JPH02201753A - Recording and reproducing device - Google Patents

Recording and reproducing device

Info

Publication number
JPH02201753A
JPH02201753A JP1973389A JP1973389A JPH02201753A JP H02201753 A JPH02201753 A JP H02201753A JP 1973389 A JP1973389 A JP 1973389A JP 1973389 A JP1973389 A JP 1973389A JP H02201753 A JPH02201753 A JP H02201753A
Authority
JP
Japan
Prior art keywords
recording
recording medium
probe electrode
amorphous
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1973389A
Other languages
Japanese (ja)
Inventor
Isaaki Kawade
一佐哲 河出
Hiroyasu Nose
博康 能瀬
Akihiko Yamano
明彦 山野
Toshimitsu Kawase
俊光 川瀬
Kunihiro Sakai
酒井 邦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1973389A priority Critical patent/JPH02201753A/en
Publication of JPH02201753A publication Critical patent/JPH02201753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable the recording/reproducing of high density in order of 10nm by using a recording medium having a recording layer consisting of amorphous Si containing hydrogen and performing a recording by approaching a probe electrode to the recording medium. CONSTITUTION:The recording medium 2 having the recording layer consisting of amorphous Si containing hydrogen and capable of being locally changed in its surface form by impressing an electric field is used, and the probe electrode 1 is moved under the state of controlling a distance with the recording medium 2 by XY direction coarse moving and fine moving mechanisms 8 and 7 until a specified recording position, and on arrival in the recording position, the probe electrode 1 is given a pulse voltage for write by a pulse voltage circuit 11 for generating the pulse voltage corresponding to a recording signal 12. An excess current flows in the recording position by impressing this pulse voltage, and hence hydrogen is locally desorpted from the recording medium 2 so that the surface form is changed to perform the recording. By this method, the recording and reproducing are feasible on the recording medium 2 with a recording unit in order of 10nm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はnmオーダーの記録密度をもつ大容量・高密度
の記録再生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a large-capacity, high-density recording/reproducing device having a recording density on the order of nanometers.

[従来の技術] 近年メモリ材料の用途は、コンピュータ及びその関連機
器、ビデオディスク、デジタルオーディオディスク等の
エレクトロニクス産業の中核をなすものであり、その材
料開発も極めて活発に進んでいる。メモリ材料に要求さ
れる性能は用途により異なるが、一般的に高密度で記録
容量が大きいものが必要とされている。
[Prior Art] In recent years, the use of memory materials has become the core of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc., and the development of these materials has been extremely active. The performance required of memory materials varies depending on the application, but generally high density and large storage capacity are required.

従来までは磁性体や半導体を素材とした半導体メモリや
磁気メモリが主であったが、近年レーザー技術の進展に
伴い光メモリが開発され、記録媒体の表面の凹凸9反射
率の差異を利用して、pmオーダーの高密度な記録再生
が可能になってきた。
Until now, semiconductor memory and magnetic memory were mainly made of magnetic materials and semiconductors, but in recent years, optical memory has been developed with the advancement of laser technology. , high-density recording and reproduction on the order of pm has become possible.

そのような記録媒体として金属または金属化合物の薄膜
、有機色素薄膜等が用いられ、レーザー光の熱を利用し
て蒸発・溶融により穴を明けたり、反射率を変化させて
、情報を記録している。
Thin films of metals or metal compounds, thin films of organic dyes, etc. are used as such recording media, and information is recorded by making holes through evaporation or melting using the heat of laser light, or by changing the reflectance. There is.

さらに現在、映像情報化が急速に進んでおり、より小型
で大容量の高密度メモリに対する必要性が高まっている
Furthermore, as video information technology is rapidly progressing, there is an increasing need for smaller, larger-capacity, and higher-density memories.

