JPH01312753A - Recording and reproducing device - Google Patents

Recording and reproducing device

Info

Publication number
JPH01312753A
JPH01312753A JP14373888A JP14373888A JPH01312753A JP H01312753 A JPH01312753 A JP H01312753A JP 14373888 A JP14373888 A JP 14373888A JP 14373888 A JP14373888 A JP 14373888A JP H01312753 A JPH01312753 A JP H01312753A
Authority
JP
Japan
Prior art keywords
recording
recording medium
probe electrode
application
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14373888A
Other languages
Japanese (ja)
Inventor
Hiroyasu Nose
博康 能瀬
Toshimitsu Kawase
俊光 川瀬
Akihiko Yamano
明彦 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14373888A priority Critical patent/JPH01312753A/en
Publication of JPH01312753A publication Critical patent/JPH01312753A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To attain high density recording and reproduction by applying a voltage to a recording medium whose surface shape is changed locally by the application of a local electric field through the application of principles of a scanning type tunnel microscope. CONSTITUTION:A recording medium 2 whose surface shape is changed locally through the application of a local electric field and a probe electrode 1 to which a voltage is able to be applied are placed opposite in a way that they are moved relatively on longitudinal and lateral directions. The interval between the recording medium 2 and the probe electrode 1 is kept constant at recording and controlled to be an interval where a tunnel current between the recording medium 2 and the probe electrode 1 is kept constant at reproducing. A material having conductivity and whose surface shape is locally changed by melting or evaporation through the application of a local electric field is used as the recording medium 2. As the type of material, a metal or metallic compound thin film such as Au, Al, Rh-Zr alloy, Te-Ti alloy, Te-Se alloy, Te-C, H group material or a semiconductor thin film such as amorphous silicon is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型トンネル顕微鏡(以下rSTM」とい
う)の原理を応用した記録再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording/reproducing apparatus applying the principle of a scanning tunneling microscope (hereinafter referred to as "rSTM").

[従来の技術] 近年メモリ材料の用途は、コンピュータおよびその関連
機器、ビデオディスク、ディジタルオーディオディスク
等のエレクトロニクス産業の中核をなすものであり、そ
の材料開発も極めて活発に進んでいる。メモリ材料に要
求される性能は用途により異なるが、一般的に高密度で
記録容量が大きいことが要求されている。
[Background Art] In recent years, the use of memory materials has become the core of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc., and the development of these materials has been extremely active. The performance required of memory materials varies depending on the application, but generally high density and large storage capacity are required.

最近までは磁性体や半導体を素材とした磁気メモリや半
導体メモリが主であったが、近年のレーザー技術の進展
に伴ない、光メモリが開発され、記録媒体表面の凹凸、
反射率等の差異を利用して、7zmオーダーの高密度な
記録再生が可能となっている。この光メモリの記録媒体
としては、金属又は金属酸化物の薄膜、有機色素薄膜等
が用いられ、レーザー光の熱を利用して、蒸発、溶融等
により、穴をあけたり反射率を変化させて情報を記録し
ている。
Until recently, magnetic memories and semiconductor memories made of magnetic materials and semiconductors were the main materials, but with the recent advances in laser technology, optical memories have been developed,
Utilizing differences in reflectance, etc., enables high-density recording and reproduction on the order of 7 zm. The recording medium of this optical memory is a thin film of metal or metal oxide, a thin film of organic dye, etc., and the heat of the laser beam is used to create holes or change the reflectance through evaporation, melting, etc. are recorded.

一方、最近、導電性物質の電子構造を直接観察できるS
TMが開発されている[ジー・ピニング(G、 Bin
ning) 他rヘルベティ力・フィズイ力・アクタ 
(Helvetica Pysica Acta)」5
5.726(1982)] 、このSTMは、単結晶、
非晶質を問わず、実空間像の高い分解能の測定が、対象
に電流による損傷を与えずに低電力でできる利点を有し
、しかも大気中でも種々の材料に対して用いることがで
きるため、広範囲な応用が期待されている。
On the other hand, recently, S
TM has been developed [G, Bin
ning) Others r Helvety force/Fizzy force/Actor
(Helvetica Pysica Acta)”5
5.726 (1982)], this STM is a single crystal,
Regardless of the amorphous material, it has the advantage of being able to measure high-resolution real-space images with low power without damaging the target due to current, and can be used on a variety of materials even in the atmosphere. It is expected to have a wide range of applications.

