JPH03210711A - Manufacture of oxide superconductive conductor - Google Patents

Manufacture of oxide superconductive conductor

Info

Publication number
JPH03210711A
JPH03210711A JP2004219A JP421990A JPH03210711A JP H03210711 A JPH03210711 A JP H03210711A JP 2004219 A JP2004219 A JP 2004219A JP 421990 A JP421990 A JP 421990A JP H03210711 A JPH03210711 A JP H03210711A
Authority
JP
Japan
Prior art keywords
substrate
buffer layer
oxide superconductor
layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219A
Other languages
Japanese (ja)
Inventor
Isanori Sato
功紀 佐藤
Nakahiro Harada
原田 中裕
Chikuyuki Hara
原 築志
Kiyoshi Okaniwa
岡庭 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004219A priority Critical patent/JPH03210711A/en
Publication of JPH03210711A publication Critical patent/JPH03210711A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain a high critical temperature and critical current density by precipitating buffer layer material on a substrate held at a low temperature to make the surface of a buffer layer in the form of smooth amolphous, and heating and holding the substrate at a high temperature at which oxide superconductive conductor is precipitated on the buffer layer with C-axis orientation. CONSTITUTION:A buffer layer 2 and an oxide superconductive conductor layer 3 are laminated on a substrate 1 in order, or the buffer layers and the superconductive conductor layers are laminated on both surfaces of the substrate respectively. For this, the buffer layer having a smooth amorphous surface is precipitated on the substrate held at 350 deg.C or less, and the substrate is then held at a high temperature of 600 deg.C or over for precipitating oxide superconductive conductor. Superconductive conductor which is rich for C-axis orientation and having a high critical temperature and critical current density can thus be obtained, thereby a conductor preferable for a power cable, coil, etc., can be provided.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、パワーケーブルやコイル等の導体に遺した酸
化物超電導々体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an oxide superconductor in a conductor such as a power cable or a coil.

〔従来の技術) 近年、液体窒素温度で超電導となるY−Ba−Cu−0
系、B1−3r−Ca−Cu−0系等の酸化物超電導体
が見出され各分野での応用研究が活発になされている。
[Prior art] In recent years, Y-Ba-Cu-0 becomes superconducting at liquid nitrogen temperature.
Oxide superconductors such as the B1-3r-Ca-Cu-0 series and the B1-3r-Ca-Cu-0 series have been discovered, and applied research in various fields is being actively conducted.

ところで、これらの酸化物超電導体は脆い為、ケーブル
やコイル等の導体として用いるには、例えば可撓性を有
する金属基体上に酸化物超電導体を膜状に形成して導体
となす方法が研究されている。而して上記の金属基体上
に酸化物超電導体を形成する方法としては、PVDやC
VD等の気相析出法が主に用いられているが、金属基体
上に酸化物超電導体を直接析出させると金属基体中の有
害物質が酸化物超電導体層に拡散して超電導特性を劣化
させるので、金属基体上にバッファ層を形成し、その上
に酸化物超電導体を形成して金属基体中の有害物質が酸
化物超電導体層に拡散するのを防止していた。又上記に
おいてバッファ層を基体上に形成するに当っては、バッ
ファ層材を高温に加熱した基体上に気相析出させるか、
又はバッファ層材を基体上に室温で気相析出させたのち
高温にて熱処理して、バッファ層を(00、ffi )
面が基体と平行になるように結晶配向させて、後の酸化
物超電導体層が上記のバッファ層上に電流の流れ昌いC
軸配向して析出するようにしていた。
By the way, these oxide superconductors are brittle, so in order to use them as conductors for cables, coils, etc., research is underway on methods of forming oxide superconductors into a film on a flexible metal substrate. has been done. As a method for forming an oxide superconductor on the above-mentioned metal substrate, PVD and C
Vapor phase deposition methods such as VD are mainly used, but when oxide superconductors are directly deposited on metal substrates, harmful substances in the metal substrate diffuse into the oxide superconductor layer, degrading superconducting properties. Therefore, a buffer layer is formed on a metal substrate and an oxide superconductor is formed on the buffer layer to prevent harmful substances in the metal substrate from diffusing into the oxide superconductor layer. In addition, in forming the buffer layer on the substrate in the above, the buffer layer material is deposited in a vapor phase on the substrate heated to a high temperature, or
Alternatively, the buffer layer material is vapor-deposited on the substrate at room temperature and then heat-treated at high temperature to form the buffer layer (00, ffi).
The crystals are oriented so that the plane is parallel to the substrate, and the subsequent oxide superconductor layer is placed on the buffer layer with a current flow direction C.
It was made to precipitate with axial orientation.