[発明が解決しようとする課題] しかしながら、従来の光メモリではレーザー光を光学系
により収束させて記録再生を行なうため、光の波長以下
にビーム径を絞ることは難しく、なるべく波長の短い光
を使う等の改良がなされつつあるが、記録単位はpmオ
ーダーが限界となる欠点があった。
[Problem to be solved by the invention] However, in conventional optical memory, since recording and reproducing are performed by converging laser light with an optical system, it is difficult to narrow down the beam diameter to less than the wavelength of light, so light with a wavelength as short as possible is used. Improvements such as these are being made, but there is a drawback that the recording unit is limited to the pm order.

[課題を解決するための手段及び作用]本発明は、水素
を含有した非晶質Siからなり電界印加により表面形状
が局所的に変化する記録層を有する記録媒体とその記録
媒体に対向する少なくとも1つのプローブ電極と該プロ
ーブ電極に電圧を印加する手段と該プローブ電極と記録
媒体の距離を制御する手段を設けることにより、記録媒
体上に数10〜数nmオーダーの記録単位で記録、再生
することが可能となり、非常に高密度な記録再生装置を
提供するものである。
[Means and effects for solving the problems] The present invention provides a recording medium having a recording layer made of hydrogen-containing amorphous Si and whose surface shape changes locally by application of an electric field, and at least one layer facing the recording medium. By providing one probe electrode, a means for applying a voltage to the probe electrode, and a means for controlling the distance between the probe electrode and the recording medium, recording and reproduction can be performed on the recording medium in recording units on the order of several tens to several nanometers. This makes it possible to provide an extremely high-density recording/reproducing device.

最近、導体の表面原子の電子構造を直接観察できる走査
型トンネル顕微鏡(以後STMと略す)が開発され、[
G、 Binning et at、、 He1vet
icaPhysica Acta、 55.726(1
982)]  単結晶、非晶質を問わず実空間像の高い
分解能の測定ができるようになり、しかも媒体に電流に
よる損傷を与えずに低電力で観測できる利点をも有し、
さらに大気中でも動作し種々の材料に対して用いること
ができるため広範囲な応用が期待されている。
Recently, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of conductors has been developed.
G, Binning et at, He1vet
icaPhysica Acta, 55.726(1
982)] It has become possible to measure real space images with high resolution regardless of whether they are single crystal or amorphous, and it also has the advantage of being able to be observed with low power without damaging the medium due to current.
Furthermore, it is expected to have a wide range of applications because it can operate in the atmosphere and can be used with various materials.

STMはプローブ電極と称される金属の探針と導電性物
質の間に電圧を加えて1r+m程度の距離まで近づける
とトンネル電流が流れることを利用している。この電流
は両者の距離変化に非常に敏感であり、トンネル電、流
を一定に保つように探針を走査することにより実空間の
表面構造を描くことができると同時に表面原子の全電子
雲に関する種々の情報をも読み取ることができる。この
際、面内方向の分解能は0.1nm程度である。従って
、STHの原理を応用すれば十分にnmメーターオーダ
ーでの高密度記録再生を行なうことが可能である。
STM utilizes the fact that when a voltage is applied between a metal probe called a probe electrode and a conductive material and the probe is brought close to a distance of about 1r+m, a tunnel current flows. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunneling current constant, it is possible to depict the surface structure in real space, and at the same time, it is possible to draw the surface structure in real space. Various information can also be read. At this time, the resolution in the in-plane direction is about 0.1 nm. Therefore, by applying the principle of STH, it is possible to sufficiently perform high-density recording and reproduction on the order of nm meters.

この際の記録再生方法としては、電子ビーム。The recording and reproducing method used in this case is electron beam.

イオンビーム或はX線、光などの電磁波により記録媒体
の表面状態を変化させて記録し、STMで再生する方法
や、記録媒体として、電圧電流のスイッチング特性にお
いてメモリ効果を有する材料、例えばカルコゲン化物類
の薄膜層や、π電子系有機化合物の薄膜層を用いて、記
録・再生をSTMを用いて行なう方法が提案されている
A method of recording by changing the surface state of a recording medium using electromagnetic waves such as ion beams, X-rays, and light, and reproducing it with STM, and a method of recording with STM, and materials that have a memory effect in voltage and current switching characteristics, such as chalcogenide, as a recording medium. A method has been proposed in which recording and reproduction are performed using STM using a thin film layer of a similar type or a thin film layer of a π-electron organic compound.

