JPH02146128A - Recording and reproducing device - Google Patents

Recording and reproducing device

Info

Publication number
JPH02146128A
JPH02146128A JP29839888A JP29839888A JPH02146128A JP H02146128 A JPH02146128 A JP H02146128A JP 29839888 A JP29839888 A JP 29839888A JP 29839888 A JP29839888 A JP 29839888A JP H02146128 A JPH02146128 A JP H02146128A
Authority
JP
Japan
Prior art keywords
recording
electrode
probe
recording medium
probe electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29839888A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takimoto
瀧本 清
Harunori Kawada
河田 春紀
Hiroshi Matsuda
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29839888A priority Critical patent/JPH02146128A/en
Publication of JPH02146128A publication Critical patent/JPH02146128A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a high density recording and reproducing device with a memory property by generating a reversible change of state owing to an oxidation-reduction reaction in a recording medium disposed between a probe electrode and an opposite electrode under the presence of electrolyte. CONSTITUTION:The probe electrode 102 fitted with a fine moving control mechanism 107 and the opposite electrode 103 in opposition to this probe electrode are disposed in the electrolyte 115 which supplies moving ions, and a recording layer 101 is provided on the electrode 103. The reversible change of state between the oxidation state and reduction state is generated on the layer 101 by impressing a pulse voltage from a power source 108. Then, a probe current between the electrodes 103 and 102 is controlled to be constant by a servo circuit 106 for controlling the mechanism 107. At the same time, by controlling a distance between the electrode 102 and the recording medium 1, an area where the oxidation-reduction reaction takes place can be microminiaturized. By this method, the recording and reproducing device with higher density than an optical recording can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は記録再生装置に関するものである。 更に詳しくは一方をプローブ電極とした少なくとも一対
の電極間に配置した記録媒体が電解質の存在下で電気化
学的な酸化還元反応によって、可逆的な状態変化を起こ
すことを用いた記録再生装置に関する。 [従来の技術] 近年、メモリ材料の用途は、コンピュータおよびその間
連機器、ビデオディスク、ディジタルオーディオディス
ク等のエレクトロニクス産業の中核をなすものであり、
その材料開発も操めて活発に進んでいる。メモリ材料に
要求される性能は用途により異なるが、一般的に高密度
で記録容量が大きいものが必要とされている。 従来までは磁性体や半導体を素材とした半導体メモリや
磁気メモリが主であったが、近年レーザー技術の進展に
ともない、有機色素、フォトポリマーなどの有機薄膜を
用いた光メモリによる安価で高密度な記録媒体が登場し
てきた。 光メモリにおいては、記録媒体の表面の凹凸。 反射重分差異を利用して、μmオーダーの高密度記録再
生が可能になってきた。かかる記録媒体として金属また
は金属化合物の薄膜、有機色素薄膜等が用いられ、レー
ザー光の熱を利用して、蒸発・溶融により穴をあけたり
反射率を変化させて、情報を記録しており、かかる方法
においては、使用するレーザー光のスポット径が記録密
度を規定している。 しかしながら現在、映像情報化が急速に進んでおり、よ
り小型で大容量の高密度メモリの開発の要求が高まって
いる。 一方、最近、導体の表面原子の電子構造を直接観察でき
る走査型トンネル顕微鏡(以後、STMと略す)が開発
され、 [G、Binning et al、、 )Ielve
tica Physica Acta。 55、726(1982) ] 単結晶、非晶質を問わず実空間像が高い分解能で測定が
できるようになり、しかも媒体に電流による損傷を与え
ずに低電力で観測できる利点をも有し、さらに大気中で
も動作し、種々の材料に対して用いることができるため
広範囲な応用が期待されている。 STMは金属の探針と導電性物質の間に電圧を加えてI
nn程度の距離まで近づけるとトンネル電流が流れるこ
とを利用している。この電流は両者の開の距離変化に非
常に敏感であり、トンネル電流を一定に保つように探針
な走査することにより実空間の表面構造を描くことがで
きると同時に表面原子の全電子雲に関する種々の情報を
も読み取ることができる。STMを用いた解析は導電性
試料に限られるが、導電性材料の表面に非常に薄く形成
された単分子膜の構造解析にも応用され始めており、個
々の有機分子の状態の違いを利用した高密度記録の再生
技術としての応用も考えられる。 STMの記録再生技術への応用としては電子ビーム、イ
オンビーム或いはX線、光などの電磁波により、記録媒
体の表面状態を変化させて記録しSTMで再生する方法
や、記録媒体として電圧電流特性においてメモリ効果を
有する材料、例えばカルコゲン化物類の薄膜層やπ電子
系有機化合物の薄膜層を用いて、記録再生をSTMを用
いて行なう方法が提案されている。 また、STMのプローブ電極に電界放出が生じる電圧を
かけRh−Zr合金の試料表面に局所的に溶融させてコ
ーン状の突起を作るという試みがなされている。[U、
5tafer et all、 Appl、 Phys
、 Lett、 51(4)27 July 1987
]従来、針状電極を用いて放電や通電によって潜像を形
成する方法は静電記録方法として知られており、記録紙
等への応用が数多くなされている(特開昭49−343
5号公報)。 しかしながらこの静電記録媒体に用いられる膜厚はμオ
ーダーで、該媒体上の潜像を電気的に読み取り再生した
例はまだ報告されていない。 また、一方で、1個の有機分子に論理素子やメモリ素子
等の機能を持たせた分子電子デバイスの提案が発表され
、分子電子デバイスの構築技術の一つとみられるラング
ミュアーブロジェット膜(以下LB膜と略す)について
の研究も活発化している。LB膜は有機分子を規則正し
く1分子層ずつ積層したもので膜厚の制御が分子長の単
位でなされた、−様で均質な超Fl)膜であり、この特
徴を十分に活かしたデバイス形成の試みが数多くなされ
てきている。 [発明が解決しようとする課題] 本発明の目的は、酸化還元反応により、分子あるいは分
子団に可逆な状態変化な生せしめることにより、メモリ
ー性を有した従来より高密度な記録再生装置を提供する
ことにある。
[Industrial Application Field] The present invention relates to a recording/reproducing device. More specifically, the present invention relates to a recording/reproducing device in which a recording medium disposed between at least a pair of electrodes, one of which is a probe electrode, undergoes a reversible state change through an electrochemical redox reaction in the presence of an electrolyte. [Prior Art] In recent years, the use of memory materials has become a core part of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc.
