JPS63222347A - Method and device for reproduction - Google Patents

Method and device for reproduction

Info

Publication number
JPS63222347A
JPS63222347A JP5585187A JP5585187A JPS63222347A JP S63222347 A JPS63222347 A JP S63222347A JP 5585187 A JP5585187 A JP 5585187A JP 5585187 A JP5585187 A JP 5585187A JP S63222347 A JPS63222347 A JP S63222347A
Authority
JP
Japan
Prior art keywords
semiconductor
electrode
voltage
recording
probe electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5585187A
Other languages
Japanese (ja)
Other versions
JP2603241B2 (en
Inventor
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Hiroshi Matsuda
宏 松田
Yuuko Morikawa
森川 有子
Takashi Nakagiri
孝志 中桐
Takashi Hamamoto
浜本 敬
Masaki Kuribayashi
正樹 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62055851A priority Critical patent/JP2603241B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP93200792A priority patent/EP0555941B1/en
Priority to DE3752180T priority patent/DE3752180T2/en
Priority to EP87311397A priority patent/EP0272935B1/en
Priority to DE3752099T priority patent/DE3752099T2/en
Priority to EP93200793A priority patent/EP0551964B1/en
Priority to EP93200797A priority patent/EP0551966B1/en
Priority to DE3752269T priority patent/DE3752269T2/en
Priority to DE3789373T priority patent/DE3789373T2/en
Publication of JPS63222347A publication Critical patent/JPS63222347A/en
Priority to US08/482,789 priority patent/US5623476A/en
Application granted granted Critical
Publication of JP2603241B2 publication Critical patent/JP2603241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the capacity of reproduction and to reduce the cost thereof by using a semiconductor having an electric memory effect as one electrode and impressing the voltage which does not exceed the threshold voltage between said electrode and a probe electrode making a pair therewith thereby executing the reproduction of memory. CONSTITUTION:A recording medium 1 having a recording layer 101 consisting of chalcogenide glass is placed on an X-Y stage 114 and the voltage is impressed between the substrate electrode 103 and the probe electrode 102. Current is then monitored and the fine adjustment by fine adjustment control mechanism 107 is executed by adjusting the distance between the electrode 102 and the surface of the layer 101. The stage 114 is then moved at specified interval and the writing recording is executed by impressing the square pulse voltage above the threshold voltage between the electrodes. The reproduction of the recording is executed by impressing the voltage which does not exceed the threshold voltage between the electrode 102 and the electrode 103 and reading the change in the quantity of the current flowing in the electrode 102. the capacity of the reproduction is thereby increased and the cost thereof is reduced.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は再生装置に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a playback device.

更に詳しくは一方をプローブ電極とした一対の電極間に
電圧電流のスイッチング特性に対してメモリー効果をも
つ半導体に記録された情報を再生する再生装置に関する
More specifically, the present invention relates to a reproducing device for reproducing information recorded on a semiconductor having a memory effect on the switching characteristics of voltage and current between a pair of electrodes, one of which is a probe electrode.

〔背景技術〕[Background technology]

近年メモリー材料の用途は、コンピュータおよびその関
連機器、ビデオディスク、ディジタルオーディオディス
ク等のエレクトロニクス産業の中核をなすものであり、
その材料開発も極めて活発に進んでいる。メモリー材料
に要求される性能は用途により異なるが、一般的には、 ■高密度で記録容量が大きい、 ■記録再生の応答速度が速い、 ■消費電力が少ない、 ■生産性が高く、価格が安い、 等が挙げられる。
In recent years, the use of memory materials has become a core part of the electronics industry, including computers and related equipment, video disks, digital audio disks, etc.
The development of these materials is also progressing very actively. The performance required of memory materials varies depending on the application, but in general, they are: ■High density and large recording capacity; ■Fast response speed for recording and playback; ■Low power consumption; ■High productivity and low price. Cheap, etc.

従来までは磁性体や半導体を素材とした半導体メモリー
や磁気メモリーが主であったが、近年レーザー技術の進
展にともない有機色素、フォトポリマーなどの有機薄膜
を用いた光メモリーによる安価で高密度な記録媒体が登
場してきた。
Up until now, semiconductor memories and magnetic memories were mainly made of magnetic materials and semiconductors, but with the recent advances in laser technology, inexpensive and high-density optical memories using organic thin films such as organic dyes and photopolymers have been developed. Recording media have appeared.

一方、最近、導体の表面原子の電子構造を直接観察でき
る走査型トンネル顕微鏡(以後STMと略す)が開発さ
れ、 (G、Binning  et  al、、He1ve
tica  PhysicaActa、55,726 
 (1982))単結晶、非晶質を問わず実空間像の高
い分解能の測定ができるようになり、しかも媒体に電流
により損傷を与えずに低電力で観測できる利点をも有し
、さらに大気中でも動作し種々の材料に対して用いるこ
とができるため広範囲な応用が期待されている。
On the other hand, recently, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of a conductor has been developed.
tica Physica Acta, 55,726
(1982)) It has become possible to measure real space images with high resolution regardless of whether they are single crystal or amorphous, and it also has the advantage of being able to observe with low power without damaging the medium by electric current. Among them, it is expected to have a wide range of applications because it works well and can be used with various materials.