(発明が解決しようとする課題〕 しかしながら、このようにバッファ層を、高温に加熱し
た基体上に形成したり、室温で形成したのち高温にて熱
処理したりすると、形成されたバッファ層は表面が凹凸
のある粗面となり、このようなバッファ層上に酸化物超
電導体を析出させると、形成された酸化物超電導体層は
C軸配向性が低下して、高いT、やJ、をもつものが得
られないという問題があった。
(Problem to be solved by the invention) However, when the buffer layer is formed on a substrate heated to a high temperature, or when it is formed at room temperature and then heat-treated at a high temperature, the surface of the formed buffer layer becomes When an oxide superconductor is deposited on such a buffer layer, the C-axis orientation of the formed oxide superconductor layer decreases, resulting in a rough surface with unevenness and high T and J. The problem was that it was not possible to obtain

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑み鋭意研究を行なった結果、パ
ンフ7層材を、室温又は比較的低い温度に保持した基体
上に析出せしめて形成すると、形成されたバッファ層は
表面平滑なアモルファス状となり、基体を所定温度に加
熱してこの表面平滑なアモルファス状のバッファ層上に
酸化物超電導体を析出させると形成された酸化物超電導
体層は高度にC軸配向したものとなることを知見し、更
に研究を重ねて本発明を完成させるに到ったものである
In view of this situation, the present invention has conducted extensive research and has found that when a seven-layer pamphlet material is deposited on a substrate kept at room temperature or a relatively low temperature, the formed buffer layer becomes amorphous with a smooth surface. discovered that when a substrate is heated to a predetermined temperature and an oxide superconductor is deposited on the amorphous buffer layer with a smooth surface, the oxide superconductor layer formed is highly C-axis oriented. After further research, the present invention was completed.

即ち本発明は、基体上にバッファ層及び酸化物超電導体
層を順次気相析出法により析出せしめてなる酸化物超電
導々体の製造方法において、350℃以下に保持した基
体上に、表面が平滑なアモルファス状にバッファ層材を
析出せしめてバッファ層を形成したのち、基体を600
℃以上の高温に保持しながら前記の表面平滑なアモルフ
ァス状のバッファ層上に酸化物超電導体を析出せしめる
ことを特徴とする酸化物超電導々体の製造方法である。
That is, the present invention provides a method for producing an oxide superconductor in which a buffer layer and an oxide superconductor layer are sequentially deposited on a substrate by a vapor phase deposition method. After depositing the buffer layer material in an amorphous form to form a buffer layer, the substrate was heated to 600 ml.
This is a method for producing an oxide superconductor, which comprises depositing an oxide superconductor on the amorphous buffer layer with a smooth surface while maintaining the temperature at a high temperature of .degree. C. or higher.

以下に本発明方法により製造される導体の構成を図を参
照して具体的に説明する。第1図は本発明方法により製
造される導体の一構成例を示す横断面図である。図にお
いて1は基体で、基体1上にバッファ層2及び酸化物超
電導体層3が順次形成されている。
The structure of a conductor manufactured by the method of the present invention will be specifically explained below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the structure of a conductor manufactured by the method of the present invention. In the figure, 1 is a base, on which a buffer layer 2 and an oxide superconductor layer 3 are sequentially formed.