The development of materials for this purpose is also actively progressing. The performance required of memory materials varies depending on the application, but generally high density and large storage capacity are required. Until now, semiconductor memories and magnetic memories were mainly made of magnetic materials and semiconductors, but with the recent advances in laser technology, inexpensive and high-density optical memories using organic thin films such as organic dyes and photopolymers have been developed. Recording media have appeared. In optical memory, irregularities on the surface of the recording medium. High-density recording and reproduction on the order of μm has become possible by utilizing differences in reflection weight. Thin films of metals or metal compounds, thin films of organic dyes, etc. are used as such recording media, and information is recorded by making holes or changing reflectance through evaporation and melting using the heat of laser light. In this method, the recording density is determined by the spot diameter of the laser beam used. However, as video information technology is rapidly progressing, there is an increasing demand for the development of smaller, larger-capacity, and higher-density memories. On the other hand, recently, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of a conductor has been developed.
tica Physica Acta. 55, 726 (1982)] Real space images can now be measured with high resolution regardless of whether they are single crystal or amorphous, and they also have the advantage of being able to be observed with low power without damaging the medium due to current. Furthermore, it is expected to have a wide range of applications because it can operate in the atmosphere and can be used with various materials. STM involves applying a voltage between a metal tip and a conductive material.
It takes advantage of the fact that a tunnel current flows when brought close to a distance of about nn. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunnel current constant, it is possible to draw the surface structure in real space, and at the same time, it is possible to draw the surface structure in real space. Various information can also be read. Analysis using STM is limited to conductive samples, but it is beginning to be applied to the structural analysis of extremely thin monomolecular films formed on the surface of conductive materials, using the differences in the states of individual organic molecules. Application as a reproduction technology for high-density recording is also considered. Applications of STM to recording and reproducing technology include methods for changing the surface condition of a recording medium using electromagnetic waves such as electron beams, ion beams, X-rays, and light, and then reproducing the information using STM. A method has been proposed in which recording and reproduction are performed using STM using a thin film layer of a material having a memory effect, such as a thin film layer of chalcogenides or a thin film layer of a π-electron based organic compound. In addition, an attempt has been made to apply a voltage that causes field emission to the STM probe electrode to locally melt the Rh-Zr alloy sample surface to form cone-shaped protrusions. [U,
5tafer et all, Appl, Phys
, Lett, 51(4)27 July 1987
] Conventionally, the method of forming a latent image by discharging or energizing using a needle-like electrode is known as an electrostatic recording method, and has been applied to many recording papers etc. (Japanese Patent Laid-Open No. 49-343
Publication No. 5). However, the film thickness used in this electrostatic recording medium is on the μ order, and there have been no reports of an example in which a latent image on the medium is electrically read and reproduced. On the other hand, a proposal for a molecular electronic device in which a single organic molecule has functions such as a logic element or a memory element was announced, and a Langmuir-Blodgett film (hereinafter referred to as LB), which is considered to be one of the construction technologies for molecular electronic devices, was announced. Research on membranes (abbreviated as membranes) is also becoming more active. The LB film is a homogeneous super-Fl) film in which organic molecules are laminated one molecular layer at a time, and the film thickness is controlled in units of molecular length. Many attempts have been made. [Problems to be Solved by the Invention] An object of the present invention is to provide a recording/reproducing device with memory properties and higher density than conventional ones by causing molecules or molecular groups to undergo a reversible state change through an oxidation-reduction reaction. It's about doing.