STMは金属の探針と導電性物質の間に電圧を加えてl
nm程度の距離まで近づけるとトンネル電流が流れるこ
とを利用している。この電流は両者の距離変化に非常に
敏感であり、トンネル電流を一定に保つように探針を走
査することにより実空間の表面構造を描くことができる
と同時に表面原子の全電子雲に関する種々の情報をも読
み取ることができる。STMを用いた解析は導電性試料
に限られるが、導電性材料の表面に非常に薄く形成され
た単分子膜の構造解析にも応用され始めており、個々の
有機分子の状態の違いを利用した高密度記録の再生技術
としての応用も考えられる。
STM involves applying a voltage between a metal tip and a conductive material.
It takes advantage of the fact that a tunnel current flows when brought close to a distance of about nm. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunneling current constant, it is possible to draw the surface structure in real space and at the same time draw various information about the total electron cloud of surface atoms. Information can also be read. Analysis using STM is limited to conductive samples, but it is beginning to be applied to the structural analysis of extremely thin monomolecular films formed on the surface of conductive materials, using the differences in the states of individual organic molecules. Application as a reproduction technology for high-density recording is also considered.

一方、従来針状電極を用いて放電や通電によって潜像を
形成する方法は静電記録方法として知られており、記録
紙等への応用が数多(なされている。(特開昭49−3
435号公報)。
On the other hand, the conventional method of forming a latent image by discharging or energizing using needle-shaped electrodes is known as an electrostatic recording method, and has been applied to recording paper in many ways. 3
Publication No. 435).

この静電記録媒体に用いられる膜厚はμオーダーで、該
媒体上の潜像を電気的に読み取り再生した例はまだ報告
されていない。
The film thickness used in this electrostatic recording medium is on the μ order, and there have been no reports yet of an example in which a latent image on the medium is electrically read and reproduced.

〔発明の目的〕[Purpose of the invention]

すなわち、本発明の目的は、プローブ電極と導電性物質
との微小距離を制御して、プローブ電極に流れる電流量
の変化を読み取ることによって記録の再生を行う安価で
大容量の新規な再生装置及び再生法を提供することにあ
る。
That is, an object of the present invention is to provide a novel, inexpensive and large-capacity reproducing device that reproduces recorded data by controlling the minute distance between a probe electrode and a conductive material and reading changes in the amount of current flowing through the probe electrode. The goal is to provide a method of regeneration.

〔発明の概要〕[Summary of the invention]

本発明は、電極上に堆積された電気メモリー効果を有す
るアモルファス半導体を記録媒体として、前記プローブ
電極から半導体に電気メモリー効果を生じる閾値電圧を
越えていない電圧を印加する電圧印加手段及び前記半導
体に流れる電流量の変化を読み取る読み取り手段とを有
する再生装置並びに電気メモリー効果を生じる閾値電圧
を越えない電圧を印加し、前記半導体に流れる電流量の
変化を読み取る再生法に特徴を有している。
The present invention uses an amorphous semiconductor deposited on an electrode and having an electric memory effect as a recording medium, and provides a voltage applying means for applying a voltage from the probe electrode to the semiconductor that does not exceed a threshold voltage that causes the electric memory effect, and to the semiconductor. The present invention is characterized by a reproducing device having a reading means for reading changes in the amount of current flowing through the semiconductor, and a reproducing method that reads changes in the amount of current flowing through the semiconductor by applying a voltage that does not exceed a threshold voltage that causes an electric memory effect.

〔発明の態様の詳細な説明〕[Detailed description of aspects of the invention]

本発明は、金属の探針と導電性物質の間に電圧を印加し
て、lnm程度の距離まで近づけるとトンネル電流が流
れることを利用している。トンネル電流は表面での仕事
関数に依存するため、種々の表面電子状態についての情
報を読み取ることができる。
The present invention utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe and a conductive substance and the probe is brought close to a distance of about 1 nm. Since tunneling current depends on the work function at the surface, information about various surface electronic states can be read.

トンネル電流を用いる方法は、真空条件を必要とせず、
単結晶・非晶質を問わず応用でき、高い分解能で、しか
も電流による損傷を与えずに低電力で再生できる等の多
くの利点を有する。
The method using tunnel current does not require vacuum conditions,
It can be applied to both single crystal and amorphous materials, and has many advantages such as high resolution and low power regeneration without damage caused by current.

さらにトンネル電流はnA程度の大きさであるため、記
録媒体としてはl o−10(Ωc m )−’以上、
好ましくはto″(Ωc m )−’以上の伝導率を有
するものであれば良い。
Furthermore, since the tunnel current is on the order of nA, as a recording medium, it is necessary to
Preferably, any material having a conductivity of to″(Ωcm)−′ or more may be used.

本発明で用いられる記録媒体としては、電流・電圧特性
に於いて、メモリースイッチング現象をもつ材料を利用
できる。例えば (1)酸化物ガラスやホウ酸塩ガラスあるいは周期律表
(7)lit、 IV、 V、 Vl族元素と化合した
Se、 Te。
As the recording medium used in the present invention, a material having a memory switching phenomenon in current/voltage characteristics can be used. For example, (1) Se, Te combined with oxide glass, borate glass, or elements of the (7) lit, IV, V, and Vl groups of the periodic table.