第2図は、他の構成例を示す横断面図で、基体1の上下
両面にそれぞれバッファ層2と酸化物超電導体層3が順
次形成されていて、通電容量を高めたものである。
FIG. 2 is a cross-sectional view showing another configuration example, in which a buffer layer 2 and an oxide superconductor layer 3 are sequentially formed on the upper and lower surfaces of the base 1, respectively, to increase the current carrying capacity.

本発明方法において、バッファ層材を350℃以下の比
較的低温に保持した基体上に析出させる理由は、バッフ
ァ層材を表面平滑なアモルファス状に基体上に析出させ
る為であり、基体温度が350℃を超えるとバッファ層
材は結晶化して析出し表面に凹凸が生じるようになる。
In the method of the present invention, the reason why the buffer layer material is deposited on the substrate kept at a relatively low temperature of 350°C or less is to deposit the buffer layer material on the substrate in an amorphous state with a smooth surface. When the temperature exceeds .degree. C., the buffer layer material crystallizes and precipitates, resulting in unevenness on the surface.

又酸化物超電導体を、基体を600’C以上の高温に保
持しながら、上記バッファ層上に析出させる理由は、酸
化物超電導体をC軸配向して析出させる為であって、基
体温度が600″C未満ではC軸配向性が急激に低下す
る。
The reason why the oxide superconductor is deposited on the buffer layer while maintaining the substrate at a high temperature of 600'C or higher is to deposit the oxide superconductor with C-axis orientation, and the substrate temperature is If the temperature is less than 600''C, the C-axis orientation is rapidly decreased.

本発明方法において、基体にはハステロイ合金やSUS
等の金属材料が用いられる。又上記基体上に形成するバ
ッファ層には、耐熱性に優れ且つ基体及び酸化物超電導
体と非反応性の物質、例えばYSZ(Y安定化Zr0t
 )、MgO,5rTiO8等のセラミックスが適用さ
れる。又上記バ、7フア層上に形成する酸化物超電導体
にはY−Ba−Cu−0系、B1−3r−Ca−Cu−
0系、Tj!−Ba−Ca−Cu−0系等の任意の酸化
物超電導体が用いられる。
In the method of the present invention, the substrate is made of Hastelloy alloy or SUS.
Metal materials such as In addition, the buffer layer formed on the substrate is made of a material that has excellent heat resistance and is non-reactive with the substrate and the oxide superconductor, such as YSZ (Y-stabilized Zr0t).
), MgO, 5rTiO8, and other ceramics are used. In addition, the oxide superconductor formed on the above-mentioned B and 7 F layers includes Y-Ba-Cu-0 series, B1-3r-Ca-Cu-
0 series, Tj! Any oxide superconductor such as the -Ba-Ca-Cu-0 system can be used.

本発明方法において、バッファ層又は酸化物超電導体層
を形成する方法としては、イオンビームスパッタ法、ク
ラスターイオンビーム法、MOCVD法、RFマグネト
ロンスパ・ツタ法等の任意の気相析出法が適用できる。
In the method of the present invention, any vapor phase deposition method such as ion beam sputtering method, cluster ion beam method, MOCVD method, RF magnetron spa-vine method, etc. can be applied as a method for forming the buffer layer or oxide superconductor layer. .

〔作用〕[Effect]