【課題を解決するための手段] 本発明は少なくとも1つのプローブ電極と該プローブ電
極と対向配置した対向電極とを有し、可動イオンを供給
する電解質および該電解質の存在下で、外部からの電圧
印加によって酸化状態と還元状態の間の可逆的な状態変
化を容易に制御しうる記録媒体が前記プローブ電極と前
記対向電極の間に配置され、更に、前記プローブ電極と
前記対向電極との間に電圧を印加する手段と前記プロー
ブ電極と前記記録媒体との距離を制御する手段を設けた
記録再生装置である。 本発明は少なくとも1つのプローブ電極と対向電極との
間に酸化還元反応により、可逆な状態変化を示す記録媒
体及び電解質を配置し、更に前記両電極間に電圧を印加
する手段、及び前記プローブ電極と記録媒体との距離を
制御する手段を設けていることに特徴を有している。 酸化還元反応による可逆な状態変化に基づく現象として
代表的なものにエレクトロクロミズムが挙げられる。エ
レクトロクロミズムとは、電気化学的な酸化還元反応に
よって、電子移動体の一方もしくは両方が着色する現象
をさし、表示素子への応用がなされており、有機物では
ビオロゲン誘導体、スチリル類似化合物、希土類シフタ
ロジアニン等が知られている0着色は、金属イオンある
いは有機分子の価数の変化により、電子状態の変化が生
じ、これに伴なって可視域内に吸収ピークが生じるない
しは可視域内での吸収ピークが移動することに基づくと
理解されている。 本発明においては、一方の電極に少なくとも1つのプロ
ーブ電極を用い、更にプローブ電極をSTMを用いて記
録媒体のごく近傍、およそ1mm程度まで近づけること
により酸化還元反応を起こす領域を制限し、掻めて微小
な領域に電子状態の異なる分子もしくは分子団を生ぜし
めることによって、高密度記録を達成している。 かかる電子状態の相異なる領域の識別は従来光記録に用
いられている読み取りをもってしては不可能であり、分
子近傍の電子雲の拡がりに関して極めて敏感なSTMを
利用して初めて可能となる。すなわち、記録部、未記録
部の分子もしくは分子団の状態の相異を電気的に検知す
る点もまた本発明の特徴である。具体的にはプローブ電
極と対向電極間に流れるトンネル電流値の変化により検
知するが、トンネル電流値を一定に保つようプローブ電
極と記録媒体の距離を制御し、その際の制御信号により
、検知してもよい。 導電性の低い試料をSTMで解析する際、導電性材料の
表面にごく薄く、数十オングストローム以下の膜厚で形
成しなければならない、かかる超薄膜有機記録媒体の形
成に関しては、具体的には蒸着法やクラスターイオンビ
ーム法等の適用も可能であるが、制御性、容易性そして
再現性から公知の従来技術の中ではLB法が極めて好適
である。 LB法は分子内に親水性部位と疎水性部位とを有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれている時、分子は水面上で親水性基
を下に向けて単分子の層になることを利用して単分子膜
またはその累積膜を作成する方法である。 このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基盤上に容易に形成することができ、分子オーダーの厚
みを有し、かつ大面積にわたって均一、均質な有機超薄
膜を安定に供給することができる。従ってSTMによる
解析に必要な超薄膜を容易に形成しうる。更に、エレク
トロクロミズムの弱点である応答速度に関しても、これ
を律速しでいる要因は自由電荷のドリフト速度であって
、かかる超薄膜の状態では問題にならない。 本発明において、無機及び有機材料が積層された薄膜を
支持するための基板は金属、ガラス、セラミックス、プ
ラスチック材料等いずれでもよい。 上記の如き基板は任意の形状でよく平板状であるのが好
ましいが、平板に何ら限定されない、すなわち前記成膜
法においては、基板の表面がいかなる形状であってもそ
の形状通りに膜を形成し得る利点を有するからである。 一方、本発明で用いられる電極材料も高い伝導性を有し
、かつ電解質と不用な反応を起こさないものであれば良
く、例えばAu、Pt、Ag。 Pd、 AI2.In、Sn、Pb、Wなどの金属やこ
れらの合金、さらにはグラファイトやシリサイド、また
さらにはITOなどの導電性酸化物を始めとして数多く
の材料が挙げられ、これらの本発明への適用が考えられ
る。係る材料を用いた電極形成法としても従来公知の薄
膜技術で充分である。但し、LB膜が直接形成される電
極材料は表面がLB膜形成の際、絶縁性の酸化膜をつく
らない導電材料、例えば貴金属やITOなどの酸化物導
電体を用いることが好ましい。 また、プローブ電極の先端は記録/再生/消去の分解能
を上げるためできるだけ尖らせる必要がある1本発明で
は、1mmφの太さの白金の先端を90″のコーンにな
るように機械的に研磨し超高真空中で電界をかけて表面
原子を蒸発させたものを用いているがプローブの形状や
処理方法は何らこれに限定するものではない。 第1図は本発明の記録装置を示すブロック構成図である
。第1図(A)中、】05はプローブ電流増巾器で、1
06はプローブ電流が一定になるように圧電素子を用い
た微動機構107を制御するサーボ回路である。108
はプローブ電極102と対向電極103の間に記録/消
去用のパルス電圧を印加するためのパルス電源である。 パルス電圧を印加するときプローブ電流が急激に変化す
るためサーボ回路106は、その間出力電圧が一定にな
るように、HOLD回路をONにするように制御してい
る。 +09はXY力方向プローブ電極102を移動制御する
ためのXY走査駆動回路である。粗動機構110と粗動
駆動回路111は、あらかじめ10−’A程度のプロー
ブ電流が得られるようにプローブ電極102と記録媒体
1との距離な粗動制御するものである。これらの各機能
は、すべてマイクロコンピュータ112により中央制御
されている。また113は表示機器を表している。 また、圧電素子を用いた移動制御における機械的性能を
下記に示す。 Z方向微動制御範囲:  O,lnm〜l賜2方向粗動
制御範囲+   1Or+n+ −10mmXY方向走
査範囲 :  O,lnm 〜lpml側m計測。容誤
差: < O,Inm以下、本発明を実施例に従って説
明する。 [実施例1〕 第1図に示す記録再生装置を用いた。プローブ電極10
2として白金製のプローブ電極を用いた。 このプローブ電1102は記録層101の表面との距離
(Z)を制御するためのもので、電流を一定に保つよう
に圧電素子により、その距離(Z)を微動制御されてい
る。更に微動制御機構107は距離2を一定に保ったま
ま、面内(x、y)方向にも微動制御できるように設計
されている。しかし、これらはすべて従来公知の技術で
ある。またプローブ電極102は直接記録・再生・消去
を行うために用いることができる。また、記録媒体は高
精度のXYステージ1!4の上に置かれ、任意の位置に
移動させることができる。 次にITOで形成した対向電極103の上に形成された
ルテチウムシフタロジアニン[Lu)I (Pc) 2
 ]の]t−ブチル誘導の単分子膜を用いた記録、再生
、消去の実験についてその詳細を記す。 [Lutl (Pc) 2 ]のし−ブチル誘導体の単
分子膜から成る記録層+01をもつ記録媒体1をXYス
テージ上に固定し、次いで電解質115として、塩化カ
リウム水溶液を記録層及びプローブ先端が浸るまで加え
た。ITOで形成された対向電極を陰極にして0.3v
の電圧を印加し、電流をモニターしながらプローブ電極
102と記録層101表面との距離(Z)を調整した。 その後、微動制御機構107を制御してプローブ電極1
02と記録層101表面までの距離を更に微小な範囲で
調整した。この際、印加する電圧は記録層が状態変化を
起こさない範囲にとどめた。 次に対向電極を陽極にして、0.2Vの電圧を印加して
、サーボ回路106からプローブ電流が一定となる様、
Z方向微動機構+07に制御信号を与えなからXY走査
駆動回路!09を動作させた。サーボ回路106からの
制御信号は記録層101の表面の凹凸に対応しているが
、この結果、記録層101の表面には2nm以上の周期
の凹凸は見られなかった。 しかるのちに、xY走査駆動回路+09の出力をホール