Asを含んだカルコゲン化物ガラス等のアモルファス半
導体が挙げられる。それらは光学的バンドギツプEgが
0.6〜1.4eVあるいは電気的活性化エネルギー△
Eが0.7〜1.6eV程度の真性半導体である。カル
コゲン化物ガラスの具体例としては、As−5e−Te
系、Ge−As−5e系、5i−Ge−As−Te系、
例えば5i16 Ge14 As6 Teas (添字
は原子%)、あるいはGe−Te−X系、S i −T
 e −X系(X=少fi+7)V  Vl族元素)例
えばGe1B ’re8+5b2s2が挙げられる。
Examples include amorphous semiconductors such as chalcogenide glass containing As. They have an optical bandgap Eg of 0.6 to 1.4 eV or an electrical activation energy △
It is an intrinsic semiconductor with an E of about 0.7 to 1.6 eV. As a specific example of chalcogenide glass, As-5e-Te
system, Ge-As-5e system, 5i-Ge-As-Te system,
For example, 5i16 Ge14 As6 Teas (subscripts are atomic %), or Ge-Te-X system, Si-T
e −X system (X=low fi+7) V Vl group element), for example, Ge1B're8+5b2s2.

更にはGe−5b−3e系のカルコゲン化物ガラスも用
いることができる。
Furthermore, Ge-5b-3e-based chalcogenide glass can also be used.

上記化合物を電極上に堆積したアモルファス半導体層に
おいて、膜面に垂直な方向にプローブ電極を用いて電圧
を印加することにより媒体の電気メモリー効果を発現す
ることができる。
In an amorphous semiconductor layer in which the above compound is deposited on an electrode, an electric memory effect of the medium can be expressed by applying a voltage using a probe electrode in a direction perpendicular to the film surface.

係る材料の堆積法としては従来公知の薄膜形成技術で充
分本発明の目的を達成することができる。
As a method for depositing such a material, conventionally known thin film forming techniques are sufficient to achieve the object of the present invention.

例えば好適な成膜法としては、真空蒸着法やクラスター
イオンビーム法等を挙げることができる。一般的には、
係る材料の電気メモリー効果は数μm以下の膜厚で観測
されているが、記録媒体としての記録分解能に関しては
、より薄い方が好ましいが、均一性、記録性の関点から
100Å以上1μm以下の膜厚のものが良く、更に好適
には1000Å以下の膜厚のものがよい。
For example, suitable film-forming methods include a vacuum evaporation method, a cluster ion beam method, and the like. In general,
The electrical memory effect of such materials has been observed at film thicknesses of several μm or less, but in terms of recording resolution as a recording medium, thinner layers are preferable, but from the standpoint of uniformity and recording performance, thinner films with thicknesses of 100 Å or more and 1 μm or less are preferable. It is preferable that the film has a thickness of 1000 Å or less.

(2)更ニハテトラキノシメタ> (TCNQ)、TC
NQ誘導体、例えばテトラフルオロテトラシアノキノジ
メ9 ン(TCNQF 4)、テトラシアノエチレン(
TcNE)およびテトラシアノナフトキノジメタン(T
NAP)などの電子受容性化合物と銅や銀などの還元電
位が比較的低い金属との塩を電極上に堆積した有機半導
体層も挙げることができる。
(2) Nihatetrakinoshita > (TCNQ), TC
NQ derivatives, such as tetrafluorotetracyanoquinodimenine (TCNQF4), tetracyanoethylene (
TcNE) and tetracyanonaphthoquinodimethane (TcNE) and tetracyanonaphthoquinodimethane (TcNE)
An organic semiconductor layer in which a salt of an electron-accepting compound such as NAP) and a metal having a relatively low reduction potential such as copper or silver is deposited on an electrode may also be mentioned.

係る有機半導体層の形成法としては、銅あるいは銀の電
極上に前記電子受容性化合物を真空蒸着する方法が用い
られる。
As a method for forming such an organic semiconductor layer, a method is used in which the electron-accepting compound is vacuum-deposited on a copper or silver electrode.

hX4%ス右拠車;酋ル/FN 借as J < +1
−六11mIJ  鶴+μm以下の膜厚のもので観測さ
れているが、成膜性、均一性の関点から100人〜1μ
mの膜厚のものが好ましい。
hX4%S right car; Airplane/FN borrow as J < +1
-611 mIJ Tsuru
A film having a thickness of m is preferable.

(3)また更にはアモルファスシリコンを材料とした記
録媒体を挙げることができる。例えば金属/a−3i(
p+層/n層/i層)あるいは金属/ a −S i(
n+層/p層/i層)の層構成を有する記録媒体であり
、a−Siの各層の堆積法は従来公知の方法によって充
分行うことが可能である。本発明では好適にはグローデ
ィスチャージ法(GD)が用いられる。a−8iの膜厚
はn層としては2000人〜8000人、i、 p+層
は1000人程度が好適であり、全膜厚は0.5μm−
1μm程度のものが良い。
(3) Another example is a recording medium made of amorphous silicon. For example, metal/a-3i (
p+ layer/n layer/i layer) or metal/a-S i(
The recording medium has a layer structure of (n+ layer/p layer/i layer), and each layer of a-Si can be deposited by a conventionally known method. In the present invention, glow discharge method (GD) is preferably used. The preferred thickness of a-8i is 2,000 to 8,000 for the n layer, about 1,000 for the i and p+ layers, and the total thickness is 0.5 μm.
A thickness of about 1 μm is preferable.

一方、本発明で用いられる電極材料も高い伝導性を有す
るものであれば良く、例えばAu、  Pt。
On the other hand, the electrode material used in the present invention may be any material as long as it has high conductivity, such as Au or Pt.

