JPH01116941A - Device and method for storage - Google Patents

Device and method for storage

Info

Publication number
JPH01116941A
JPH01116941A JP27382287A JP27382287A JPH01116941A JP H01116941 A JPH01116941 A JP H01116941A JP 27382287 A JP27382287 A JP 27382287A JP 27382287 A JP27382287 A JP 27382287A JP H01116941 A JPH01116941 A JP H01116941A
Authority
JP
Japan
Prior art keywords
needle
recording
storage medium
stylus
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27382287A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagisawa
雅広 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27382287A priority Critical patent/JPH01116941A/en
Publication of JPH01116941A publication Critical patent/JPH01116941A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable storage with extremely high storage density by applying an electric field to a stylus and accelerating an atom or ion, thus forming an atom and a compound on the surface of a recording medium and performing recording and measuring a tunnel current flowing between the stylus and the recording medium atom and reading recording information. CONSTITUTION:The platinum stylus 2 is put close to the surface of the storage medium 1 made of silicon to about 50Angstrom and the electric field is applied by an AC power source 11. Then a hydrogen molecule 24 nearby the stylus 2 is ionized into a hydrogen ion 25, which is accelerated to strike on a silicon atom of the recording medium 1, thereby producing a silyl group (Si-H) 26. Then the stylus 2 is put closer to the storage medium surface by a piezoelectric actuator 3 to about 5Angstrom , the tunnel current flowing between the stylus 2 and storage medium 1 is measured by an ammeter 10, and whether or not there is information (silyl group) is detected from the difference between the tunnel current of silicon and the tunnel current of the silyl group. The tunnel current is fed back to the piezoelectric actuator 3 by an amplifier 6 through a servo circuit 9 to control the interval between the stylus 2 and storage medium 1. Consequently, recording with extremely high density is performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は情報を原子レベルで書き込み、消去および読み
出しを行う記憶装置および記憶方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a storage device and a storage method for writing, erasing, and reading information at the atomic level.

(従来の技術) 従来より、磁気テープや磁気ディスクのように磁気的あ
るいは光磁気ディスクのように光学的あるいは集積回路
のように電気的に情報を書き込み、消去、読み出しを行
う記憶装置が知られているが、それぞれ記録密度の限界
を有している。磁気的な記憶方式は磁区の自由回転状態
(超常磁性)により記憶単位は10ナノメータが限界で
ある。光学的あるいは電気的記憶装置は光子あるいは電
子の室温での量子力学的大きさにより記憶単位の限界か
決定される。不確定性原理によれば光子は数ミクロン、
電子は7.2人が限界である。
(Prior Art) Storage devices that write, erase, and read information magnetically such as magnetic tapes and magnetic disks, optically such as magneto-optical disks, or electrically such as integrated circuits have been known. However, each has a recording density limit. In magnetic storage systems, the storage unit is limited to 10 nanometers due to the free rotation state of magnetic domains (superparamagnetism). In optical or electrical storage devices, the limit of the storage unit is determined by the quantum mechanical size of photons or electrons at room temperature. According to the uncertainty principle, a photon is several microns long,
The limit for electrons is 7.2 people.

(発明が解決しようとする問題点) 本発明は上記記憶装置の限界を越える極めて記憶密度の
高い記憶装置および記憶方法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a storage device and a storage method with extremely high storage density that exceeds the limitations of the above storage devices.

(問題点を解決するための手段) 本発明の記憶装置では記憶媒体と針量の距離を変位セン
サーにより測定しつつ、該距離を一定に保つように蝕針
に取り付けたアクチュエータを駆動させると同時に、蝕
針に電界をかけることにより原子またはイオンを加速し
記憶媒体表面の原子と化合物を形成し記録を行う。また
該化合物に蝕針より記録時よりも高い電界をかけて原子
またはイオンを加速し該化合物を分解せしめることによ
り記録の消去を行う。また蝕針により記録された化合物
上を走査すると同時に、蝕針と記録媒体原子の間に流れ
るトンネル電流を測定することにより化合物の有無を検
出し記録情報を読み出すことを特徴とする。本発明では
記憶媒体に原子を用いているので、量子力学的大きさか
らくる記憶単位の限界は0.18人程度である。
(Means for Solving the Problems) In the storage device of the present invention, the distance between the storage medium and the needle is measured by a displacement sensor, and at the same time an actuator attached to the needle is driven to keep the distance constant. By applying an electric field to the corrosive needle, atoms or ions are accelerated to form a compound with the atoms on the surface of the storage medium to perform recording. Further, the recording is erased by applying an electric field higher than that during recording to the compound using an erodible needle to accelerate atoms or ions and decomposing the compound. Another feature is that the recorded information is read out by scanning the recorded compound with the erodible needle and at the same time measuring the tunnel current flowing between the eroding needle and the atoms of the recording medium to detect the presence or absence of the compound. Since atoms are used as the storage medium in the present invention, the limit of the storage unit due to quantum mechanical size is about 0.18 people.