ドして、プローブの位置を固定した後、パルス電源10
8から対向電極を陽極にして1.5Vの矩形パルスを印
加した。再びXY走査駆動回路109を動作させ、ホー
ルドした位置の周辺を走査して表面観察したところ、先
に観察された2層m以下の周期の凹凸に重畳された直径
10数nmの凹部が見られた。 更にプローブの位置を移動させた後、XY走査駆動回路
+09を動作させながら対向電極を陽極にして1.2V
の振幅を有する適当な周期の矩形パルス列を印加した。 この後、対向電極を陽極にして0.2vの電圧を印加し
、走査記録領域の表面観察を行なったところ、2層m以
下の周期の凹凸が重畳された長周期の凹凸が見られた。 この周期はプローブのXY走査速度とパルス列の周期か
ら見つもられた周期に一致した。次に同じ走査記録領域
を、対向電極を陰極にして0.4vの電圧を印加しなが
らプローブをXY定走査せた後、対向電極を陽極にして
0.2Vの電圧を印加して表面観察を行なったところ、
2層m以下の凹凸が見られるのみで、これ以上の長周期
の凹凸は観察されなかった。 以上の実験に用いた[Lu)I (Pc) z]のt−
ブチル誘導体の単分子膜は以下のごとく作成した。 光学研磨したガラス基板(基板104)を中性洗剤およ
びトリクレンを用いて洗浄した後、スパッタ法によりI
TOを真空蒸着し、電極(103)を形成した。次に[
LuH(Pc) 2]のt−ブチル誘導体をクロロホル
ム/トリメチルベンゼン/アセトン(1/l/2 )混
合溶媒に溶かし、濃度0.5mg/mβの溶液を得た。 上述の基板を20℃の純粋水相中に水没させた後上記溶
液な水相上に展開し、水面上に単分子膜を形成した。溶
媒の蒸発を待ち係る単分子膜の表面圧を20mN/mま
で高め、更にこれを一定に保ちながら前記基板を水面を
横切るように速度3mm/分で静かに引きあげ、基板上
に単分子膜を形成した。 〔実施例2〕 実施例1で用いたLuH(PC) 2のt−ブチル誘導
体の代わりにリチウムフタロシアニン(Li、Pc)を
用いた他は、実施例1と同様にして実験を行なった。更
に本実施例では基板を水面を横切って浸漬、引きあげを
繰り返すことによりZ型の単分子膜累積膜が得られ、こ
の操作により1.3,5゜7.9層の5種類の累積膜を
形成した。書き込み電圧を対向電極を陽極に2V、読み
取り電圧を対向電極を陽極に0.2v、消去時の電圧は
対向電極を陰極にとしたところ、実施例1と同様な結果
を得た。1,3.5層の試料では、記録部と未記録部と
のコントラストも良好で、層厚変化もきわめて小さかっ
たが7層以上では累積層数の増加に伴なってコントラス
トの減少が見られた。 以上述べてきた実施例中では記録層の形成にLB法を使
用してきたが、極めて薄く均一な膜が作成できる方法で
あれば、LB法に限らず、使用可能であり、具体的には
MBEやCVD法等の真空蒸着法が挙げられる。 使用可能な材料も酸化還元反応により可逆な状態変化を
示す他の有機化合物のみならず、無機材料、たとえば酸
化タングステン等にも応用できる。 なお、本発明は基板材料やその形状および表面構造につ
いて何ら限定するものではない。 〔発明の効果〕 ■光記録に較べても、はるかに高密度な記録が可能な全
く新しい記録再生方法を開示した。 ■単分子膜の累積によって記録層を形成するため、分子
オーダー(数人〜数十人)による膜厚制御が容易に実現
できた。また制御性に優れているため記録層を形成する
とき再現性が高い。 ■記録層が薄くて良いため、生産性に冨み安価な記録媒
体を提供できる。 ■再生に必要なエネルギーは小さく、消費電力は少ない
[Means for Solving the Problems] The present invention has at least one probe electrode and a counter electrode disposed opposite to the probe electrode, and in the presence of an electrolyte that supplies mobile ions and the electrolyte, an external voltage is applied. A recording medium capable of easily controlling a reversible state change between an oxidized state and a reduced state by application is disposed between the probe electrode and the counter electrode, and further includes a recording medium between the probe electrode and the counter electrode. The recording and reproducing apparatus is provided with means for applying a voltage and means for controlling the distance between the probe electrode and the recording medium. The present invention provides means for disposing a recording medium and an electrolyte exhibiting a reversible state change through a redox reaction between at least one probe electrode and a counter electrode, further comprising means for applying a voltage between the two electrodes, and a means for applying a voltage between the probe electrode and the counter electrode. It is characterized in that it is provided with means for controlling the distance between the recording medium and the recording medium. Electrochromism is a typical phenomenon based on reversible state changes caused by redox reactions. Electrochromism refers to the phenomenon in which one or both electron transfer bodies become colored by an electrochemical redox reaction, and has been applied to display elements. Among organic substances, it is used in viologen derivatives, styryl-like compounds, and rare earth sifthalodianines. Zero coloration, which is known as It is understood that it is based on doing. In the present invention, at least one probe electrode is used for one electrode, and the probe electrode is brought very close to the recording medium using STM, to about 1 mm, thereby limiting the area where the redox reaction occurs. High-density recording is achieved by