Ag、  I’d、  A1.  In、 Sn、  
I’b、  Wなどの金属やこれらの合金、さらにはグ
ラファイトやシリサイド、またさらにはITOなどの導
電性酸化物を始めとして数多(の材料が挙げられ、これ
らの本発明へのa田か者女Ahスー匡ス廿七ルR’11
.x←僧極形成法としても従来公知の薄膜技術で充分で
ある。
Ag, I'd, A1. In, Sn,
There are many materials including metals such as I'b and W, alloys thereof, graphite, silicide, and even conductive oxides such as ITO, and these materials are applicable to the present invention. A woman Ah Su Choussu 廿7ru R'11
.. x←As for the method of forming a monk pole, a conventionally known thin film technique is sufficient.

またプローブ電極の先端は記録/再生/消去の分解能を
上げるため出来るだけ尖らせる必要がある。本発明では
、lφの太さの白金の先端を90’のコーンになるよう
に機械的に研磨し超高真空中で電界をかけて表面原子を
蒸発させたものを用いているが、プローブの形状や処理
方法は何らこれに限定するものではない。
Further, the tip of the probe electrode needs to be as sharp as possible in order to improve the recording/reproducing/erasing resolution. In the present invention, a platinum tip with a thickness of 1φ is mechanically polished to a 90' cone, and an electric field is applied in an ultra-high vacuum to evaporate the surface atoms. The shape and processing method are not limited to these.

第1図は本発明の記録装置を示すブロック構成図である
。第1図(A)中、105はプローブ電流増巾器で、1
06はプローブ電流が一定になるように圧電素子を用い
た微動機構107を制御するサーボ回路である。108
はプローブ電極102と電極と電極103の間に記録/
消去用のパルス電圧を印加するための電源である。
FIG. 1 is a block diagram showing a recording apparatus of the present invention. In FIG. 1(A), 105 is a probe current amplifier;
06 is a servo circuit that controls the fine movement mechanism 107 using a piezoelectric element so that the probe current is constant. 108
is recorded between the probe electrode 102 and the electrode 103/
This is a power supply for applying a pulse voltage for erasing.

パルス電圧を印加するときプローブ電流が急激に変化す
るためサーボ回路106は、その間出力電圧が一定にな
るように、II OL D回路をONにするように制御
している。
Since the probe current changes rapidly when the pulse voltage is applied, the servo circuit 106 controls the II OLD circuit to be turned on so that the output voltage remains constant during that time.

109はXY力方向プローブ電極102を移動制御する
ためのXY走査駆動回路である。110と111は、あ
らかじめI O−’ A程度のプローブ電流が得られる
ようにプローブ電極102と記録媒体lとの距離を粗動
制御するものである。これらの各機器は、すべてマイク
ロコンピュータ112により中央制御されている。また
113は表示機器を表わしている。
109 is an XY scanning drive circuit for controlling the movement of the XY force direction probe electrode 102; Reference numerals 110 and 111 are for coarsely controlling the distance between the probe electrode 102 and the recording medium l so that a probe current of about IO-'A can be obtained in advance. All of these devices are centrally controlled by a microcomputer 112. Further, 113 represents a display device.

また、圧電素子を用いた移動制御における機械的性能を
下記に示す。
In addition, the mechanical performance in movement control using piezoelectric elements is shown below.

Z方向微動制御範囲: 0.lnm−1μmZ方向粗動
制御範囲: l On m−10m mXY方向走査範
囲 : 0.lnm−1μm計測、制御許容誤差: <
0.1nm 以下、本発明を実施例に従って説明する。
Z direction fine movement control range: 0. lnm-1μm Z-direction coarse movement control range: l On m-10m mXY-direction scanning range: 0. lnm-1μm measurement, control tolerance: <
0.1 nm Hereinafter, the present invention will be explained according to Examples.

(実施例1〕 第1図に示す記録/再生装置を用いた。プローブ電極1
02として白金製のプローブ電極を用いた。このプロー
ブ電極102は記録層101の表面との距離(Z)を制
御するためのもので、電流を一定に保つように圧電素子
により、その距離(Z)を微動制御されている。更に微
動制御機構107は距離2を一定に保ったまま、面内(
x、 y)方向にも微動制御できるように設計されてい
る。しかし、これらはすべて従来公知の技術である。ま
たプローブ電極102は直接記録・再生・消去を行うた
めに用いることができる。また、記録媒体lは高精度の
XYステージ114の上に置かれ、任意の位置に移動さ
せることができる。
(Example 1) A recording/reproducing apparatus shown in Fig. 1 was used.Probe electrode 1
As 02, a platinum probe electrode was used. This probe electrode 102 is used to control the distance (Z) from the surface of the recording layer 101, and the distance (Z) is finely controlled by a piezoelectric element so as to keep the current constant. Furthermore, the fine movement control mechanism 107 maintains the distance 2 constant and moves the in-plane (
It is designed to allow fine movement control in the x, y) directions as well. However, these are all conventionally known techniques. Further, the probe electrode 102 can be used for direct recording, reproduction, and erasing. Further, the recording medium l is placed on a high-precision XY stage 114 and can be moved to any position.