また、STHのプローブ電極にフィールドエミッション
が生じる電圧をかけ、Rh−Zr合金の試料表面に局所
的に溶融させて、コーン状の突起を作るという試みがな
されている。[0,5tafer et a+、。
Furthermore, an attempt has been made to apply a voltage that causes field emission to the probe electrode of the STH to locally melt the sample surface of the Rh-Zr alloy to form a cone-shaped protrusion. [0,5tafer et a+,.

Appl、 Pbys、 I、ett、 51(4)、
 27 July 2i987]このようにSTHのプ
ローブ電極を用いて記録する手段をとれば、数10〜数
nmオーダーの記録単位が得られ光メモリよりも高密度
の記録再生装置が実現できる。
Appl, Pbys, I, ett, 51(4),
27 July 2i987] By recording using STH probe electrodes as described above, recording units on the order of several tens to several nanometers can be obtained, and a recording/reproducing device with higher density than an optical memory can be realized.

以下、図面を用いて本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail using the drawings.

第1図(a)は本発明の記録再生装置を示すブロック構
成図であり、第1図(b)は記録媒体の構成図である。
FIG. 1(a) is a block configuration diagram showing a recording/reproducing apparatus of the present invention, and FIG. 1(b) is a configuration diagram of a recording medium.

第1図(a)中1はプローブ電極で、記録再生用に用い
られるもので先端は記録再生の分解能を上げるために機
械的研削、電解研磨等により尖鋭に作られている。本発
明では、タングステン針の先端を電解研磨したものを用
いているが、プローブ電極の材料はPt−1r、 Pt
などでもよく、加工法も何らこれに限定するものではな
い。
Reference numeral 1 in FIG. 1(a) is a probe electrode, which is used for recording and reproduction, and its tip is made sharp by mechanical grinding, electrolytic polishing, etc. in order to improve the resolution of recording and reproduction. In the present invention, a tungsten needle whose tip has been electrolytically polished is used, and the material of the probe electrode is Pt-1r, Pt
etc., and the processing method is not limited to this in any way.

2は記録媒体で水素含有の非晶質Siからなる記録層と
導電性を有する下地層からなり基板3の上に形成されて
いる。
A recording medium 2 is formed on a substrate 3 and includes a recording layer made of hydrogen-containing amorphous Si and a conductive underlayer.

水素含有非晶質Siからなる記録層において、前記非晶
質Siの水素含有量は5原子%〜50原子%の範囲特に
10原子%〜30原子%の範囲が好ましい。
In the recording layer made of hydrogen-containing amorphous Si, the hydrogen content of the amorphous Si is preferably in the range of 5 atomic % to 50 atomic %, particularly in the range of 10 atomic % to 30 atomic %.

本発明において原子%とは含有される元素の原子数の比
を示している。これは、水素含有量が5原子%未溝の場
合、記録感度が悪くなるためであり、また水素含有量が
50原子%をこえた場合、水素含有非晶質Siの記録層
を安定に形成することが困難となるためである。また、
下地層は導電性を有する層なら何でも好ましく、例えば
Au、 Cu、 AIl等の金属が選ばれ、その形成方
法は真空蒸着法。
In the present invention, atomic % indicates the ratio of the number of atoms of contained elements. This is because recording sensitivity deteriorates when the hydrogen content is 5 at% without grooves, and when the hydrogen content exceeds 50 at%, a recording layer of hydrogen-containing amorphous Si is stably formed. This is because it becomes difficult to do so. Also,
Any conductive layer is preferable for the base layer, for example, metals such as Au, Cu, Al, etc. are selected, and the formation method is a vacuum evaporation method.

スパッタ法など下地層を均質に形成できる方法なら何で
も良い。
Any method that can uniformly form the base layer, such as sputtering, may be used.