creating molecules or molecular groups with different electronic states in minute regions. Discrimination of such regions with different electronic states is impossible with the reading methods conventionally used for optical recording, and is only possible using STM, which is extremely sensitive to the spread of electron clouds in the vicinity of molecules. That is, another feature of the present invention is that the difference in the states of molecules or molecular groups in the recorded area and the unrecorded area is electrically detected. Specifically, detection is performed by changes in the tunnel current value flowing between the probe electrode and the counter electrode, but the distance between the probe electrode and the recording medium is controlled to keep the tunnel current value constant, and the detection is performed using the control signal at that time. You can. When analyzing a sample with low conductivity using STM, a very thin film of several tens of angstroms or less must be formed on the surface of a conductive material. It is also possible to apply a vapor deposition method, a cluster ion beam method, etc., but the LB method is extremely suitable among known conventional techniques due to its controllability, ease, and reproducibility. The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule lowers the hydrophilic group on the water surface. This is a method of creating a monomolecular film or a cumulative film thereof by utilizing the fact that monomolecular layers form toward According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness on the order of a molecule. , and can stably supply a uniform and homogeneous ultra-thin organic film over a large area. Therefore, an ultra-thin film required for STM analysis can be easily formed. Furthermore, regarding the response speed, which is a weak point of electrochromism, the rate-limiting factor is the drift speed of free charges, which is not a problem in such an ultra-thin film state. In the present invention, the substrate for supporting the thin film in which inorganic and organic materials are laminated may be any metal, glass, ceramic, plastic material, or the like. The above-mentioned substrate may have any shape and is preferably flat, but is not limited to a flat plate. In other words, in the film forming method, the film can be formed in any shape regardless of the shape of the surface of the substrate. This is because it has certain advantages. On the other hand, the electrode material used in the present invention may be any material as long as it has high conductivity and does not cause unnecessary reactions with the electrolyte, such as Au, Pt, and Ag. Pd, AI2. There are many materials including metals such as In, Sn, Pb, and W, alloys thereof, graphite, silicide, and even conductive oxides such as ITO, and their application to the present invention is considered. It will be done. As a method for forming electrodes using such materials, conventionally known thin film techniques are sufficient. However, as for the electrode material on which the LB film is directly formed, it is preferable to use a conductive material whose surface does not form an insulating oxide film when forming the LB film, such as a noble metal or an oxide conductor such as ITO. In addition, the tip of the probe electrode needs to be as sharp as possible in order to increase the resolution of recording/reproducing/erasing.In the present invention, the tip of platinum with a thickness of 1 mm is mechanically polished into a 90" cone. Although a probe in which surface atoms are evaporated by applying an electric field in an ultra-high vacuum is used, the shape of the probe and the processing method are not limited to this in any way. Figure 1 shows the block configuration of the recording device of the present invention. In Fig. 1(A), ]05 is a probe current amplifier;