次にAuで形成した電極103の上に形成されたSi 
、1. Ge 14 As y、 Te65(添字は原
子%)の組成式で表わされるカルコゲン化物ガラス(膜
厚2000人)を用いた記録・再生・消去の実験につい
てその詳細を記す。
Next, Si is formed on the electrode 103 formed of Au.
, 1. Details of recording/reproducing/erasing experiments using chalcogenide glass (film thickness: 2000 mm) represented by the composition formula Ge 14 As y, Te 65 (subscripts are atomic %) will be described below.

2000人の膜厚を有する前記カルコゲン化物ガラスの
記録層101をもつ記録媒体lをXYステージ114の
上に置き、Au電極(アース側)103とプローブ電極
102の間に。1.OVの電圧を印加し、電流をモニタ
ーしながらプローブ電極102と記録層InIaL;7
iiQ/7’lVEIII(7)je−Ilml、f−
−jF−の21に一’41Wb制御機構107を制御し
てプローブ電流Ipが10−” Aになるように微動機
構107を制御した。
A recording medium 1 having the recording layer 101 of chalcogenide glass having a thickness of 2000 μm was placed on the XY stage 114 between the Au electrode (ground side) 103 and the probe electrode 102 . 1. Applying a voltage of OV and monitoring the current, the probe electrode 102 and the recording layer InIaL; 7
iiQ/7'lVEIII (7) je-Ilml, f-
The fine movement mechanism 107 was controlled at 21 of -jF- by controlling the 1'41Wb control mechanism 107 so that the probe current Ip became 10-''A.

プローブ電極102と記録層101表面との距離2を制
御するためのプローブ電流1pはI O−’ A≧Ip
≧10−”A、好適ニハlO′−aA≧Ip≧l0−1
OAニナルヨうにプローブ電圧を調整する必要がある。
The probe current 1p for controlling the distance 2 between the probe electrode 102 and the surface of the recording layer 101 is IO-' A≧Ip
≧10-”A, suitable NiHA lO'-aA≧Ip≧l0-1
It is necessary to adjust the probe voltage accordingly.

XYステージ114を一定の間隔(1μ)で移動させな
がら、閾値電圧V lh ON以上の矩形パルス電圧(
20V max 、 0 、1μs)を印加して、低抵
抗状態(ON状態)を生じさせた。その後プローブ電極
102と対向電極103の間に読み取り用のt、OVの
プローブ電圧を印加して、低抵抗状態領域と高抵抗状態
領域に流れる電流量の変化を直接読み取るか、又はサー
ボ回路106を通して読み取ることができる。
While moving the XY stage 114 at fixed intervals (1 μ), a rectangular pulse voltage (
20V max , 0, 1 μs) was applied to create a low resistance state (ON state). After that, a probe voltage of t, OV for reading is applied between the probe electrode 102 and the counter electrode 103 to read the change in the amount of current flowing in the low resistance state region and the high resistance state region directly, or through the servo circuit 106. Can be read.

本例ではON状態領域を流れるプローブ電流が記録前(
又はOFF状態領域)と比較して2桁以上変化していた
ことを確認した。
In this example, the probe current flowing through the ON state region before recording (
It was confirmed that there was a change of more than two orders of magnitude compared to the OFF state area).

更にプローブ電極に閾値電圧Vth  OFF以上の矩
形パルス電圧(50V max l OμS)を印加し
ながら、再び記録位置をトレースした結果、全ての記録
状態が消去されOFF状態に遷移したことを確認した。
Furthermore, as a result of tracing the recording position again while applying a rectangular pulse voltage (50V max l OμS) higher than the threshold voltage Vth OFF to the probe electrode, it was confirmed that all recorded states were erased and the state transitioned to the OFF state.

また記録の消去は光学的な方法でも可能である。Furthermore, erasing of records is also possible using an optical method.

次に微動制御機構107を用いて、0.O1μから1μ
の間の種々のピッチで長さ1μのストライプを上記の方
法で書き込み分解能を測定したところ0.1μ以下であ
ることがわかった。
Next, using the fine movement control mechanism 107, 0. O1μ to 1μ
When the writing resolution of stripes with a length of 1 .mu.m was measured using the above method at various pitches between the two, it was found to be less than 0.1 .mu.m.

以上の実験に用いたカルコゲン化物ガラスは下記のごと
(作成した。
The chalcogenide glasses used in the above experiments were prepared as follows.

光学研磨したガラス基板(基板104)を中性洗剤およ
びトリクレンを用いて洗浄した後下引き層としてCrを
真空蒸着法により厚さ50人に堆積させ、更にAuを同
法により400人蒸ミリた下地電極(Au電極103)
を形成した。
After cleaning the optically polished glass substrate (substrate 104) using a neutral detergent and Triclean, Cr was deposited as an undercoat layer to a thickness of 50 mm using the vacuum evaporation method, and Au was further deposited using the same method to a thickness of 400 mm. Base electrode (Au electrode 103)
was formed.

次にSi 16 Ge 14 As 5 T essの
原子素成比であられされるアモルファス半導体を従来公
知の真空蒸着法により2000人の膜厚に蒸着したもの
を記録媒体として用いた。
Next, an amorphous semiconductor having an atomic composition of Si 16 Ge 14 As 5 T ess was deposited to a thickness of 2000 nm by a conventionally known vacuum deposition method and used as a recording medium.