本発明の記憶装置で用いる記憶媒体は、周期律表の全て
の元素を用いることが可能であるが装置の複雑化を避け
るため室温で固体であることが望ましい。また原子また
はイオン状態で加速する原子は、水素が最も小さく記憶
単位を小さくできる。針の材料は固態であれば周期律表
の全元素を用いることが可能であるが、加速原子または
イオンと反応しにくい金、白金、ロジウム、イリジウム
、パラジウム、レニウム、タングステン、クロム、タン
タル、銀、などの金属または合金が望ましい。
The storage medium used in the storage device of the present invention can use all the elements of the periodic table, but is preferably solid at room temperature to avoid complication of the device. Furthermore, among atoms that accelerate in the atomic or ionic state, hydrogen is the smallest and the storage unit can be made smaller. All the elements in the periodic table can be used as materials for the needle as long as they are solid, but gold, platinum, rhodium, iridium, palladium, rhenium, tungsten, chromium, tantalum, and silver, which do not easily react with accelerated atoms or ions, can be used. Metals or alloys such as , etc. are desirable.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の記憶装置の一実施例を示す図であり、
第2図は本発明の記憶方法を示す図である。第2図では
左からイオン化過程、書き込み過程、読みだし過程、消
去過程の順に図示しである。
FIG. 1 is a diagram showing an embodiment of the storage device of the present invention,
FIG. 2 is a diagram showing the storage method of the present invention. In FIG. 2, the ionization process, write process, read process, and erase process are illustrated in this order from the left.

珪素からなる記憶媒体1の表面に半径10人の白金針2
を50人程度に近付け、スイッチ12により交流電源1
1により電界をかける。針の近傍の水素分子24は電離
され水素イオン25となり加速されて記録媒体1の珪素
原子と衝突してシリル基(Si−H)を形成する。次に
針2を5程度度に圧電アクチュエータ3により記憶媒体
表面に近付け、針2と記憶媒体1の間に流れるトンネル
電流を電流計10で測定し、珪素のトンネル電流とシリ
ル基のトンネル電流の違いにより情報の有無(シリル基
の有無)を検出する。トンネル電流はサーボ回路9を通
してアンプ6により圧電アクチュエータ3にフィードバ
ックされ針2と記憶媒体1の間隔を制御する。すなわち
トンネル電流が一定になるように圧電アクチュエータ3
を駆動するので記憶体1表面の表面粗さは珪素原子の周
期よりも長周期に仕上げる必要があるが通常のアルミナ
やシリカ砥粒を用いた研磨や電界研磨では該周期条件が
達せられる。さらにより高い電圧でシリル基上に水素イ
オンを加速衝突させるとシリル基は分解され水素分子と
なり情報は消去される。
A platinum needle 2 with a radius of 10 people is placed on the surface of a storage medium 1 made of silicon.
close to about 50 people, and switch 12 turns on AC power supply 1.
1 applies an electric field. Hydrogen molecules 24 near the needle are ionized and become hydrogen ions 25, which are accelerated and collide with silicon atoms of the recording medium 1 to form silyl groups (Si-H). Next, the needle 2 is brought close to the storage medium surface by about 5 degrees using the piezoelectric actuator 3, and the tunnel current flowing between the needle 2 and the storage medium 1 is measured with the ammeter 10. The presence or absence of information (the presence or absence of a silyl group) is detected based on the difference. The tunnel current is fed back to the piezoelectric actuator 3 by the amplifier 6 through the servo circuit 9 to control the distance between the needle 2 and the storage medium 1. In other words, the piezoelectric actuator 3
, it is necessary to finish the surface roughness of the storage body 1 with a period longer than that of silicon atoms, but this periodic condition can be achieved by polishing using ordinary alumina or silica abrasive grains or electric field polishing. When hydrogen ions are accelerated and collided with the silyl group at an even higher voltage, the silyl group is decomposed into hydrogen molecules and information is erased.