06 is a servo circuit that controls the fine movement mechanism 107 using a piezoelectric element so that the probe current is constant. 108
is a pulse power source for applying a pulse voltage for recording/erasing between the probe electrode 102 and the counter electrode 103. Since the probe current changes rapidly when the pulse voltage is applied, the servo circuit 106 controls the HOLD circuit to be turned on so that the output voltage remains constant during that time. +09 is an XY scanning drive circuit for controlling the movement of the XY force direction probe electrode 102. The coarse movement mechanism 110 and the coarse movement drive circuit 111 control the coarse movement of the distance between the probe electrode 102 and the recording medium 1 so that a probe current of about 10-'A can be obtained in advance. All of these functions are centrally controlled by a microcomputer 112. Further, 113 represents a display device. In addition, the mechanical performance in movement control using piezoelectric elements is shown below. Z-direction fine movement control range: O, lnm - 2-direction coarse movement control range + 1 Or + n + -10 mm XY direction scanning range: O, lnm - lpml side m measurement. Tolerance error: <O, Inm The present invention will be described below with reference to Examples. [Example 1] A recording/reproducing apparatus shown in FIG. 1 was used. Probe electrode 10
As No. 2, a platinum probe electrode was used. This probe electrode 1102 is used to control the distance (Z) from the surface of the recording layer 101, and the distance (Z) is controlled by a piezoelectric element to keep the current constant. Furthermore, the fine movement control mechanism 107 is designed to be able to perform fine movement control also in the in-plane (x, y) directions while keeping the distance 2 constant. However, these are all conventionally known techniques. Further, the probe electrode 102 can be used for direct recording, reproduction, and erasing. Further, the recording medium is placed on a high-precision XY stage 1!4 and can be moved to any position. Next, lutetium siphthalodianine [Lu)I (Pc) 2 was formed on the counter electrode 103 formed of ITO.
The details of recording, reproducing, and erasing experiments using a t-butyl-derived monolayer are described below. A recording medium 1 having a recording layer +01 made of a monomolecular film of a [Lutl (Pc) 2 ] butyl derivative is fixed on an XY stage, and then the recording layer and the tip of the probe are immersed in a potassium chloride aqueous solution as an electrolyte 115. I added up to. 0.3V with the counter electrode formed of ITO as a cathode
The distance (Z) between the probe electrode 102 and the surface of the recording layer 101 was adjusted while applying the voltage and monitoring the current. After that, by controlling the fine movement control mechanism 107, the probe electrode 1
02 and the surface of the recording layer 101 was further adjusted within a minute range. At this time, the applied voltage was kept within a range that did not cause a change in the state of the recording layer. Next, with the opposing electrode as an anode, a voltage of 0.2V is applied so that the probe current from the servo circuit 106 is constant.