本発明においては、バッファ層材を350℃以下の比較
的低温に保持した基体上に析出せしめるので、形成され
たバッファ層は表面平滑なアモルファス状となり、基体
を酸化物超電導体がC軸配向して析出する600℃以上
の高温に加熱保持しながら前記の表面平滑なアモルファ
ス状のバ・ンファ層上に酸化物超電導体を析出せしめる
ので、酸化物超電導体層はバッファ層上に極めて高度に
C軸配向して形成される。
In the present invention, the buffer layer material is deposited on the substrate kept at a relatively low temperature of 350°C or less, so the formed buffer layer has an amorphous shape with a smooth surface, and the oxide superconductor is C-axis oriented on the substrate. Since the oxide superconductor is deposited on the amorphous buffer layer with a smooth surface while being heated and held at a high temperature of 600°C or higher, the oxide superconductor layer has an extremely high carbon content on the buffer layer. Formed with axial orientation.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例I RFマグネトロンスパッタ装置を用い、室温に保持した
ハステロイ合金基体上にA r 2 mTorrの雰囲
気中でスパッタ電力100wをかけてMgOを0.4n
厚さにスパッタリングしてバッファ層となした。
Example I Using an RF magnetron sputtering device, 0.4n of MgO was sputtered onto a Hastelloy alloy substrate kept at room temperature by applying a sputtering power of 100W in an atmosphere of Ar 2 mTorr.
It was sputtered to a thickness to form a buffer layer.

次いで再びRFマグネトロンスパッタ装置を用いて基体
を650℃に加熱しながら上記のMgO層上にYBa、
Cu、O,組成の酸化物超電導体をAr:ozが1:1
の混合ガス100mTorrの雰囲気中でスパッタ電力
100wをかけて0.2μ厚さにスパッタリングしてY
系酸化物超電導々体を製造した。
Next, using the RF magnetron sputtering device again, YBa,
An oxide superconductor with a composition of Cu and O in an Ar:oz ratio of 1:1
Y
A system oxide superconductor was manufactured.

上記においてスパッタ用ターゲットにはY B a *
Cu5Ox組成の焼結体を用い、又酸化物超電導体のス
パッタリング後の導体は200℃に冷却したのち装置か
ら取出した。
In the above, the sputtering target has YB a *
A sintered body having a Cu5Ox composition was used, and the conductor after sputtering of an oxide superconductor was cooled to 200° C. and then taken out from the apparatus.

実施例2 RFマグネトロンスパンタ装置に代えて真空蒸着装置を
用い、又バッファ層としてZr0tを基体上に0.47
/Im厚さに真空蒸着して形成した他は実施例1と同じ
方法により酸化物超電導々体を製造した。
Example 2 A vacuum evaporation device was used instead of the RF magnetron spunter device, and Zr0t was deposited at 0.47% on the substrate as a buffer layer.
An oxide superconductor was manufactured by the same method as in Example 1 except that it was formed by vacuum deposition to a thickness of /Im.

上記においてZrO,層の形成は、ZrO□タブレット
に電子ビームを照射して行った。
In the above, the ZrO layer was formed by irradiating the ZrO□ tablet with an electron beam.

実施例3 実施例1において、基体に5IJS 410を用い、こ
の基体上にバッファ層として5rTiO,を0.2μ厚
さにスパッタリングして形成した他は実施例1と同じ方
法により酸化物超電導々体を製造した。
Example 3 An oxide superconductor was formed in the same manner as in Example 1, except that 5IJS 410 was used as the substrate and 5rTiO was sputtered to a thickness of 0.2μ as a buffer layer on this substrate. was manufactured.

尚、上記の5rTiOs層のスパッタ用ターゲットとし
ては5rTiOsの焼結体を用いた。
Incidentally, a sintered body of 5rTiOs was used as a sputtering target for the above-mentioned 5rTiOs layer.

実施例4 実施例1において、バッファ層をスパッタリングする際
の基体温度を300℃とした他は実施例1と同じ方法に
より酸化物超電導々体を製造した。
Example 4 An oxide superconductor was manufactured in the same manner as in Example 1 except that the substrate temperature was 300° C. when sputtering the buffer layer.

実施例5 実施例1において、酸化物超電導体をスパッタリングす
る際の基体温度を800℃とした他は実施例1と同じ方
法により酸化物超電導々体を製造した。
Example 5 An oxide superconductor was manufactured in the same manner as in Example 1 except that the substrate temperature during sputtering of the oxide superconductor was 800°C.