針2は記憶媒体1上を圧電アクチュエータ4及び5によ
りx1y方向にアンプ7.8を通して走査され記憶媒体
1の特定の原子上に情報の書き込み、読み出し、消去を
行う。走査は圧電アクチュエータまたは水晶振動子を用
いれば0.1程度度の精度で位置決めが可能である。針
2を記憶媒体1に近付けるときは、電流計10を監視し
ておきトンネル電流が検出されるまで圧電アクチュエー
タ3を駆動することにより行う。加速時は加速電源11
の電流が電流計10に流れるのを防ぐためスイッチ12
および13を開閉する。
The needle 2 is scanned over the storage medium 1 by piezoelectric actuators 4 and 5 in the x1y direction through an amplifier 7.8 to write, read, and erase information on specific atoms of the storage medium 1. For scanning, positioning can be performed with an accuracy of about 0.1 degree by using a piezoelectric actuator or a crystal oscillator. When the needle 2 is brought close to the storage medium 1, the ammeter 10 is monitored and the piezoelectric actuator 3 is driven until a tunnel current is detected. Acceleration power supply 11 during acceleration
switch 12 to prevent current from flowing to ammeter 10.
and 13 open and close.

更に別の記憶装置の一例として加速イオンに窒素および
記憶媒体にチタンを用いて記憶装置を作製した。
As another example of a storage device, a storage device was fabricated using nitrogen as the accelerated ion and titanium as the storage medium.

更に別の記憶装置の一例として加速イオンに硫黄および
記憶媒体に銀を用いて記憶装置を作製した。
As another example of a storage device, a storage device was fabricated using sulfur as the accelerated ion and silver as the storage medium.

更に別の記憶装置の一例として加速イオンに弗素および
記憶媒体に炭素を用いて記憶装置を作製した。
As another example of a storage device, a storage device was fabricated using fluorine as the accelerated ion and carbon as the storage medium.

更に別の記憶装置の一例として加速イオンにタングステ
ンおよび記憶媒体にアルミニウムを用いて記憶装置を作
製した。
As another example of a storage device, a storage device was fabricated using tungsten for accelerated ions and aluminum for the storage medium.

前記5種類の記録装置を用い、本発明の記録の書き込み
、読み出し、消去を行ったところ、1平方ミリメータ当
りI X 1012ビツトの記録密度が得られた。
When the recording of the present invention was written, read, and erased using the five types of recording devices described above, a recording density of I x 1012 bits per square millimeter was obtained.

(発明の効果) このように本発明によれば極めて高密度の記憶が可能と
なる。
(Effects of the Invention) As described above, according to the present invention, extremely high density storage is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の記録装置の一実施例を示す図である。 図に於て、1・・・記憶媒体、2・・・針、3・・・2
軸方向制御用圧電アクチユエータ、4・・・X軸制御用
圧電アクチュエータ、5.・、y軸制御用圧電アクチュ
エータ、6・・・アンプ、7・・・アンプ、8・・・ア
ンプ、9・・・サーボ回路、10・・・電流計、11・
・・交流電源、12・・・スイッチ、13・・・スイッ
チである。 第2図は本発明の記憶方法の一実施例を示す図である。 図に於て1・・・記憶媒体、2・・・針、24・・・水
素分子、25・・・水素イオン、26・・・シリル基で
ある。
FIG. 1 is a diagram showing an embodiment of the recording apparatus of the present invention. In the figure, 1... Storage medium, 2... Needle, 3... 2
Piezoelectric actuator for axial direction control, 4... Piezoelectric actuator for X-axis control, 5.・Piezoelectric actuator for y-axis control, 6... Amplifier, 7... Amplifier, 8... Amplifier, 9... Servo circuit, 10... Ammeter, 11.
...AC power supply, 12...switch, 13...switch. FIG. 2 is a diagram showing an embodiment of the storage method of the present invention. In the figure, 1: storage medium, 2: needle, 24: hydrogen molecule, 25: hydrogen ion, 26: silyl group.

Claims (1)