上記STMは、金属の探針(プローブ電極)と導電性物
質の間に電圧を加えてlnm程度の距離まで近づけると
トンネル電流が流れることを利用している。この電流は
両者の距離変化に非常に敏感であり、トンネル電流を一
定に保つように探針を走査することにより、実空間の表
面構造を描くことができると同時に0表面原子の全電子
雲に関する種々の情報をも読み取ることができる。この
際、面内方向の分解能は0.1nm程度である。従って
、STMの原理を応用すれば、十分にnmオーダーでの
高密度記録再生が可能である。
The above-mentioned STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance to bring them close to a distance of about 1 nm. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunneling current constant, it is possible to draw the surface structure in real space, and at the same time, it is possible to draw the surface structure in real space. Various information can also be read. At this time, the resolution in the in-plane direction is about 0.1 nm. Therefore, by applying the principle of STM, high-density recording and reproduction on the nanometer order is possible.

そこで、nff1オーダーという、kmオーダーの光メ
モリーより更に高密度の記録再生を可能とすべく、従来
、I−、記STMの原理を応用した記録再生について、
電子ビーム、イオンビームあるいはX線、光等の電磁波
により、記録媒体の表面状態を変化させて記録し、ST
Mで再生する方法や、記録媒体として、電圧電流のスイ
ッチング特性においてメモリ効果を有する材料、例えば
カルコゲン化物類の薄膜層やπ電子系有機化合物の薄膜
層を用いて、記録再生をSTMを用いて行なう方法が提
案されている。また、STMのプローブ電極に、フィー
ルドエミッションが生じる電圧をかけ、Rh−Zr合金
の試料表面に局所的に溶融させて、コーン状の突起を作
るという試みもなされている[ニー・ステファ(tl、
5tafer)他「アプライ・ワイズ4−/クス・レタ
ーJ (APPl、 Phys、 Lett、)51 
(4)、 1987年7月27日〕。
Therefore, in order to enable higher density recording and reproducing of nff1 order, which is higher than that of km order optical memory, conventional recording and reproducing using the principle of I-STM has been proposed.
ST records by changing the surface condition of the recording medium using electromagnetic waves such as electron beams, ion beams, X-rays, and light.
The recording and reproducing method is based on STM, using a material that has a memory effect in voltage-current switching characteristics as a recording medium, such as a thin film layer of chalcogenides or a thin film layer of a π-electron organic compound. A method has been proposed. In addition, an attempt has been made to apply a voltage that causes field emission to the STM probe electrode and locally melt it on the surface of the Rh-Zr alloy sample to create a cone-shaped protrusion [Nie Stepher (tl.
5tafer) et al. “Apply Wise 4-/Kus Letter J (APPl, Phys, Lett,) 51
(4), July 27, 1987].

[5I!、明が解決しようとする課題]しかしながら、
従来の光メモリでは、レーザー光を光学系により収束さ
せて記録再生を行なうため、光の波長以下にビーム径を
絞ることは難しく、なるべく波長の短い光を使う等の改
良がなされつつあるが、記録単位はgmオーダーが限界
で、これ以上の高密度化ができない問題がある。
[5I! , the problem that Ming tries to solve] However,
In conventional optical memory, recording and reproducing are performed by converging laser light with an optical system, so it is difficult to narrow down the beam diameter to less than the wavelength of the light, and improvements are being made such as using light with a wavelength as short as possible. The unit is limited to the gm order, and there is a problem that higher density cannot be achieved.

一方、STMの原理を応用した記録再生は、前述のよう
な試みはなされてはいるが、実用的な記録再生装置の開
発には至っていないのが現状である。また、記録媒体は
、導電性を有し、局所的加熱により溶融または蒸発して
変形する材質からなるが、材質によっては導電性が非常
に低いものがあり、また薄膜であるので、その記録媒体
の面内方向の抵抗値が高くなり、記録時のプローブ電極
に流す電流値が記録領域の場所で変動したり、記録媒体
自身の抵抗で発熱したりして、最適な記録条件からはず
れる場合が出てくる問題がある。
On the other hand, although the above-mentioned attempts have been made to record and reproduce data using the principles of STM, no practical recording and reproduction apparatus has yet been developed. Furthermore, the recording medium is made of a material that is electrically conductive and deforms by melting or evaporating when locally heated, but some materials have very low electrical conductivity and are thin films, so the recording medium The resistance value in the in-plane direction of the recording medium increases, and the current value flowing through the probe electrode during recording may vary depending on the location of the recording area, or heat may be generated due to the resistance of the recording medium itself, which may deviate from the optimal recording conditions. There is a problem that comes up.

