JPH02302945A - Recording medium and recording and reproducing device by using this medium - Google Patents

Recording medium and recording and reproducing device by using this medium

Info

Publication number
JPH02302945A
JPH02302945A JP12514689A JP12514689A JPH02302945A JP H02302945 A JPH02302945 A JP H02302945A JP 12514689 A JP12514689 A JP 12514689A JP 12514689 A JP12514689 A JP 12514689A JP H02302945 A JPH02302945 A JP H02302945A
Authority
JP
Japan
Prior art keywords
recording
recording medium
film
reproducing
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12514689A
Other languages
Japanese (ja)
Inventor
Akihiko Yamano
明彦 山野
Hiroyasu Nose
博康 能瀬
Toshimitsu Kawase
俊光 川瀬
Toshihiko Miyazaki
俊彦 宮崎
Takahiro Oguchi
小口 高弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12514689A priority Critical patent/JPH02302945A/en
Publication of JPH02302945A publication Critical patent/JPH02302945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To allow the execution of excellent recording and reproducing by coating the upper part on the surface of the recording medium further with a material having the relatively higher insulating characteristic than the insulating characteristic of the recording medium. CONSTITUTION:The recording medium which has an electrical conductivity and melts and evaporates to cause a local change in surface shape when the medium is locally impressed with electric fields is used. For example, thin films of metals or metal compds., more specifically, Au, Al, Ag, Pt, further, Te-Ti alloy, Te-Se alloy, Te-C, H material or semiconductor thin films consisting of amorphous silicon, etc., are used. The film without having aromaticity consisting of a high-polymer film which is obtd. by polymerizing the monomer selected from the formula I or oxide film or nitride film is used as the film. In the formulas R1 to R4 denote H, halogen, or >=1 and <=10C alkyl group. The recording and reproducing applying the principle of a scanning type tunnel microscope is executed with one unit of the device. The high-density recording and reproducing of particularly several tens to several nm order are executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、走査型トンネル顕微鏡(以下rSTMJとい
う)の原理を応用した記録再生装置に用いる記録媒体に
関する。また該媒体を用いた記録再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording medium used in a recording/reproducing apparatus applying the principle of a scanning tunneling microscope (hereinafter referred to as rSTMJ). The present invention also relates to a recording and reproducing method using the medium.

〔従来の技術〕[Conventional technology]

近年メモリ材料の用途は、コンピュータおよびその関連
機器、ビデオディスク、ディジタルオーディオディスク
等のエレクトロニクス産業の中核をなすものであり、そ
の材料開発も極めて活発に進んでいる。メモリ材料に要
求される性能は用途により異なるが、一般的に高密度で
記録容量が大きいことが要求されでいる。
In recent years, the use of memory materials has become the core of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc., and the development of these materials has been extremely active. The performance required of memory materials varies depending on the application, but generally high density and large storage capacity are required.

最近までは磁性体や半導体を素材とした磁気メモリや半
導体メモリが主であったが、近年のレーザー技術の進展
に伴ない、光メモリが開発され、記録媒体表面の凹凸、
反射率等の差異を利用して、μmオーダーの高密度な記
録再生が可能となっている。この光メモリの記録媒体と
しては、金属又は金属酸化物の薄膜、有機色素薄膜等が
用いられ、レーザー光の熱を利用して、蒸発、溶融等に
より、穴をあけたり反射率を変化させて情報を記録して
いる。
Until recently, magnetic memories and semiconductor memories made of magnetic materials and semiconductors were the main materials, but with the recent advances in laser technology, optical memories have been developed,
Utilizing differences in reflectance, etc., enables high-density recording and reproduction on the order of μm. The recording medium of this optical memory is a thin film of metal or metal oxide, a thin film of organic dye, etc., and the heat of the laser beam is used to create holes or change the reflectance through evaporation, melting, etc. are recorded.

一方、最近、導電性物質の電子構造を直接観察できるS
TMが開発されている〔ジー・ピニング(GBinni
ng)他[ヘルベテイカ・フイズイカ・アクタ(Hel
vetica Pysica Acta)J 55.7
26(1982))。このSTMは、単結晶、非晶質を
問わず、実空間像の高い分解能の測定が、対象に電流に
よる損傷を与えずに低電力でできる利点を有し、しかも
大気中でも種々の材料に対して用いることができるため
、広範囲な応用が期待されている。
On the other hand, recently, S
TM has been developed [GBinni
ng) and others [Helvetica huizica acta (Hel
vetica Pysica Acta) J 55.7
26 (1982)). This STM has the advantage of being able to measure real-space images with high resolution, regardless of whether they are single crystal or amorphous, using low power without damaging the target due to current, and it can also be used for various materials even in the atmosphere. Because it can be used in many ways, it is expected to have a wide range of applications.