4はプローブ電極1と記録媒体2の間に流れるトンネル
電流を検出するプローブ電流増幅器で5は図中のZ方向
、すなわち記録媒体2の表面に垂直な方向にプローブ電
極lの移動制御するZ方向サーボ回路で、6はプローブ
電極1をZ方向に駆動する圧電素子等により構成される
Z方向微動機構である。
4 is a probe current amplifier that detects the tunnel current flowing between the probe electrode 1 and the recording medium 2; 5 is the Z direction in the figure, that is, the Z direction that controls the movement of the probe electrode 1 in a direction perpendicular to the surface of the recording medium 2; In the servo circuit, 6 is a Z-direction fine movement mechanism comprised of a piezoelectric element or the like that drives the probe electrode 1 in the Z-direction.

Z方向サーボ回路5は、プローブ電流増幅器4で検出し
たプローブ電流を一定に保つようにZ方向微動機構6を
駆動し、プローブ電極1と記録媒体2との距離を制御す
る。7は図中X、Y方向すなわち、記録媒体2の表面に
平行な方向にプローブ電極lを移動制御する圧電素子等
で構成されるXY方向微動機構であり、また8はXY方
向粗動機構で圧電素子または電磁的手段により駆動され
る。これら7,8の微動・粗動機構を不図示の制御回路
により制御し記録媒体2の記録領域の任意の位置に、プ
ローブ電極1を移動させることができる。
The Z-direction servo circuit 5 drives the Z-direction fine movement mechanism 6 so as to keep the probe current detected by the probe current amplifier 4 constant, and controls the distance between the probe electrode 1 and the recording medium 2. 7 is an XY direction fine movement mechanism composed of a piezoelectric element etc. that controls the movement of the probe electrode l in the X and Y directions in the figure, that is, in a direction parallel to the surface of the recording medium 2, and 8 is an XY direction coarse movement mechanism. Driven by piezoelectric elements or electromagnetic means. These fine and coarse movement mechanisms 7 and 8 can be controlled by a control circuit (not shown) to move the probe electrode 1 to any position in the recording area of the recording medium 2.

次に記録・再生の方法について説明する。まず、記録方
法については、第1図(a)で、記録すべき記録信号1
2と記録媒体2上の記録位置が不図示制御回路から送ら
れてくる。その時プローブ電極lは7,8のXY方向粗
動、微動機構により指定の記録位置まで記録媒体2との
距離が制御された状態で移動し、記録位置に到達した時
、記録信号12に対応するパルス電圧を発生するパルス
電圧回路11により、プローブ電極lに書き込み用のパ
ルス電圧を与えることになる。このパルス電圧印加によ
り、記録位置に過大な電流が流れ、局所的に記録媒体か
ら水素が脱離して表面形状が変化して記録が行なわれる
Next, the recording/playback method will be explained. First, regarding the recording method, in FIG. 1(a), the recording signal 1 to be recorded is
2 and the recording position on the recording medium 2 are sent from a control circuit (not shown). At that time, the probe electrode l moves to the designated recording position with the distance from the recording medium 2 controlled by the XY direction coarse movement and fine movement mechanisms 7 and 8, and when it reaches the recording position, it corresponds to the recording signal 12. A pulse voltage circuit 11 that generates a pulse voltage applies a pulse voltage for writing to the probe electrode l. By applying this pulse voltage, an excessive current flows to the recording position, hydrogen is locally desorbed from the recording medium, the surface shape changes, and recording is performed.

その際パルス電圧を印加すると、プローブ電流が急激に
変化するので、Z方向サーボ回路5はその間出力電圧が
一定となるようにホールド回路をONにするように制御
している。そのため、記録時もプローブ電極lと記録媒
体2の距離も著しく変化することはなく、安定な記録が
できる。
When a pulse voltage is applied at this time, the probe current changes rapidly, so the Z-direction servo circuit 5 controls the hold circuit to be turned on so that the output voltage remains constant during that time. Therefore, even during recording, the distance between the probe electrode 1 and the recording medium 2 does not change significantly, allowing stable recording.