[課題を解決するための手段] 上記課題を解決するために本発明で講じられた手段を一
実施例に対応する第1図で説明すると、本発明では、局
所的電界の印加によって表面形状が局所的に変化する記
録媒体2と、電圧を印加可能なプローブ電極1とが、相
対向しかつ縦及び横方向に相対的に移動可能に位置され
ており、記録媒体2とプローブ電極1間の間隔が、記録
時には一定に保持され、再生時には記録媒体2とプロー
ブ電極1間のトンネル電流を一定に保持する間隔に制御
される記録再生装置とするという手段を講じているもの
である。
[Means for Solving the Problems] The means taken in the present invention to solve the above problems will be explained with reference to FIG. 1 corresponding to an embodiment. A locally changing recording medium 2 and a probe electrode 1 to which a voltage can be applied are positioned facing each other and movable relative to each other in the vertical and horizontal directions. The recording and reproducing apparatus is such that the interval is controlled to be constant during recording and to maintain the tunnel current between the recording medium 2 and the probe electrode 1 constant during reproduction.

本発明における記録媒体2としては、導電性を有し、局
所的な電界の印加により、溶融又は蒸発して局所的に表
面形状の変化する材質のものが使用される。この材質と
しては1例えば金属又は金属化合物の薄膜、具体的には
、例えばAu、 AI!、更には従来の技術の項に示し
た文献にも示されているRh−Zr合金、Te−Ti合
金、Te−5e合金、Te−C。
The recording medium 2 used in the present invention is made of a material that is electrically conductive and whose surface shape locally changes by melting or evaporating when a local electric field is applied. Examples of this material include 1, for example, a thin film of a metal or a metal compound, specifically, for example, Au, AI! , Rh-Zr alloy, Te-Ti alloy, Te-5e alloy, and Te-C, which are also shown in the documents listed in the prior art section.

H糸材料又はアモルファスシリコン等の半導体薄膜等を
用いることができる。
H thread material or a semiconductor thin film such as amorphous silicon can be used.

プローブ電極1としては、タングステン、 pt−Ir
、 Pt等の尖鋭な針状物が使用される。プローブ電極
lは、記録再生の分解能を良くするため、先端が例えば
機械研削、電解研磨等により尖鋭に加下されていること
が好ましい。
As the probe electrode 1, tungsten, pt-Ir
A sharp needle-like material such as Pt is used. In order to improve the resolution of recording and reproduction, it is preferable that the tip of the probe electrode 1 is sharpened by, for example, mechanical grinding, electrolytic polishing, or the like.

本発明において、縦方向とは記録媒体2とプローブ電極
lの対向方向をいい、横方向とは縦方向に対する直角方
向をいう、また、記録媒体2とプローブ電極lの相対的
移動は、いずれか一方のみを移動させることで行っても
、両者を同時に移動させることで行ってもよい。
In the present invention, the vertical direction refers to the direction in which the recording medium 2 and the probe electrode l face each other, and the horizontal direction refers to the direction perpendicular to the vertical direction. This may be done by moving only one or both at the same time.

また、本発明において、特に記録媒体2の電気抵抗率が
比較的高い場合には、第3図に示されるように、この記
録媒体2よりも電気抵抗率の低いr地層13を設けるこ
とが好ましい。下地層13としては、例えばAu、 A
j)等の電気抵抗率の低い材料の薄膜が用いられる。
Further, in the present invention, especially when the electrical resistivity of the recording medium 2 is relatively high, it is preferable to provide an r layer 13 having a lower electrical resistivity than the recording medium 2, as shown in FIG. . As the base layer 13, for example, Au, A
A thin film of a material with low electrical resistivity such as j) is used.