〔実施例2〕 実施例1で用いたSi 16 Ge 14As 5Te
a6記録媒体の代わりに、Ge 、、 Tea+ Sb
2 S2を用いた以外は、実施例1と全く同様にして実
験を行った。実施例1と同様に充分なS/N比で記録の
書き込みと読み取りが出来ることがわかった。
[Example 2] Si 16 Ge 14As 5Te used in Example 1
Instead of a6 recording medium, Ge, Tea+Sb
An experiment was conducted in exactly the same manner as in Example 1, except that 2 S2 was used. It was found that recording could be written and read with a sufficient S/N ratio as in Example 1.

〔実施例3〕 実施例1.2で用いたカルコゲン化物ガラス記録媒体の
代わりに、CuTCNQF4を用いて、実施例1と同様
の記録再生実験を行った。記録用印加電圧は、2 V 
n+ax 、  l Onsの矩形パルスを用い、再生
用およびプローブ電流制御用の印加電圧は0.lVとし
ている。その結果、実施例1と同様に充分なS/N比で
記録再生を行うことができた。なお、分解能は0.1μ
m以下であった。つぎにCu T CN Q F 4記
録媒体の作成法について述べる。
[Example 3] A recording and reproducing experiment similar to that in Example 1 was conducted using CuTCNQF4 instead of the chalcogenide glass recording medium used in Example 1.2. The applied voltage for recording was 2 V.
A rectangular pulse of n+ax, l Ons was used, and the applied voltage for reproduction and probe current control was 0. It is set to lV. As a result, as in Example 1, recording and reproduction could be performed with a sufficient S/N ratio. Note that the resolution is 0.1μ
m or less. Next, a method for producing the Cu T CN Q F 4 recording medium will be described.

光学研磨したガラス基板を洗浄した後Cuを真空蒸着法
により2000人堆積させ電極とした。更にCuとTC
NQF4を真空蒸着法により共蒸着してCu十TCNQ
F4層を2000人堆積した(基板温度;室温)。この
とき蒸着速度をCu;5A/5TCNQF4;20人/
S程度になるようにあらかじめ設定した電流値を流し加
熱した。その結果、CuTCNQF4生成による青い膜
が堆積することを確認した。
After cleaning the optically polished glass substrate, 2000 pieces of Cu were deposited by vacuum evaporation to form electrodes. Furthermore, Cu and TC
Co-depositing NQF4 by vacuum evaporation method to form Cu+TCNQ
2000 F4 layers were deposited (substrate temperature; room temperature). At this time, the deposition rate was set to Cu; 5A/5TCNQF4; 20 people/
A preset current value was applied so that the temperature was about S and heated. As a result, it was confirmed that a blue film was deposited due to the production of CuTCNQF4.

〔実施例4〕 光学研磨したガラス基板にCrを500人の膜厚に真空
蒸着して電極を形成した後、グロー放電法により100
0人のp+型のアモルファスシリコン膜を形成した。そ
の時の作成条件は 導入ガス; B2 II 6 / 5ilI4 (NB
 H/ N5iH= I O” )(I■2ガスで0.
025モル%に稀釈)r「パワー;0.OIW/crr
r 圧   力 ; 0.5torr 基板温度 ;300°C 堆積速度 ;30人/ m i n である。次に余剰の原料ガスを排出したのち、新たな原
料ガスを供給してn型のアモルファスシリコンを500
0人堆積した。作成条件は下記の通りである。
[Example 4] Electrodes were formed by vacuum evaporating Cr to a thickness of 500 mm on an optically polished glass substrate, and then Cr was vacuum deposited to a thickness of 100 mm using a glow discharge method.
A p+ type amorphous silicon film was formed. The creation conditions at that time are introduced gas; B2 II 6 / 5ilI4 (NB
H/N5iH=I O") (0.
(diluted to 0.025 mol%) r "power; 0.OIW/crr
r Pressure: 0.5 torr Substrate temperature: 300°C Deposition rate: 30 people/min. Next, after exhausting the excess raw material gas, new raw material gas is supplied to form 500% n-type amorphous silicon.
0 people were deposited. The preparation conditions are as follows.

導入ガス; P H3/ SIH4(NPH/ N5i
H= 5 X 10−3’)(112ガスで0.05モ
ル%に稀釈)rfパワー;O,QIW/csd 圧   力 ; 0,5torr 基板温度;300℃ 堆積速度;40人/min また、原料ガスを排気したのち、H2ガスで0.05モ
ル%に稀釈したSiH4をチャンバーに導入し、他の条
件は一定にしてi相のアモルファスシリコンを1000
人堆積した。
Introduced gas; PH3/SIH4 (NPH/N5i
H = 5 X 10-3') (diluted to 0.05 mol% with 112 gas) RF power: O, QIW/csd pressure: 0.5 torr Substrate temperature: 300°C Deposition rate: 40 people/min Also, raw materials After exhausting the gas, SiH4 diluted to 0.05 mol% with H2 gas was introduced into the chamber, and with other conditions constant, i-phase amorphous silicon was
People piled up.

以上のようにして作成した記録媒体に実施例1と同様の
記録再生実験を行った。その結果充分なS/N比を示し
て記録再生を行うことができた。なお記録・再生・消去
に対して下記の電圧を印加した。
Recording and reproducing experiments similar to those in Example 1 were conducted on the recording medium produced as described above. As a result, recording and reproduction could be performed with a sufficient S/N ratio. Note that the following voltages were applied for recording, reproduction, and erasing.