上記STMは、金属の探針(プローブ電極)と導電性物
質の間に電圧を加えてlnm程度の距離まで近づけると
トンネル電流が流れることを利用している。この電流は
両者の距離変化に非常に敏感であり、トンネル電流を一
定に保つように探針を走査することにより、実空間の表
面構造を描くことができると同時に、表面原子の全電子
雲に関する種々の情報をも読み取ることができる。この
際、面内方向の分解能は0.lnm程度である。従って
、STMの原理を応用すれば、十分にnmオーダーでの
高密度記録再生が可能である。
The above-mentioned STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance to bring them close to a distance of about 1 nm. This current is extremely sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunneling current constant, it is possible to depict the surface structure in real space, and at the same time, it is possible to depict the surface structure in real space. Various information can also be read. At this time, the resolution in the in-plane direction is 0. It is about lnm. Therefore, by applying the principle of STM, high-density recording and reproduction on the nanometer order is possible.

そこで、nmオーダーという、μmオーダーの光メモリ
ーより更に高密度の記録再生を可能とすべく、従来、上
記STMの原理を応用した記録再生について、電子ビー
ム、イオンビームあるいはX線。
Therefore, in order to enable higher-density recording and reproducing on the nm order, which is even higher than on the μm order, optical memory has conventionally used electron beams, ion beams, or X-rays for recording and reproducing that applies the above-mentioned STM principle.

光等の電磁波により、記録媒体の表面状態を変化させて
記録し、STMで再生する方法や、記録媒体として、電
圧電流のスイッチング特性においてメモリ効果を有する
材料、例えばカルコゲン化物類の薄膜層やπ電子系有機
化合物の薄膜層を用いて、記録再生をSTMを用いて行
なう方法が提案されている。また、STMのプローブ電
極に、フィールドエミッションが生じる電圧をかけ、R
h−Zr合金の試料表面に局所的に溶融させて、コーン
状の突起を作るという試みもなされている〔ニー・ステ
ファ(U、5tafer)他[アプライ・フイズイツク
ス・レターJ (Appl、  Phys、  Let
t、) 51 (4)。
A method of recording by changing the surface state of a recording medium using electromagnetic waves such as light and reproducing it with STM, and a method of recording using a material that has a memory effect in the switching characteristics of voltage and current, such as a thin film layer of chalcogenide or π, as a recording medium. A method has been proposed in which recording and reproduction are performed using STM using a thin film layer of an electronic organic compound. In addition, a voltage that causes field emission is applied to the probe electrode of the STM, and R
Attempts have also been made to locally melt h-Zr alloy on the sample surface to form cone-shaped protrusions [Nie Stefer (U, 5tafer) et al. [Appl, Phys, Let.
t,) 51 (4).

1987年7月27日〕。July 27, 1987].

しかしながら、従来の光メモリでは、レーザー光を光学
系により収束させて記録再生を行なうため、光の波長以
下にビーム径を絞ることは難しく、なるべく波長の短い
光を使う等の改良がなされつつあるが、記録単位はμm
オーダーが限界で、これ以上の高密度化ができない問題
がある。
However, in conventional optical memory, recording and reproduction are performed by converging the laser beam with an optical system, so it is difficult to narrow down the beam diameter to less than the wavelength of the light, and improvements are being made such as using light with a wavelength as short as possible. , recording unit is μm
There is a problem in that the order is limited and it is not possible to increase the density any further.

一方、STMの原理を応用した記録再生は、前述のよう
な試みはなされてはいるが、実用的な記録再生装置の開
発には至っていないのが現状である。
On the other hand, although the above-mentioned attempts have been made to record and reproduce data using the principles of STM, no practical recording and reproduction apparatus has yet been developed.

また、記録媒体は、導電性を有し、局所的加熱により溶
融または蒸発して変形する材質からなるが、材質によっ
ては導電性が非常に低いものがあり、また薄膜であるの
で、その記録媒体の面内方向の抵抗値が高くなり、記録
時のプローブ電極に流す電流値が記録領域の場所で変動
したり、記録媒体自身の抵抗で発熱したりして、最適な
記録条件からはずれる場合が出て(る問題がある。
Furthermore, the recording medium is made of a material that is electrically conductive and deforms by melting or evaporating when locally heated, but some materials have very low electrical conductivity and are thin films, so the recording medium The resistance value in the in-plane direction of the recording medium increases, and the current value flowing through the probe electrode during recording may vary depending on the location of the recording area, or heat may be generated due to the resistance of the recording medium itself, which may deviate from the optimal recording conditions. There is a problem.

上記課題を解決するために、本発明者らは即に第4図で
示す局所的電界の印加によって表面形状が局所的に変化
する記録媒体2と、電圧を印加可能なプローブ電極lと
が、相対向しかつ縦及び横方向に相対的に移動可能に位
置されており、記録媒体2とプローブ電極1間の間隔が
、記録時には一定に保持され、再生時には記録媒体2と
プローブ電極1間のトンネル電流を一定に保持する間隔
に制御される記録再生装置を提供している(特願昭63
−143738)。
In order to solve the above problems, the present inventors immediately developed a recording medium 2 whose surface shape changes locally by application of a local electric field, as shown in FIG. 4, and a probe electrode l to which a voltage can be applied. They are positioned facing each other and relatively movable in the vertical and horizontal directions, so that the distance between the recording medium 2 and the probe electrode 1 is kept constant during recording, and the distance between the recording medium 2 and the probe electrode 1 is maintained constant during reproduction. We provide a recording and reproducing device that is controlled at intervals that keep the tunnel current constant (Patent Application No. 1983).
-143738).