[作 用] 記録媒体2とプローブ電極1の相対的移動は、任意の位
置での記録と再生をOf能にするためのもので、特に記
録時に記録媒体2とプローブ電極1間の間隔が一定に保
持されるのは、所定の電界によって所定の表面形状の変
化をもたらす働きをなす、また、再生時に記録媒体2と
プローブ電極1間の間隔が、両者間のトンネル電流を一
定にする間隔に制御されることは、上記記録時の表面形
状変化状態に沿った両者の相対的縦方向の移動をもたら
す働きをなす。
[Function] The relative movement between the recording medium 2 and the probe electrode 1 is to enable recording and reproduction at any position, and especially when the distance between the recording medium 2 and the probe electrode 1 is constant during recording. This serves to bring about a predetermined change in surface shape by a predetermined electric field, and the distance between the recording medium 2 and the probe electrode 1 during reproduction is such that the tunnel current between them is kept constant. The controlled function serves to cause relative vertical movement of both along the surface shape change state during recording.

一方、下地fi13は、特に記録時の電流のほとんどが
この下地層13を流れることに伴って、記録時の表面形
状変化を全面に亘って安定化させる働きをなす。
On the other hand, the base fi 13 serves to stabilize changes in surface shape over the entire surface during recording, especially since most of the current during recording flows through this base layer 13.

[実施例] 第1図は本発明の一実施例に係る記録再生装置の説明図
で、第1図中1はプローブ電極で、記録再生用に用いら
れる0本実施例におけるプローブ電極lとしては、タン
グステン針の先端を電解研磨したものを使用した。
[Example] Fig. 1 is an explanatory diagram of a recording/reproducing apparatus according to an embodiment of the present invention. In Fig. 1, 1 is a probe electrode, and the probe electrode 1 in this embodiment is used for recording/reproduction. A tungsten needle with an electrolytically polished tip was used.

2は基板3上に形成された記録媒体、4はプローブ電極
1と記録媒体2の間に流れるトンネル電流を検出するプ
ローブ電流増幅器、5は図中のZ方向すなわち縦方向に
プローブ電極lの移動制御するZ方向サーボ回路、6は
プローブ電極lをZ方向に駆動する圧電素子等により構
成されるZ方向微動機構である。
2 is a recording medium formed on a substrate 3, 4 is a probe current amplifier that detects the tunnel current flowing between the probe electrode 1 and the recording medium 2, and 5 is the movement of the probe electrode l in the Z direction, that is, the vertical direction in the figure. The controlling Z-direction servo circuit 6 is a Z-direction fine movement mechanism composed of a piezoelectric element and the like that drives the probe electrode l in the Z direction.

Z方向サーボ回路5は、プローブ電流増幅器4で検出し
たプローブ電流を一定に保つようにZ方向微動機構6を
駆動し、プローブ電極lと記録媒体2との距離を制御す
る。
The Z-direction servo circuit 5 drives the Z-direction fine movement mechanism 6 so as to keep the probe current detected by the probe current amplifier 4 constant, and controls the distance between the probe electrode 1 and the recording medium 2.

7は図中XY力方向なわち、横方向にプローブ電極lを
移動制御する圧電素子等で構成されるXY方向微動機構
である。また8はXY方向粗動機構で、圧電素子または
電磁的手段により駆動される。これらXY方向微動及び
粗動機構7,8を図示せぬ制御回路により制御し、記録
媒体2の記録領域の任意の位置にプローブ電極1を移動
させることができる。
Reference numeral 7 denotes an XY direction fine movement mechanism comprised of a piezoelectric element and the like that controls the movement of the probe electrode l in the XY force directions in the figure, that is, in the lateral direction. Further, 8 is an XY direction coarse movement mechanism, which is driven by a piezoelectric element or electromagnetic means. These XY direction fine movement and coarse movement mechanisms 7 and 8 are controlled by a control circuit (not shown), and the probe electrode 1 can be moved to any position in the recording area of the recording medium 2.

次に記録再生の方法について説明する。Next, a recording/reproducing method will be explained.