記録用  20V 再生用  0.5v 消去用  −5v 以上述べてきた実施例中で種々の記録媒体の作成法につ
いて述べてきたが、極めて均一な膜が作成できる成膜法
であれば良く、実施例の方法に限定されるものではない
。なお、本発明は基板材料やその形状および表面構造に
ついて何ら限定するものでもない。
For recording 20V For playback 0.5V For erasing -5V In the examples described above, various methods for producing recording media have been described, but any film formation method that can produce an extremely uniform film will suffice. It is not limited to this method. Note that the present invention does not limit the substrate material, its shape, or surface structure in any way.

〔発明の効果〕〔Effect of the invention〕

■光記録に較べても、はるかに高密度な記録が可能な全
く新しい記録再生方法を開示した。
■We have disclosed a completely new recording and reproducing method that allows for much higher density recording than optical recording.

■上記の新規記録再生方法を用いられる新規な記録媒体
を開示した。
■A new recording medium that can use the above-mentioned new recording and reproducing method has been disclosed.

■再生に必要なエネルギーは小さく、消費電力は少ない
■The energy required for reproduction is small and the power consumption is low.

【図面の簡単な説明】 第1図は本発明の記録再生装置を図解的に示す説明図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram schematically showing a recording/reproducing apparatus of the present invention.

Claims (15)

【特許請求の範囲】[Claims] (1)プローブ電極、電気メモリー効果をもつ半導体、
電気メモリー効果を生じる閾値電圧を越えていない電圧
を印加する電圧印加手段及び前記半導体に流れる電流量
の変化を読み取る読み取り手段とを有することを特徴と
する再生装置。
(1) Probe electrode, semiconductor with electric memory effect,
A playback device comprising: voltage application means for applying a voltage that does not exceed a threshold voltage that causes an electric memory effect; and reading means for reading changes in the amount of current flowing through the semiconductor.
(2)前記半導体が前記プローブ電極と、該プローブ電
極に対向配置した対向電極との間に配置されている特許
請求の範囲第1項記載の再生装置。
(2) The reproducing device according to claim 1, wherein the semiconductor is arranged between the probe electrode and a counter electrode arranged opposite to the probe electrode.
(3)前記半導体がカルコゲン化物で形成したアモルフ
ァス半導体である特許請求の範囲第1項記載の再生装置
(3) The reproducing device according to claim 1, wherein the semiconductor is an amorphous semiconductor formed of a chalcogenide.
(4)前記カルコゲン化物が周期律表のIII、IV、V及
びVI族の元素のうちの少なくとも1種の元素と、Se、
Te及びAsのうちの少なくとも1種の元素とを含有し
ている特許請求の範囲第3項記載の再生装置。
(4) the chalcogenide contains at least one element selected from the group III, IV, V and VI elements of the periodic table; Se;
The regeneration device according to claim 3, which contains at least one element selected from Te and As.
(5)前記半導体がシリコンフィルムである特許請求の
範囲第1項記載の再生装置。
(5) The reproducing device according to claim 1, wherein the semiconductor is a silicon film.
(6)前記シリコンフィルムがアモルファスシリコンフ
ィルムである特許請求の範囲第5項記載の再生装置。
(6) The reproducing device according to claim 5, wherein the silicon film is an amorphous silicon film.
(7)前記アモルファスシリコンがp^+/n/i積層
体又はn^+/p/i積層体である特許請求の範囲第6
項記載の再生装置。
(7) Claim 6, wherein the amorphous silicon is a p^+/n/i laminate or an n^+/p/i laminate.
Reproduction device as described in section.
(8)前記半導体が有機半導体である特許請求の範囲第
1項記載の再生装置。
(8) The reproducing device according to claim 1, wherein the semiconductor is an organic semiconductor.
(9)前記有機半導体が電気受容体と金属を含有する化
合物である特許請求の範囲第8項記載の再生装置。
(9) The reproducing device according to claim 8, wherein the organic semiconductor is a compound containing an electroreceptor and a metal.
(10)前記電子受容体がテトラシアノキノジメタン、
テトラシアノエチレン又はテトラフルオロテトラシアノ
キノジメタン、テトラシアノナフトキノジメタンである
特許請求の範囲第9項記載の再生装置。
(10) the electron acceptor is tetracyanoquinodimethane;
The regeneration device according to claim 9, which is tetracyanoethylene, tetrafluorotetracyanoquinodimethane, or tetracyanonaphthoquinodimethane.
(11)前記プローブ電極のXY走査駆動装置を有して
いる特許請求の範囲第1項記載の再生装置。
(11) The reproduction device according to claim 1, further comprising an XY scanning drive device for the probe electrode.
(12)前記プローブ電極と半導体の相対位置を3次元
的に微動制御する手段を有している特許請求の範囲第1
項記載の再生装置。
(12) Claim 1 comprising means for finely controlling the relative position of the probe electrode and the semiconductor in three dimensions.
Reproduction device as described in section.
(13)前記読み取り手段がサーボ回路を有している特
許請求の範囲第1項記載の再生装置。
(13) The reproducing device according to claim 1, wherein the reading means has a servo circuit.
(14)電気メモリー効果をもつ半導体に、プローブ電
極から電気メモリー効果を生じる閾値電圧を越えていな
い電圧を印加し、前記半導体に流れる電流量の変化を読
み取ることを特徴とする再生法。
(14) A regeneration method characterized by applying a voltage that does not exceed a threshold voltage that causes an electric memory effect from a probe electrode to a semiconductor having an electric memory effect, and reading changes in the amount of current flowing through the semiconductor.
(15)前記半導体にプローブ電極と対向電極から電気
メモリー効果を生じる閾値電圧を越えていない電圧を印
加する特許請求の範囲第14項記載の再生法。
(15) The regeneration method according to claim 14, wherein a voltage not exceeding a threshold voltage that causes an electric memory effect is applied to the semiconductor from a probe electrode and a counter electrode.
JP62055851A 1986-12-24 1987-03-11 Recording device and playback device Expired - Fee Related JP2603241B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62055851A JP2603241B2 (en) 1987-03-11 1987-03-11 Recording device and playback device
DE3789373T DE3789373T2 (en) 1986-12-24 1987-12-23 Recording device and playback device.
EP87311397A EP0272935B1 (en) 1986-12-24 1987-12-23 Recording device and reproducing device
DE3752099T DE3752099T2 (en) 1986-12-24 1987-12-23 Recording device and playback device
EP93200793A EP0551964B1 (en) 1986-12-24 1987-12-23 Recording and reproducing device
EP93200797A EP0551966B1 (en) 1986-12-24 1987-12-23 Recording device and reproducing device
EP93200792A EP0555941B1 (en) 1986-12-24 1987-12-23 Recording device and reproducing device
DE3752180T DE3752180T2 (en) 1986-12-24 1987-12-23 Recording and playback device
DE3752269T DE3752269T2 (en) 1986-12-24 1987-12-23 Recording device and playback device
US08/482,789 US5623476A (en) 1986-12-24 1995-06-07 Recording device and reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055851A JP2603241B2 (en) 1987-03-11 1987-03-11 Recording device and playback device