The XY scanning drive circuit does not give a control signal to the Z direction fine movement mechanism +07! I started operating 09. The control signal from the servo circuit 106 corresponds to the unevenness on the surface of the recording layer 101, but as a result, no unevenness with a period of 2 nm or more was observed on the surface of the recording layer 101. After that, after holding the output of the xY scan drive circuit +09 and fixing the position of the probe, the pulse power supply 10 is turned on.
8, a rectangular pulse of 1.5 V was applied using the counter electrode as an anode. When the XY scan drive circuit 109 was operated again and the area around the held position was scanned and the surface was observed, depressions with a diameter of 10-odd nm were seen superimposed on the previously observed irregularities with a period of 2 layers or less. Ta. After further moving the position of the probe, while operating the XY scan drive circuit +09, set the counter electrode as an anode and apply 1.2V.
A rectangular pulse train of an appropriate period with an amplitude of . Thereafter, a voltage of 0.2 V was applied using the counter electrode as an anode, and the surface of the scanning recording area was observed. As a result, long-period irregularities in which irregularities with a period of 2 layers or less were superimposed were observed. This period matched the period found from the XY scanning speed of the probe and the period of the pulse train. Next, the same scanning recording area was scanned in an XY manner using the opposite electrode as a cathode while applying a voltage of 0.4V, and then surface observation was performed using the opposite electrode as an anode and applying a voltage of 0.2V. When I did it,
Only irregularities of 2 layers m or less were observed, and longer period irregularities were not observed. t- of [Lu)I (Pc) z] used in the above experiments
A monomolecular film of a butyl derivative was prepared as follows. After cleaning the optically polished glass substrate (substrate 104) using a neutral detergent and Triclean, it is coated with I by sputtering.
TO was vacuum-deposited to form an electrode (103). next[
The t-butyl derivative of LuH(Pc) 2] was dissolved in a mixed solvent of chloroform/trimethylbenzene/acetone (1/l/2) to obtain a solution with a concentration of 0.5 mg/mβ. The above-mentioned substrate was submerged in a pure water phase at 20° C. and then developed on the above-mentioned solution water phase to form a monomolecular film on the water surface. Waiting for the solvent to evaporate, the surface pressure of the monomolecular film was increased to 20 mN/m, and while keeping this pressure constant, the substrate was gently pulled across the water surface at a speed of 3 mm/min to deposit the monomolecular film on the substrate. Formed. [Example 2] An experiment was conducted in the same manner as in Example 1, except that lithium phthalocyanine (Li, Pc) was used instead of the t-butyl derivative of LuH(PC) 2 used in Example 1. Furthermore, in this example, a Z-shaped monomolecular film cumulative film was obtained by repeatedly dipping the substrate across the water surface and pulling it up. Through this operation, five types of cumulative films of 1.3, 5° and 7.9 layers were obtained. Formed. The same results as in Example 1 were obtained when the write voltage was set to 2 V with the counter electrode as the anode, the read voltage was 0.2 V with the counter electrode as the anode, and the erase voltage was set with the counter electrode as the cathode. In the samples with 1 and 3.5 layers, the contrast between the recorded and unrecorded areas was good, and the change in layer thickness was extremely small, but with 7 or more layers, the contrast decreased as the cumulative number of layers increased. Ta. In the examples described above, the LB method has been used to form the recording layer, but any method that can create an extremely thin and uniform film can be used other than the LB method. For example, a vacuum deposition method such as a CVD method or the like can be mentioned. The materials that can be used include not only other organic compounds that exhibit reversible state changes through redox reactions, but also inorganic materials such as tungsten oxide. Note that the present invention does not limit the substrate material, its shape, or surface structure in any way. [Effects of the Invention] ■A completely new recording and reproducing method that enables much higher density recording than optical recording has been disclosed. ■Since the recording layer is formed by the accumulation of monomolecular films, film thickness control on the order of molecules (several to dozens of people) can be easily achieved. Furthermore, since the controllability is excellent, the reproducibility is high when forming the recording layer. ■Since the recording layer can be thin, it is possible to provide a highly productive and inexpensive recording medium. ■The energy required for reproduction is small and the power consumption is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の記録再生装置を図解的に示す説明図で
ある。 1:記録媒体 101:記録層 102ニブローブ電極 03: 04: 05: 06: 07: 08: 09: 11O: l l: 12: l 3: l 4: l 5: 対向電橋 基板 プローブ電流増巾器 サーボ回路 微動制御機構 パルス電源 XY走査駆動回路 粗動機構 粗動駆動回路 マイクロコンピュータ 表示装置 XYステージ 電解質
FIG. 1 is an explanatory diagram schematically showing a recording/reproducing apparatus of the present invention. 1: Recording medium 101: Recording layer 102 Niprobe electrode 03: 04: 05: 06: 07: 08: 09: 11O: l l: 12: l 3: l 4: l 5: Opposing bridge substrate probe current amplifier Servo circuit Fine movement control mechanism Pulse power supply XY scanning drive circuit Coarse movement mechanism Coarse movement drive circuit Microcomputer Display device XY stage Electrolyte

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも1つのプローブ電極と該プローブ電極
と対向配置した対向電極とを有し、可動イオンを供給す
る電解質及び該電解質の存在下で外部からの電圧印加に
よって酸化状態と還元状態との間の可逆的な変化を容易
に制御しうる記録媒体が前記プローブ電極と前記対向電
極の間に配置され、更に、前記プローブ電極と前記対向
電極との間に電圧を印加する手段と前記プローブ電極と
前記記録媒体との距離を制御する手段を設けた記録再生
装置。
(1) An electrolyte having at least one probe electrode and a counter electrode disposed opposite to the probe electrode and supplying mobile ions, and in the presence of the electrolyte, an oxidized state and a reduced state are changed by external voltage application. A recording medium capable of easily controlling a reversible change in is disposed between the probe electrode and the counter electrode, and further comprises means for applying a voltage between the probe electrode and the counter electrode, and a recording medium capable of easily controlling a reversible change in the probe electrode. A recording/reproducing device comprising means for controlling a distance from the recording medium.