まず、記録方法については、第1図で、記録すべき記録
信号12と記録媒体2上の記録位置信号が図示せぬ制御
回路から送られてくる。そのときプローブ電極lは、x
Y方向微動及び粗動機構7゜8により、指定の記録位置
まで、記録媒体2との距離が制御された状態で移動し、
記録位置に到達した時、記録信号12に対応するパルス
電圧を発生するパルス電圧回路11により、プローブ電
極lに書き込み用のパルス電圧が与えられることになる
。このパルス電圧により、記録位置に過大な電流が流れ
、局所的に記録媒体2の表面が溶融又は蒸発して表面形
状が変化し、記録がなされる。その際、パルス電圧を印
加すると、プローブ電流が急激に変化するので、Z方向
サーボ回路5は、その間出力電圧が一定となるようにH
OLD回路をONにするように制御している。そのため
、記録時にプローブ電極1と記録媒体2の距離が著しく
変化することはなく、安定な記録が出来る。
First, regarding the recording method, as shown in FIG. 1, a recording signal 12 to be recorded and a recording position signal on the recording medium 2 are sent from a control circuit (not shown). At that time, the probe electrode l is x
The Y-direction fine movement and coarse movement mechanism 7°8 moves to the specified recording position with the distance from the recording medium 2 being controlled,
When the recording position is reached, a pulse voltage for writing is applied to the probe electrode 1 by the pulse voltage circuit 11 which generates a pulse voltage corresponding to the recording signal 12. This pulse voltage causes an excessive current to flow to the recording position, locally melting or vaporizing the surface of the recording medium 2, changing the surface shape, and recording is performed. At this time, when a pulse voltage is applied, the probe current changes rapidly, so the Z-direction servo circuit 5 adjusts H so that the output voltage remains constant during that time.
The OLD circuit is controlled to be turned on. Therefore, the distance between the probe electrode 1 and the recording medium 2 does not change significantly during recording, and stable recording can be performed.

次に再生方法については、記録時と同様に、図示せぬ制
御回路から再生すべき記録位置が支持され、プローブ電
極lは、XY方向微動及び粗動機構7,8により、指定
の位置まで移動し、再生を開始する。そのとき、プロー
ブ電極lは、Z方向サーボ回路5により、記録媒体2上
の記録により生じた凹凸の表面をトンネル電流が一定に
なるようになぞるので、Z方向サーボ回路5からZ方向
微動機構6に与える制御信号は、記録媒体2の表面の凹
凸に対応しており、この制御信号を再生信号復調回路9
で波形整形等の処理をすることにより再生信号10が得
られる。
Next, regarding the reproduction method, the recording position to be reproduced is supported by a control circuit (not shown), and the probe electrode l is moved to the specified position by the XY direction fine movement and coarse movement mechanisms 7 and 8, as in the case of recording. and start playback. At this time, the probe electrode l traces the surface of the unevenness caused by recording on the recording medium 2 by the Z direction servo circuit 5 so that the tunnel current is constant. The control signal given to corresponds to the unevenness of the surface of the recording medium 2, and this control signal is sent to the reproduction signal demodulation circuit 9.
A reproduced signal 10 is obtained by performing processing such as waveform shaping.

第2図(a) 、(b)は、本発明の記録媒体2−ヒに
生じる記録形状例を示す斜視図で、記録時のプローブ電
極lに印加するパルス電圧の大きさ、印加時間、記録媒
体2の材質等の違いにより記録形状が異なってくる。す
なわち、プローブ電極lの先端では、記録パルス電圧印
加時には通常のトンネル電流数pA−anAに比較して
はるかに多くの電流がフィールドエミッションにより流
れ、記録媒体2の表面を局所的に加熱する。そのため、
記録媒体2の表面は、第2図(a)のように、局所的に
溶融して、プローブ電極1との間の強電界により吸引力
が働き、凸部14が形成されたり、第2図(b)のよう
に、局所的に蒸発して四部15が形成される場合があり
、その形状の制御は、記録条件を調整することにより最
適化することが可能である。この凹凸形状の大きさは直
径数十nm〜数n諺程度とすることが可能で、非常に高
密度の記録再生が可能となる。
FIGS. 2(a) and 2(b) are perspective views showing examples of recording shapes produced in the recording medium 2-A of the present invention, and show the magnitude of the pulse voltage applied to the probe electrode l during recording, the application time, and the recording shape. The recording shape differs depending on the material of the medium 2, etc. That is, at the tip of the probe electrode 1, when a recording pulse voltage is applied, a current much larger than the normal tunnel current number pA-anA flows due to field emission, and locally heats the surface of the recording medium 2. Therefore,
As shown in FIG. 2(a), the surface of the recording medium 2 is locally melted, and an attractive force is exerted by the strong electric field between the recording medium 2 and the probe electrode 1, and convex portions 14 are formed. As shown in (b), there are cases where the four parts 15 are formed by local evaporation, and the control of the shape can be optimized by adjusting the recording conditions. The size of the concavo-convex shape can be set to a diameter of several tens of nanometers to several nanometers, making it possible to perform extremely high-density recording and reproduction.