Publications (2)

Publication Number Publication Date
JPS63222347A true JPS63222347A (en) 1988-09-16
JP2603241B2 JP2603241B2 (en) 1997-04-23

Family

ID=13010545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055851A Expired - Fee Related JP2603241B2 (en) 1986-12-24 1987-03-11 Recording device and playback device

Country Status (1)

Country Link
JP (1) JP2603241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196840A (en) * 1987-10-07 1989-04-14 Seiko Instr & Electron Ltd Memory output device
JPH01116941A (en) * 1987-10-28 1989-05-09 Nec Corp Device and method for storage
JPH03278341A (en) * 1990-03-28 1991-12-10 Canon Inc Fine probe electrode employed recording/reproducing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859652B2 (en) 1989-08-10 1999-02-17 キヤノン株式会社 Recording / reproducing method and recording / reproducing apparatus
JP2862352B2 (en) 1990-08-03 1999-03-03 キヤノン株式会社 Information processing method and information processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727447A (en) * 1980-07-21 1982-02-13 Toshiba Corp Signal recording and reproducing system
JPS6180536A (en) * 1984-09-14 1986-04-24 ゼロツクス コーポレーシヨン Apparatus and method for recording and reading atom-size density information
JPS62281138A (en) * 1986-05-27 1987-12-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory
JPS6396756A (en) * 1986-10-13 1988-04-27 Nippon Telegr & Teleph Corp <Ntt> Storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727447A (en) * 1980-07-21 1982-02-13 Toshiba Corp Signal recording and reproducing system
JPS6180536A (en) * 1984-09-14 1986-04-24 ゼロツクス コーポレーシヨン Apparatus and method for recording and reading atom-size density information
JPS62281138A (en) * 1986-05-27 1987-12-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory
JPS6396756A (en) * 1986-10-13 1988-04-27 Nippon Telegr & Teleph Corp <Ntt> Storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196840A (en) * 1987-10-07 1989-04-14 Seiko Instr & Electron Ltd Memory output device
JPH01116941A (en) * 1987-10-28 1989-05-09 Nec Corp Device and method for storage
JPH03278341A (en) * 1990-03-28 1991-12-10 Canon Inc Fine probe electrode employed recording/reproducing device

Also Published As

Publication number Publication date
JP2603241B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US5623476A (en) Recording device and reproduction device
JP2556491B2 (en) Recording device and recording method
JPS63161553A (en) Method and device for reproduction
JP2830977B2 (en) Recording medium, recording method and recording / reproducing apparatus using the same
EP0553937B1 (en) Recording device and reproducing device
CN101320577B (en) Ferroelectric information storage medium and method of manufacturing the same
JPS63222347A (en) Method and device for reproduction
JP2603270B2 (en) Recording device and playback device
JPS63222348A (en) Device and method for recording
JPH01312753A (en) Recording and reproducing device
JP2556520B2 (en) Recording device and recording method
JP2942013B2 (en) Recording and / or playback device
JP2981789B2 (en) Recording medium and information processing device
JPH04159635A (en) Recording medium, its manufacture and information processor using same
JP2942011B2 (en) Information storage device
JPH0316046A (en) Method and device for recording and reproducing
JP3261539B2 (en) Manufacturing method of electrode substrate
JP2782275B2 (en) Method of manufacturing electrode substrate and recording medium
JPH02201753A (en) Recording and reproducing device
JPH0490151A (en) Information processing method and information processor
JPH0371450A (en) Recording and reproducing device
JPH04114332A (en) Recording medium and information processing method and information processing device using the medium
JPH0371452A (en) Recording and reproducing device
JPH03263633A (en) Device and method for recording/reproducing/erasing
JPH04143942A (en) Formation of track

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees