の複合酸化物超電導体を挙げることがで
きる。Other advantageous materials that can be applied to the superconducting material layer of the semiconductor substrate according to the present invention include the formula: α4(βl-111Cax)mCuhOp+y, where α is Bi or T1 and β is when α is Bi. is Sr, and when α is Tl, it is Ba, m satisfies 6≦m≦10, n satisfies 4≦n≦8, p=5+m+n, and X is 0.2<x<0. .8, and y represents a number satisfying -2≦y≦2).
尚、本発明に係る半導体基板を作製するには、以下の手
順によることが好ましい。上記のいずれかの酸化物基板
上に、スパッタリング、真空蒸着、分子線エピタキシ、
イオンビーム蒸着等の物理蒸着法または熱CVD法、プ
ラズマCVD法、光CVD法、MoCVD法等のCVD
法で複合酸化物超電導体薄膜を形成する。物理蒸着法と
しては、特にマグネトロンスパッタリングが好ましい。In addition, in order to produce the semiconductor substrate according to the present invention, it is preferable to use the following procedure. Sputtering, vacuum evaporation, molecular beam epitaxy,
Physical vapor deposition method such as ion beam evaporation or CVD method such as thermal CVD method, plasma CVD method, optical CVD method, MoCVD method, etc.
method to form a composite oxide superconductor thin film. As the physical vapor deposition method, magnetron sputtering is particularly preferred.
また、成膜後、酸素雰囲気中で熱処理を行うとかあるい
は酸素プラズマに曝す等の後処理を行い、上記の薄膜を
構成している複合酸化物超電導体結晶中の酸素濃度を適
正に調整することが好ましい。In addition, after the film is formed, post-treatment such as heat treatment in an oxygen atmosphere or exposure to oxygen plasma is performed to appropriately adjust the oxygen concentration in the composite oxide superconductor crystal that constitutes the above-mentioned thin film. is preferred.
これらの処理を行った後、CVD法、MBE法等の公知
の方法で半導体単結晶層を該超電導薄膜上に積層する。After performing these treatments, a semiconductor single crystal layer is laminated on the superconducting thin film by a known method such as a CVD method or an MBE method.
いずれの方法を使用する場合でも、雰囲気、基板温度に
注意し、超電導体の特性を損なわないようにしなければ
ならない。Whichever method is used, care must be taken to maintain the atmosphere and substrate temperature so as not to impair the properties of the superconductor.
また、本発明の超電導体層を有する半導体基板を用いて
、半導体素子を作製する場合は、超電導体薄膜をエツチ
ング等で必要な形状に予め加工した上で、半導体層を形
成することも好ましい。しかしながら、本発明の超電導
体層を有する半導体基板は、表面が81半導体であるの
で従来公知の技術を利用して微細加工することも可能で
ある。Furthermore, when producing a semiconductor element using a semiconductor substrate having a superconductor layer of the present invention, it is also preferable to form the semiconductor layer after processing the superconductor thin film into a required shape by etching or the like in advance. However, since the surface of the semiconductor substrate having the superconductor layer of the present invention is an 81 semiconductor, it is also possible to microfabricate it using conventionally known techniques.
以下、本発明を実施例により具体的に説明するが、以下
に記載するものは本発明の単なる実施例に過ぎず、以下
の開示により、本発明の範囲が何等制限されないことは
勿論である。Hereinafter, the present invention will be specifically explained with reference to examples, but what is described below are merely examples of the present invention, and it goes without saying that the scope of the present invention is not limited in any way by the following disclosure.
実施例
Siの半導体単結晶層を複合酸化物超電導体薄膜上に形
成し、本発明の超電導体層を有する半導体基板を作製し
た。A semiconductor single crystal layer of Example Si was formed on a composite oxide superconductor thin film to produce a semiconductor substrate having a superconductor layer of the present invention.
YBa2Cu4. s Ox焼結体粉末およびHoBa
2.3Cu4.70xをターゲットとして、MgO単結
晶基板および5rTiO。YBa2Cu4. s Ox sintered powder and HoBa
2.3Cu4.70x as target, MgO single crystal substrate and 5rTiO.
単結晶基板のそれぞれ(100)面に、公知のマグネト
ロンスパッタリング法により、複合酸化物超電導体薄膜
を形成した。基板とターゲットの位置関係および高周波
電力の大きさに特に注意し、基板温度700℃でスパッ
タリングを行い、複合酸化物超電導体層を1000人ま
で成長させた。A composite oxide superconductor thin film was formed on each (100) plane of the single crystal substrate by a known magnetron sputtering method. Particular attention was paid to the positional relationship between the substrate and the target and the magnitude of the high-frequency power, and sputtering was performed at a substrate temperature of 700°C to grow a composite oxide superconductor layer of up to 1,000 layers.
超電導薄膜成膜後、1気圧の酸素雰囲気中で、850℃
まで加熱し1時間だもってから、400℃まで3℃/分
の冷却速度で降温し、400℃から室温までは10℃/
分の冷却速度で冷却した。After forming a superconducting thin film, temperature at 850°C in an oxygen atmosphere of 1 atm.