第3図(a)、(b)は、裏面側に記録媒体2より導電
性の良い下地層13を設けて記録媒体2を形成した基板
3の断面図で、この二層構造とした場合、記録時の電流
のほとんど大部分が導電層32を通して行なわれ、これ
により、記録領域全面にわたって安定な記録が出来るよ
うになった。また、第3図(a)、(b)に示されるよ
うに、この場合にも記録層31の材質により記録部が凸
又は凹状になり、どちらの場合でも同様の効果がある。
FIGS. 3(a) and 3(b) are cross-sectional views of a substrate 3 on which a recording medium 2 is formed by providing a base layer 13 with better conductivity than the recording medium 2 on the back side, and in the case of this two-layer structure, Almost all of the current during recording is conducted through the conductive layer 32, which makes it possible to perform stable recording over the entire recording area. Further, as shown in FIGS. 3(a) and 3(b), in this case as well, the recording portion may have a convex or concave shape depending on the material of the recording layer 31, and the same effect can be obtained in either case.

[発明の効果] 本発明によれば、−台の装置で、STMの原理を応用し
た記録再生を行うことができ、特にSTMの原理により
、数十〜数nmオーダーの非常に高密度の記録再生が可
能となる。
[Effects of the Invention] According to the present invention, it is possible to perform recording and reproduction by applying the STM principle with -1 devices, and in particular, the STM principle enables extremely high-density recording on the order of tens to several nanometers. Playback becomes possible.

また、下地層13を設けることにより、記録媒体2とし
てあまり導電性の良くない材料を使用しても安定した記
録を行うことができ、記録媒体2として広範囲の材料を
選択できる。
Furthermore, by providing the underlayer 13, stable recording can be performed even if a material with poor conductivity is used as the recording medium 2, and a wide range of materials can be selected for the recording medium 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る記録再生装置の一実施例の説明図
、第2図(a)、(b)は記録形状例を示す斜視図、第
3図(a) 、 (b)は下地層と記録媒体を設けた基
板の断面図である。 lニブローブ電極、  2:記録媒体、13:下地層。 出願人 キ ヤ ノ ン 株 式 会 社代理人 豊 
  1)  善   雄 第2図 第3図 (α) (b)
FIG. 1 is an explanatory diagram of an embodiment of the recording/reproducing device according to the present invention, FIGS. 2(a) and (b) are perspective views showing examples of recording shapes, and FIGS. 3(a) and (b) are bottom views. FIG. 2 is a cross-sectional view of a substrate provided with a geological layer and a recording medium. 1 nib lobe electrode, 2: recording medium, 13: underlayer. Applicant Canon Co., Ltd. Company Agent Yutaka
1) Yoshio Figure 2 Figure 3 (α) (b)

Claims (1)

【特許請求の範囲】 1)局所的電界の印加によって表面形状が局所的に変化
する記録媒体と、電圧を印加可能なプローブ電極とが、
相対向しかつ縦及び横方向に相対的に移動可能に位置さ
れており、記録媒体とプローブ電極間の間隔が、記録時
には一定に保持され、再生時には記録媒体とプローブ電
極間のトンネル電流を一定に保持する間隔に制御される
ことを特徴とする記録再生装置。 2)記録媒体の裏面側に、導電性を有する下地層が設け
られていることを特徴とする請求項第1項記載の記録再
生装置。
[Claims] 1) A recording medium whose surface shape locally changes by application of a local electric field, and a probe electrode to which a voltage can be applied,
They are positioned facing each other and movable relative to each other in the vertical and horizontal directions, so that the distance between the recording medium and the probe electrodes is kept constant during recording, and the tunnel current between the recording medium and the probe electrodes is kept constant during playback. A recording/reproducing device characterized in that the recording/reproducing device is controlled to maintain intervals. 2) The recording/reproducing apparatus according to claim 1, wherein a conductive underlayer is provided on the back side of the recording medium.
JP14373888A 1988-06-13 1988-06-13 Recording and reproducing device Pending JPH01312753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14373888A JPH01312753A (en) 1988-06-13 1988-06-13 Recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14373888A JPH01312753A (en) 1988-06-13 1988-06-13 Recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH01312753A true JPH01312753A (en) 1989-12-18