比較例1 実施例1において、ハステロイ合金基体上にスパッタリ
ングして設けたMgO層に、14!/sinの酸素気流
中にて900℃10分間の熱処理を施し、しかるのちこ
のMgO層上に酸化物超電導体をスパッタリングした他
は実施例1と同じ方法で酸化物超電導々体を製造した。
Comparative Example 1 In Example 1, the MgO layer provided by sputtering on the Hastelloy alloy substrate had 14! An oxide superconductor was produced in the same manner as in Example 1, except that heat treatment was performed at 900° C. for 10 minutes in an oxygen flow of /sin, and then the oxide superconductor was sputtered onto the MgO layer.

比較例2 実施例2において、ZrO,をスパッタリングする際ハ
ステロイ合金基体を900℃に加熱した他は実施例2と
同じ方法により酸化物超電導々体を製造した。
Comparative Example 2 An oxide superconductor was produced in the same manner as in Example 2, except that the Hastelloy alloy substrate was heated to 900° C. when sputtering ZrO.

比較例3 実施例3において、5tlS410基体上にスパッタリ
ングして設けた5rTiOs層に、11!/■inの酸
素気流中にて800℃10分間の熱処理を施し、しかる
のちこの5rTiOs層上に酸化物超電導体をスパッタ
リングした他は実施例1と同じ方法で酸化物超電導々体
を製造した。
Comparative Example 3 In Example 3, the 5rTiOs layer sputtered on the 5tlS410 substrate had 11! An oxide superconductor was produced in the same manner as in Example 1, except that heat treatment was performed at 800° C. for 10 minutes in an oxygen flow of 1/2 inch, and then the oxide superconductor was sputtered onto the 5rTiOs layer.

比較例4 実施例1において、バッファ層材をスパッタリングする
際の基体温度を450℃とした他は実施例1と同じ方法
により酸化物超電導々体を製造した。
Comparative Example 4 An oxide superconductor was manufactured by the same method as in Example 1 except that the substrate temperature was 450° C. when sputtering the buffer layer material.

比較例5 実施例1において、酸化物超電導体をスパッタリングす
る際の基体温度を550℃とした他は実施例1と同じ方
法により、酸化物超電導々体を製造した。
Comparative Example 5 An oxide superconductor was manufactured in the same manner as in Example 1 except that the substrate temperature during sputtering of the oxide superconductor was 550°C.

斯くの如くして得られた各々の酸化物超電導々体につい
て臨界温度(T、)及び臨界電流密度(Jc )を測定
した。又バッファ層及び酸化物超電導体層の表面粗度を
測定した。
The critical temperature (T) and critical current density (Jc) of each oxide superconductor thus obtained were measured. Furthermore, the surface roughness of the buffer layer and the oxide superconductor layer was measured.

尚、J、は直流4端子法により77Kにて測定した。結
果は主な製造条件を併記して第1表に示した。
Note that J was measured at 77K using a DC 4-terminal method. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように、本発明方法品(実施例1〜
5)は、バッファ層の表面が平滑な為、又このバッファ
層上に酸化物超電導体層を、基体を600℃以上の高温
に加熱保持しながら形成した為に、形成された酸化物超
電導体層はいずれもC軸配向性に冨み、依ってTc、J
cが高い値のものとなった。
As is clear from Table 1, the method products of the present invention (Examples 1 to 3)
5) is an oxide superconductor formed because the surface of the buffer layer is smooth and because the oxide superconductor layer was formed on the buffer layer while heating and maintaining the substrate at a high temperature of 600°C or higher. All layers are rich in C-axis orientation, so Tc, J
The value of c was high.