次に再生方法については、記録時と同様に不図示の制御
回路から再生すべき記録位置が指示されプローブ電極1
は7,8のXY方向粗動及び微動機構により指定の位置
まで移動し、再生を開始する。その時プローブ電極1は
、Z方向サーボ回路5により記録媒体2上の記録により
生じた凹凸の表面をトンネル電流が一定になるようにな
ぞるので、Z方向サーボ回路5からZ方向微動機構6に
与える制御信号は記録媒体2の表面の凹凸に対応してお
り、その制御信号を9の再生信号復調回路で波形整形等
の処理をすることにより再生信号10が得られる。
Next, regarding the reproducing method, the recording position to be reproduced is instructed from a control circuit (not shown), and the probe electrode 1 is instructed as in the case of recording.
is moved to a designated position by the XY direction coarse movement and fine movement mechanisms 7 and 8, and starts playback. At this time, the probe electrode 1 traces the uneven surface caused by recording on the recording medium 2 by the Z-direction servo circuit 5 so that the tunnel current is constant, so that the control given from the Z-direction servo circuit 5 to the Z-direction fine movement mechanism 6 is controlled. The signal corresponds to the irregularities on the surface of the recording medium 2, and a reproduced signal 10 is obtained by processing the control signal by waveform shaping etc. in a reproduced signal demodulation circuit 9.

第2図は、本発明の記録媒体2上に生じる記録形状を示
したもので、記録時のプローブ電極lに印加するパルス
電圧の大きさ、印加時間、また記録媒体2の材質により
記録形状が異なってくる。
FIG. 2 shows the recorded shape produced on the recording medium 2 of the present invention, and the recorded shape depends on the magnitude of the pulse voltage applied to the probe electrode l during recording, the application time, and the material of the recording medium 2. It will be different.

すなわち、プローブ電極lの先端では、記録パルス電圧
印加時には、通常のトンネル電流、数pA〜数nAに比
較してはるかに多くの電流がフィールドエミッションに
より流れて記録媒体2の表面を局所的に加熱する。その
ため、記録媒体2の表面は第2図(a)のように局所的
に溶融あるいは水素の脱離がおこり、プローブ電極1と
の間の強電界により吸引力が働き凸部20が形成された
り、第2図(b)のように局所的に蒸発して四部21が
形成される場合があり、その形状の制御は記録条件を変
えることにより最適化することが可能である。その凹凸
の形状の大きさは直径数10nm〜数ram程度で形成
することが可能で非常に高密度の記録再生が可能となる
That is, at the tip of the probe electrode l, when a recording pulse voltage is applied, a much larger current flows due to field emission than a normal tunnel current, several pA to several nA, and locally heats the surface of the recording medium 2. do. Therefore, the surface of the recording medium 2 locally melts or desorbs hydrogen as shown in FIG. , as shown in FIG. 2(b), there are cases where the four parts 21 are formed by local evaporation, and the control of the shape can be optimized by changing the recording conditions. The size of the uneven shape can be formed to have a diameter of several tens of nanometers to several rams, making it possible to perform extremely high-density recording and reproduction.

以下、実施例を用いてより詳細に説明する。Hereinafter, it will be explained in more detail using Examples.

[実施例] 実施例1 以下に示す手順で、ガラス基板3上にAuからなる下地
層と水素を30原子%含有した非晶質Siからなる記録
層を積層した記録媒体2を形成した。
[Example] Example 1 A recording medium 2 was formed in which a base layer made of Au and a recording layer made of amorphous Si containing 30 atomic % of hydrogen were laminated on a glass substrate 3 according to the procedure shown below.

(第1図(b)) まず、真空蒸着法(抵抗加熱法)を用いてガラス基板3
上に膜厚1000AのAu下地層を形成した。
(Fig. 1(b)) First, the glass substrate 3 is heated using a vacuum evaporation method (resistance heating method).
An Au underlayer with a thickness of 1000 Å was formed thereon.