Family

ID=15345865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14373888A Pending JPH01312753A (en) 1988-06-13 1988-06-13 Recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH01312753A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450771A2 (en) * 1990-04-05 1991-10-09 International Business Machines Corporation Method and apparatus for writing by the emission of atoms
EP0464537A2 (en) * 1990-07-03 1992-01-08 BASF Aktiengesellschaft Method for temporarily stable marking of isolated atoms or groups of atoms on a solid state body surface and use of the same for storing information units at an atomic level
EP0522168A1 (en) * 1991-01-11 1993-01-13 Hitachi, Ltd. Surface atom machining method and apparatus
EP0523676A2 (en) 1991-07-17 1993-01-20 Canon Kabushiki Kaisha Information recording/reproducing method for recording and/or reproducing information on information recording carrier by use of probe electrode, information recording/reproducing apparatus executing the method, and information recording carrier suitable for the method
JPH06213910A (en) * 1992-11-30 1994-08-05 Digital Instr Inc Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JP2008021407A (en) * 2001-05-14 2008-01-31 Samsung Electronics Co Ltd Data storing method and data storing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450771A2 (en) * 1990-04-05 1991-10-09 International Business Machines Corporation Method and apparatus for writing by the emission of atoms
EP0450771A3 (en) * 1990-04-05 1993-02-24 International Business Machines Corporation Method and apparatus for writing by the emission of atoms
EP0464537A2 (en) * 1990-07-03 1992-01-08 BASF Aktiengesellschaft Method for temporarily stable marking of isolated atoms or groups of atoms on a solid state body surface and use of the same for storing information units at an atomic level
EP0464537A3 (en) * 1990-07-03 1993-02-24 Basf Aktiengesellschaft Method for temporarily stable marking of isolated atoms or groups of atoms on a solid state body surface and use of the same for storing information units at an atomic level
EP0522168A1 (en) * 1991-01-11 1993-01-13 Hitachi, Ltd. Surface atom machining method and apparatus
EP0522168A4 (en) * 1991-01-11 1994-08-31 Hitachi, Ltd.
EP0523676A2 (en) 1991-07-17 1993-01-20 Canon Kabushiki Kaisha Information recording/reproducing method for recording and/or reproducing information on information recording carrier by use of probe electrode, information recording/reproducing apparatus executing the method, and information recording carrier suitable for the method
US5461605A (en) * 1991-07-17 1995-10-24 Canon Kabushiki Kaisha Information recording/reproducing method, recording carrier and apparatus for recording and/or reproducing information on information recording carrier by use of probe electrode
US5610898A (en) * 1991-07-17 1997-03-11 Canon Kabushiki Kaisha Information recording/reproducing method for recording and/or reproducing information on information recording carrier by use of probe electrode
JPH06213910A (en) * 1992-11-30 1994-08-05 Digital Instr Inc Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JP2008021407A (en) * 2001-05-14 2008-01-31 Samsung Electronics Co Ltd Data storing method and data storing device

Similar Documents

Publication Publication Date Title
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
EP0363147B1 (en) Recording and reproducing apparatus and recording and reproducing method and recording medium for the recording and reproducing method
JPH04339337A (en) Information processor
JP2830977B2 (en) Recording medium, recording method and recording / reproducing apparatus using the same
JP3029143B2 (en) Information playback method
JPH01312753A (en) Recording and reproducing device
JP3127341B2 (en) Electrode substrate, method of manufacturing the same, recording medium, and information processing device
JP2603241B2 (en) Recording device and playback device
JP2942013B2 (en) Recording and / or playback device
JP3023728B2 (en) Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device
JP2774506B2 (en) High density information recording medium and recording / reproducing apparatus therefor
JPH0298849A (en) Recording and reproducing device and recording and reproducing method using same
JP2703643B2 (en) Recording / reproducing device using micro probe electrode
JP3078141B2 (en) Recording device and recording / reproducing device
JP3005077B2 (en) Recording and / or reproducing method and apparatus
JP3093946B2 (en) recoding media
JPH02201753A (en) Recording and reproducing device
JP2946132B2 (en) Information processing device and cassette for information processing
JPH01125746A (en) Method for erasing record in memory device
JPH04132028A (en) Device and method for processing information
JP2994833B2 (en) Recording and / or reproducing apparatus, method and information detecting apparatus
JPH0714224A (en) Recording medium and information processor
JP2936291B2 (en) Recording medium, information processing apparatus using the same, and recording medium cassette
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JPS63222348A (en) Device and method for recording