(2)前記記録媒体が有機化合物の単分子膜又は該単分
子膜を累積した累積膜を有している請求項1に記載の記
録再生装置。
(2) The recording/reproducing apparatus according to claim 1, wherein the recording medium has a monomolecular film of an organic compound or a cumulative film formed by accumulating the monomolecular film.
(3)前記単分子膜又は累積膜がラングミュアーブロジ
ェット法によって成膜された膜である請求項2に記載の
記録再生装置。
(3) The recording/reproducing device according to claim 2, wherein the monomolecular film or the cumulative film is a film formed by a Langmuir-Blodgett method.
(4)前記プローブ電極のXY走査駆動装置を有してい
る請求項1に記載の記録再生装置。
(4) The recording/reproducing apparatus according to claim 1, further comprising an XY scanning drive device for the probe electrode.
JP29839888A 1988-11-28 1988-11-28 Recording and reproducing device Pending JPH02146128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29839888A JPH02146128A (en) 1988-11-28 1988-11-28 Recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29839888A JPH02146128A (en) 1988-11-28 1988-11-28 Recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH02146128A true JPH02146128A (en) 1990-06-05

Family

ID=17859187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29839888A Pending JPH02146128A (en) 1988-11-28 1988-11-28 Recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH02146128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425339B1 (en) * 1997-05-22 2005-02-23 삼성전자주식회사 A method for driving a multi-numeration high-density recorder using oxidation
KR100425338B1 (en) * 1997-05-22 2005-02-23 삼성전자주식회사 A high density recording medium using the oxidation and a driving method thereof
WO2005017908A1 (en) * 2003-08-06 2005-02-24 Hewlett-Packard Development Company, L.P. Memory for storing information
US6922353B2 (en) 2002-07-29 2005-07-26 Hewlett-Packard Development Company, L.P. Memory for storing information

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425339B1 (en) * 1997-05-22 2005-02-23 삼성전자주식회사 A method for driving a multi-numeration high-density recorder using oxidation
KR100425338B1 (en) * 1997-05-22 2005-02-23 삼성전자주식회사 A high density recording medium using the oxidation and a driving method thereof
US6922353B2 (en) 2002-07-29 2005-07-26 Hewlett-Packard Development Company, L.P. Memory for storing information
WO2005017908A1 (en) * 2003-08-06 2005-02-24 Hewlett-Packard Development Company, L.P. Memory for storing information

Similar Documents

Publication Publication Date Title
US5389475A (en) Recording medium and information-erasing method
US5623476A (en) Recording device and reproduction device
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
JPH01245445A (en) Recording and detecting device
JP2830977B2 (en) Recording medium, recording method and recording / reproducing apparatus using the same
EP0438256A2 (en) Information processing apparatus, information processing method, and recording medium employed therefor
JPH02146128A (en) Recording and reproducing device
JP2603241B2 (en) Recording device and playback device
JP2992910B2 (en) Information processing device
JP3044421B2 (en) Recording medium manufacturing method
JP2714211B2 (en) Recording and playback device
JP2942013B2 (en) Recording and / or playback device
JP3220914B2 (en) Recording medium manufacturing method
JP2872662B2 (en) Recording medium and its erasing method
JP3054895B2 (en) recoding media
JPH0528549A (en) Recording medium and information processor
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JP3086988B2 (en) Information processing device
JPH03263633A (en) Device and method for recording/reproducing/erasing
JPH03295043A (en) Recording medium
JPH06195770A (en) Recording and reprducing device
JPH02149954A (en) Device and method for recording and reproducing
JPH0371450A (en) Recording and reproducing device
JPH04332934A (en) Manufacture of recording medium
JPH04143942A (en) Formation of track