次に、プラズマGVD法により、Au下地層の上に膜厚
300 Aの水素を30%含有した非晶質Si記録層を
積層した。この記録層の形成は、基板温度を200°C
に保ち、SiH4、!1−H2の混合ガスを209CG
M成膜装置内へ流しながら装置内の圧力0.1torr
 、パワー50Wの条件下で行なった。
Next, an amorphous Si recording layer containing 30% hydrogen and having a thickness of 300 A was laminated on the Au underlayer by plasma GVD. The formation of this recording layer requires a substrate temperature of 200°C.
Keep SiH4,! 1-H2 mixed gas 209CG
While flowing into the M film forming equipment, the pressure inside the equipment is 0.1 torr.
, under the condition of power 50W.

以上の様にして作成した記録媒体を、前述の第1図(a
)に示した記録・再生装置を用いて、記録・再生実験を
行なったところ、波高値5ポルト、パルス幅1 pse
cのパルス電圧印加により、直径10nm程度の大きさ
の記録ビットが安定に形成でき、非常に高密度の記録・
再生が可能であることがわかった。また、同一条件で記
録する際に、記録媒体に光を照射しながら記録を行なっ
たところ、記録・再生の安定性がいっそう向上した。
The recording medium created in the manner described above is shown in Figure 1 (a).
) When we conducted a recording/playback experiment using the recording/playback device shown in Figure 1, we found that the peak value was 5 ports and the pulse width was 1 pse.
By applying a pulse voltage of
It turns out that playback is possible. Furthermore, when recording was performed under the same conditions while irradiating the recording medium with light, the stability of recording and reproduction was further improved.

実施例2〜4及び比較例 水素含有非晶質Si記録層の水素含有量をそれぞれ5原
子%、10原子%、50原子%に変えた記録層を用いた
こと以外は実施例1と全く同じ記録媒体を作成した。水
素含有量は主に基板温度を変化させることにより、また
その他にパワーおよびガス流量等を変化させることによ
り種々のものを作成した。また、比較例として水素含有
量が3原子%の非晶質Siも形成した。なお、水素含有
量が50原子%を越える非晶質Si層は種々の成膜条件
を変化させても安定に得ることができなかった。
Examples 2 to 4 and Comparative Examples Completely the same as Example 1 except that the hydrogen-containing amorphous Si recording layer had a different hydrogen content of 5 at%, 10 at%, and 50 at%, respectively. Created a recording medium. The hydrogen content was varied mainly by changing the substrate temperature, and also by changing the power, gas flow rate, etc. In addition, as a comparative example, amorphous Si having a hydrogen content of 3 at % was also formed. Note that an amorphous Si layer having a hydrogen content of more than 50 atomic % could not be stably obtained even when various film forming conditions were changed.

以上の様にして作成した記録媒体を、実施例1と同じ条
件で記録・再生の実験を行なったところ表1に示す様な
結果となった。表中のrOJは実施例1と同一の記録条
件で安定に記録・再生ができたもの、「Δ」は記録・再
生ができたもの、「×」は記録・再生が非常に不安定だ
ったものを表わしている。
When the recording medium prepared as described above was subjected to recording/reproducing experiments under the same conditions as in Example 1, the results shown in Table 1 were obtained. rOJ in the table indicates that stable recording/reproduction was possible under the same recording conditions as in Example 1, "Δ" indicates that recording/reproduction was possible, and "x" indicates that recording/reproduction was extremely unstable. represents something.

表1から明らかな様に、水素含有非晶質Si記録層の水
素含有量が5原子%〜50原子%の範囲で非常に高密度
の記録・再生が可能であることがわかり、また、水素含
有量が10原子%〜30原子%の範囲でより安定な記録
・再生ができることがわかった。
As is clear from Table 1, very high density recording and reproduction is possible when the hydrogen content of the hydrogen-containing amorphous Si recording layer is in the range of 5 at% to 50 at%. It has been found that more stable recording and reproduction can be achieved when the content is in the range of 10 at % to 30 at %.