【特許請求の範囲】 1、記憶媒体の近傍に配置される針と、該針を三次元的
に駆動するアクチュエータと、該針に電界をかけて原子
またはイオンを加速せしめる加速電源と、針と媒体間に
流れるトンネル電流を測定する電流計と、電流増幅器と
を備えたことを特徴とする記憶装置。 2、記憶媒体と針間の距離を変位センサーにより測定し
つつ、該距離を一定に保つように該針に取り付けたアク
チュエータを駆動させると同時に、該針に電界をかける
ことにより原子またはイオンを加速し記憶媒体表面の原
子と化合物を形成して記録を行い、該化合物に該針より
記録時よりも高い電界をかけて原子またはイオンを加速
し該化合物を分解せしめることにより該記録の消去を行
い、該針により記録された化合物上を走査すると同時に
、該針と記録媒体原子の間に流れるトンネル電流を測定
することにより化合物の有無を検出し該記録情報を読み
出すことを特徴とする記憶方法。 3、原子またはイオンに水素を用いる特許請求の範囲第
2項記載の記録装置。
[Claims] 1. A needle disposed near a storage medium, an actuator that three-dimensionally drives the needle, an acceleration power source that applies an electric field to the needle to accelerate atoms or ions, and a needle A storage device comprising: an ammeter for measuring tunnel current flowing between media; and a current amplifier. 2. While measuring the distance between the storage medium and the needle using a displacement sensor, drive the actuator attached to the needle to keep the distance constant, and at the same time accelerate atoms or ions by applying an electric field to the needle. Recording is performed by forming a compound with atoms on the surface of the storage medium, and the recording is erased by applying a higher electric field to the compound from the needle than during recording, accelerating the atoms or ions and decomposing the compound. A storage method characterized in that the compound recorded by the needle is scanned and, at the same time, the tunnel current flowing between the needle and the atoms of the recording medium is measured to detect the presence or absence of the compound and read out the recorded information. 3. The recording device according to claim 2, wherein hydrogen is used as the atom or ion.
JP27382287A 1987-10-28 1987-10-28 Device and method for storage Pending JPH01116941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27382287A JPH01116941A (en) 1987-10-28 1987-10-28 Device and method for storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27382287A JPH01116941A (en) 1987-10-28 1987-10-28 Device and method for storage

Publications (1)

Publication Number Publication Date
JPH01116941A true JPH01116941A (en) 1989-05-09

Family

ID=17533041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27382287A Pending JPH01116941A (en) 1987-10-28 1987-10-28 Device and method for storage

Country Status (1)

Country Link
JP (1) JPH01116941A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036490A (en) * 1988-10-05 1991-07-30 Olympus Optical Co., Ltd. Memory device with dual cantilever means
US5038322A (en) * 1988-09-21 1991-08-06 U.S. Philips Corporation Method of and device for sub-micron processing a surface
WO1992012528A1 (en) * 1991-01-11 1992-07-23 Hitachi Limited Surface atom machining method and apparatus
US5439777A (en) * 1988-10-04 1995-08-08 Canon Kabushiki Kaisha Recording and reproducing apparatus and method for applying a pulse voltage and an electromagnetic wave

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222348A (en) * 1987-03-11 1988-09-16 Canon Inc Device and method for recording
JPS63222347A (en) * 1987-03-11 1988-09-16 Canon Inc Method and device for reproduction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222348A (en) * 1987-03-11 1988-09-16 Canon Inc Device and method for recording
JPS63222347A (en) * 1987-03-11 1988-09-16 Canon Inc Method and device for reproduction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038322A (en) * 1988-09-21 1991-08-06 U.S. Philips Corporation Method of and device for sub-micron processing a surface
US5439777A (en) * 1988-10-04 1995-08-08 Canon Kabushiki Kaisha Recording and reproducing apparatus and method for applying a pulse voltage and an electromagnetic wave
US5036490A (en) * 1988-10-05 1991-07-30 Olympus Optical Co., Ltd. Memory device with dual cantilever means
WO1992012528A1 (en) * 1991-01-11 1992-07-23 Hitachi Limited Surface atom machining method and apparatus

Similar Documents

Publication Publication Date Title
CA2068587C (en) Information reading and recording using a scanning tunnel microscope
JP2557964B2 (en) Data storage
US5144581A (en) Apparatus including atomic probes utilizing tunnel current to read, write and erase data
US4945515A (en) Memory writing apparatus
EP0363147A2 (en) Recording and reproducing apparatus and recording and reproducing method and recording medium for the recording and reproducing method
NL8802335A (en) METHOD AND APPARATUS FOR PROCESSING A MATERIAL SURFACE ON SUB-MIKRON SCALE
JPH0696714A (en) Surface working device and recording device
US4878213A (en) System for recording and readout of information at atomic scale densities and method therefor
CA2046063A1 (en) Storage of information units in the nanometer range
JPH01116941A (en) Device and method for storage
JP3029143B2 (en) Information playback method
JP2603241B2 (en) Recording device and playback device
JPH01125746A (en) Method for erasing record in memory device
JPH01312753A (en) Recording and reproducing device
JPH0298849A (en) Recording and reproducing device and recording and reproducing method using same
JP2920915B2 (en) Memory playback device
JPH05180616A (en) Holding mechanism of probe
JP3015978B2 (en) Information processing device
JPH0737540A (en) Surface fine work manufacture and record erasing device
JPH03295045A (en) High density recorder
CA2031733C (en) Method for forming probe and apparatus therefor
JPH10172188A (en) Information recording method and information recorder
JPH0540968A (en) Recording and/or reproducing device
JP2000005938A (en) Manufacture of magnetic head and ion polishing device
JPH07235087A (en) Information recording device