これに対し比較方法品の比較例1〜4は、バッファ層を
、基体を高温に加熱して形成するか又は室温で形成後高
温にて熱処理して形成した為に形成されたバッファ層は
表面に凹凸が生じて、又比較例5は酸化物超t!体をス
パッタリングした時の基体温度が低すぎた為、形成され
た酸化物超電導体層は、いずれもC軸配向性が低下して
Tc、JCが低い値のものとなった。
On the other hand, in Comparative Examples 1 to 4 of the comparative method products, the buffer layer was formed by heating the substrate to a high temperature, or by forming it at room temperature and then heat-treating it at a high temperature, so that the buffer layer formed was on the surface. In Comparative Example 5, the oxide supert! Since the substrate temperature was too low when the body was sputtered, the C-axis orientation of the formed oxide superconductor layers decreased, resulting in low Tc and JC values.

〔効果〕〔effect〕

以上述べたように、本発明方法によればC軸配向性に冨
みT、、Jcに優れた酸化物超電導々体を容易に製造す
ることができて、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, an oxide superconductor that is rich in C-axis orientation and excellent in T, .

【図面の簡単な説明】[Brief explanation of drawings]

第1及び2図は本発明方法により製造される酸化物超電
導々体の構成例を示すそれぞれ横断面図である。 1・・・基体、 2・・・バッファ層、 3・・・酸化
物超電導体層。
FIGS. 1 and 2 are cross-sectional views showing an example of the structure of an oxide superconductor manufactured by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Buffer layer, 3... Oxide superconductor layer.

Claims (1)

【特許請求の範囲】[Claims] 基体上にバッファ層及び酸化物超電導体層を順次気相析
出法により析出せしめてなる酸化物超電導々体の製造方
法において、350℃以下に保持した基体上に、表面が
平滑なアモルファス状にバッファ層材を析出せしめてバ
ッファ層を形成したのち、基体を600℃以上の高温に
保持しながら前記の表面平滑なアモルファス状のバッフ
ァ層上に酸化物超電導体を析出せしめることを特徴とす
る酸化物超電導々体の製造方法。
In a method for manufacturing an oxide superconductor in which a buffer layer and an oxide superconductor layer are sequentially deposited on a substrate by a vapor phase deposition method, a buffer layer is deposited in an amorphous form with a smooth surface on a substrate maintained at 350°C or less. After depositing a layer material to form a buffer layer, an oxide superconductor is deposited on the amorphous buffer layer with a smooth surface while maintaining the substrate at a high temperature of 600° C. or higher. A method for manufacturing a superconductor.
JP2004219A 1990-01-11 1990-01-11 Manufacture of oxide superconductive conductor Pending JPH03210711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219A JPH03210711A (en) 1990-01-11 1990-01-11 Manufacture of oxide superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219A JPH03210711A (en) 1990-01-11 1990-01-11 Manufacture of oxide superconductive conductor

Publications (1)

Publication Number Publication Date
JPH03210711A true JPH03210711A (en) 1991-09-13

Family

ID=11578499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219A Pending JPH03210711A (en) 1990-01-11 1990-01-11 Manufacture of oxide superconductive conductor

Country Status (1)

Country Link
JP (1) JPH03210711A (en)

Similar Documents

Publication Publication Date Title
JP2711253B2 (en) Superconducting film and method for forming the same
JPH0284782A (en) Manufacture of josephson element
JPS63242532A (en) Super conductor and its manufacture
JPS63239742A (en) Manufacture for film superconductor
JPH03210711A (en) Manufacture of oxide superconductive conductor
JPH0221676A (en) Tunnel junction between superconductors
JPH026394A (en) Superconductive thin layer
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPH01167221A (en) Production of superconducting thin film
JP3061634B2 (en) Oxide superconducting tape conductor
JPH0446098A (en) Superconducting member
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH04342497A (en) Method for forming complex oxide superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JP3038758B2 (en) Method for producing oxide superconducting thin film
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JPH01184266A (en) Manufacture of oxide superconductor formed body
JPH0412005A (en) Production of oxide superconductive material
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JPH01105416A (en) Manufacture of thin film superconductor
JPH03261608A (en) Manufacture of high-temperature superconducting thin film
JPH04330789A (en) Method of forming superconducting junction using oxide superconductor
JPH03261607A (en) Manufacture of high-temperature superconducting thin film