表  1 づけ、表面をなぞるように制御して、記録・再生を行な
うことにより10nmオーダーの非常に高密度の記録・
再生が可能となった。
By tracing the surface and controlling the recording/reproduction, very high density recording/reproduction on the order of 10 nm can be achieved.
Playback is now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の記録再生装置を示すブロック構
成図であり、第1図(b)は記録媒体の構成図である。 第2図は、本発明の記録媒体上に生じる記録形状を示し
たものである。
FIG. 1(a) is a block configuration diagram showing a recording/reproducing apparatus of the present invention, and FIG. 1(b) is a configuration diagram of a recording medium. FIG. 2 shows the recorded shape produced on the recording medium of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)水素を含有した非晶質Siからなる記録層を有す
る記録媒体と、該記録媒体に対向する少なくとも1つの
プローブ電極と、該プローブ電極に電圧を印加する手段
と、該プローブ電極と記録媒体の距離を制御する手段を
設け、該記録媒体と該プローブ電極間に電界を印加し、
表面形状を局所的に変化させて記録を行なうことを特徴
とする記録再生装置。
(1) A recording medium having a recording layer made of amorphous Si containing hydrogen; at least one probe electrode facing the recording medium; means for applying a voltage to the probe electrode; providing means for controlling the distance of the medium, applying an electric field between the recording medium and the probe electrode;
A recording/reproducing device characterized in that recording is performed by locally changing the surface shape.
(2)記録媒体が電界の印加により表面形状が局所的に
変化する記録層と導電性を有する下地層からなることを
特徴とする請求項(1)記載の記録再生装置。
(2) The recording/reproducing apparatus according to claim (1), wherein the recording medium comprises a recording layer whose surface shape locally changes upon application of an electric field and a conductive underlayer.
(3)非晶質Siの水素含有量が5原子%以上50原子
%以下であることを特徴とする請求項(1)記載の記録
再生装置。
(3) The recording/reproducing device according to claim (1), wherein the hydrogen content of the amorphous Si is 5 atomic % or more and 50 atomic % or less.
(4)非晶質Siの水素含有量が10原子%以上30原
子%以下であることを特徴とする請求項(1)記載の記
録再生装置。
(4) The recording/reproducing device according to claim (1), wherein the hydrogen content of the amorphous Si is 10 atomic % or more and 30 atomic % or less.
JP1973389A 1989-01-31 1989-01-31 Recording and reproducing device Pending JPH02201753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1973389A JPH02201753A (en) 1989-01-31 1989-01-31 Recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1973389A JPH02201753A (en) 1989-01-31 1989-01-31 Recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH02201753A true JPH02201753A (en) 1990-08-09

Family

ID=12007521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1973389A Pending JPH02201753A (en) 1989-01-31 1989-01-31 Recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH02201753A (en)

Similar Documents

Publication Publication Date Title
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
EP0363147B1 (en) Recording and reproducing apparatus and recording and reproducing method and recording medium for the recording and reproducing method
JPH04339337A (en) Information processor
JP2830977B2 (en) Recording medium, recording method and recording / reproducing apparatus using the same
JPH01312753A (en) Recording and reproducing device
JP3127341B2 (en) Electrode substrate, method of manufacturing the same, recording medium, and information processing device
JP2603241B2 (en) Recording device and playback device
JPH02201753A (en) Recording and reproducing device
JP2942013B2 (en) Recording and / or playback device
JPH0298849A (en) Recording and reproducing device and recording and reproducing method using same
JP2774506B2 (en) High density information recording medium and recording / reproducing apparatus therefor
JPH02146128A (en) Recording and reproducing device
JPH04132028A (en) Device and method for processing information
JPS63222348A (en) Device and method for recording
JP3261539B2 (en) Manufacturing method of electrode substrate
JP3093946B2 (en) recoding media
JPH03263633A (en) Device and method for recording/reproducing/erasing
JP2703643B2 (en) Recording / reproducing device using micro probe electrode
JPH0528549A (en) Recording medium and information processor
JPH0316046A (en) Method and device for recording and reproducing
JPH02302945A (en) Recording medium and recording and reproducing device by using this medium
JPH04143942A (en) Formation of track
JPH04159635A (en) Recording medium, its manufacture and information processor using same
JPH10172188A (en) Information recording method and information recorder
JPH0528550A (en) Information storage device