After heating for 1 hour, the temperature was lowered to 400℃ at a cooling rate of 3℃/min, and from 400℃ to room temperature at a cooling rate of 10℃/min.
Cooled at a cooling rate of 1 minute.
その後C,VD法により、それぞれの超電導薄膜上にS
i半導体単結晶層を形成する。After that, S was deposited on each superconducting thin film using the C and VD methods.
i Form a semiconductor single crystal layer.
上記のように作製した本発明の超電導体層を有する半導
体基板は、いずれのものも半導体と超電導体との界面の
状態がよく、半導体デバイス材料として優れた特性を有
していた。また、それぞれの試料の超電導体層の超電導
臨界温度を以下の第1表に示す。尚、第1表において、
Tcoは、試料の電気抵抗が急激に低下し始めた温度を
、Tciは電気抵抗が測定できなくなった温度をそれぞ
れ示している。All of the semiconductor substrates having the superconductor layer of the present invention produced as described above had a good interface between the semiconductor and the superconductor, and had excellent properties as a semiconductor device material. Further, the superconducting critical temperature of the superconductor layer of each sample is shown in Table 1 below. Furthermore, in Table 1,
Tco indicates the temperature at which the electrical resistance of the sample begins to drop rapidly, and Tci indicates the temperature at which the electrical resistance can no longer be measured.
第1表
周波伝送あるいは高速動作を実現することができる。ま
た、電流損失による発熱も少なくなることからより高い
集積度を実現することもできる。Table 1 frequency transmission or high-speed operation can be realized. Furthermore, since heat generation due to current loss is reduced, a higher degree of integration can be achieved.
また、ジョセフソン素子あるいはホットエレクトロント
ランジスタ等の超電導デバイスの作製にも使用すること
が可能であり、超電導技術の応用において極めて有効で
ある。Furthermore, it can be used to fabricate superconducting devices such as Josephson devices or hot electron transistors, and is extremely effective in the application of superconducting technology.
特許出願人 住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.
Claims (1)
、該酸化物超電導材料層の上に形成されたSi単結晶層
とを具備することを特徴とする半導体基板。A semiconductor substrate comprising an oxide substrate, an oxide superconducting layer formed on the substrate, and a Si single crystal layer formed on the oxide superconducting material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63278627A JPH02389A (en) | 1987-11-04 | 1988-11-04 | Semiconductor substrate with superconductor layer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-278658 | 1987-11-04 | ||
JP27865887 | 1987-11-04 | ||
JP63278627A JPH02389A (en) | 1987-11-04 | 1988-11-04 | Semiconductor substrate with superconductor layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02389A true JPH02389A (en) | 1990-01-05 |
Family
ID=26552956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63278627A Pending JPH02389A (en) | 1987-11-04 | 1988-11-04 | Semiconductor substrate with superconductor layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02389A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173474A (en) * | 1990-04-18 | 1992-12-22 | Xerox Corporation | Silicon substrate having an epitaxial superconducting layer thereon and method of making same |
-
1988
- 1988-11-04 JP JP63278627A patent/JPH02389A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173474A (en) * | 1990-04-18 | 1992-12-22 | Xerox Corporation | Silicon substrate having an epitaxial superconducting layer thereon and method of making same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2501620B2 (en) | Preparation method of superconducting thin film | |
JPH02389A (en) | Semiconductor substrate with superconductor layer | |
JPH02391A (en) | Superconductive field-effect transistor | |
JP2544759B2 (en) | How to make a superconducting thin film | |
JP2797186B2 (en) | Semiconductor substrate having superconductor layer | |
JPH02390A (en) | Semiconductor substrate with superconductor layer | |
JPH02388A (en) | Semiconductor substrate with superconductor layer | |
JP2544760B2 (en) | Preparation method of superconducting thin film | |
JPH01170059A (en) | Semiconductor substrate having superconductor layer | |
JPH01170060A (en) | Semiconductor substrate having superconductor layer | |
JP2544761B2 (en) | Preparation method of superconducting thin film | |
JPH01170063A (en) | Semiconductor substrate having superconductor layer | |
JPH01170058A (en) | Semiconductor substrate having superconductor layer | |
JPH01170065A (en) | Semiconductor substrate having superconductor layer | |
JPH01170061A (en) | Semiconductor substrate having superconductor layer | |
JPH01280378A (en) | Semiconductor substrate having superconductor layer | |
JPH01170057A (en) | Semiconductor substrate having superconductor layer | |
JPH0829938B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JPH01280377A (en) | Semiconductor substrate having superconductor layer | |
JPH01170066A (en) | Semiconductor substrate equipped with superconductor layer | |
JPH01170078A (en) | Semiconductor substrate provided with superconductor layer | |
JPH01170062A (en) | Semiconductor substrate having superconductor layer | |
JPH01173661A (en) | Semiconductor substrate containing superconductor layer | |
JPH01170067A (en) | Semiconductor substrate equipped with superconductor layer | |
JPH01264911A (en) | Formation of thin composite oxide superconducting film |