第4図中の符号は第1図で用いている符号と同様のもの
を示している。
The symbols in FIG. 4 are the same as those used in FIG. 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで第4図の記録媒体において、記録媒体2の面上
に吸着物が存在すると、記録媒体に形状変化を起こさせ
る電流値が該記録媒体の各部で均一とならず、記録再生
時の記録電圧、再生電圧のしきい値が特定できないとい
う問題が起こる場合がある。
By the way, in the recording medium shown in FIG. 4, if there is an adsorbed object on the surface of the recording medium 2, the current value that causes the recording medium to change its shape will not be uniform in each part of the recording medium, and the recording voltage during recording and reproduction will decrease. , a problem may arise in that the threshold value of the reproduction voltage cannot be specified.

また記録媒体表面が空気中にさらされていることにより
、経時変化、湿度変化等による記録媒体の劣化が問題と
なる場合もある。
Furthermore, since the surface of the recording medium is exposed to the air, deterioration of the recording medium due to changes over time, changes in humidity, etc. may become a problem.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明では前述の第4図で説明した記録媒体の表
面上部をさらに記録媒体より比較的絶縁性の高い材料で
被覆した記録媒体を提供することにより、従来の問題を
解決し、さらに優れた記録再生方法を提供する。
Therefore, the present invention solves the conventional problems by providing a recording medium in which the upper surface of the recording medium described in FIG. Provides a recording and reproducing method.

本発明における記録媒体2としては、導電性を有し、局
所的な電界の印加により、溶融又は蒸発して局所的に表
面形状の変化する材質のものが使用される。この材質と
しては、例えば金属又は金属化合物の薄膜、具体的には
、例えばAu、 Al1. Ag。
The recording medium 2 used in the present invention is made of a material that is electrically conductive and whose surface shape locally changes by melting or evaporating when a local electric field is applied. This material is, for example, a thin film of a metal or a metal compound, specifically, for example, Au, Al1. Ag.

Pt、更にはTe−Ti合金、Te−3e合金、Te−
C。
Pt, further Te-Ti alloy, Te-3e alloy, Te-
C.

H糸材料又はアモルファスシリコン等の半導体薄膜等を
用いることができる。
H thread material or a semiconductor thin film such as amorphous silicon can be used.

皮膜13としては一般式 (R1−R4:H,ハロゲン、もしくは炭素数が1以上
10以下のアルキル基) の中から選ばれるモノマーを重合して得られる芳香性を
持たない高分子材料か酸化膜又は窒化膜からなる皮膜が
用いられる。
The film 13 is a non-aromatic polymeric material obtained by polymerizing a monomer selected from the general formula (R1-R4: H, halogen, or an alkyl group having 1 to 10 carbon atoms) or an oxide film. Alternatively, a film made of a nitride film is used.

としては、ポリエチレン、ポリプロピレン、ポリ塩化ビ
ニル、ポリアクリルニトリル、ポリ塩化ビニリデン、ポ
リテトラフルオロエチレン、ポリブタジェン、ポリクロ
ロプレン、ポリイソプレン。
Examples include polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polyvinylidene chloride, polytetrafluoroethylene, polybutadiene, polychloroprene, and polyisoprene.

ポリイソブチレン、ポリオキシメチレン等がある。Examples include polyisobutylene and polyoxymethylene.

ポリイソブチルメタクリレート、ポリイソブチルアクリ
レート、ポリ−n−オクチルメタクリレート、ポリ−n
−オクチルアクリレート等がある。
Polyisobutyl methacrylate, polyisobutyl acrylate, poly-n-octyl methacrylate, poly-n
- Octyl acrylate, etc.

エチレンオキシド、ポリビスクロルメチルシクロオキサ
ブタン等がある。
Examples include ethylene oxide and polybischloromethylcyclooxabutane.

また窒化膜としてBN、Si3N4からなる皮膜が、酸
化膜としてSiO2,ZnO,A、i? 203゜In
2O3,Ti2O5,TiO2,Cr2O3,MgOか
らなる皮膜が使用可能である。
In addition, a film made of BN and Si3N4 is used as a nitride film, and a film made of SiO2, ZnO, A, i? 203°In
Films consisting of 2O3, Ti2O5, TiO2, Cr2O3, MgO can be used.

高分子材料の皮膜の作製法には真空蒸着法の他にはスピ
ンコード法、バーコード法、LB法等種々の方法を用い
ることが出来る。窒化膜、酸化膜の皮膜の作製法として
はスパッタ、L P G V D 、プラズマCVD法
等用いることが出来る。
In addition to the vacuum evaporation method, various methods such as a spin code method, a bar code method, and an LB method can be used for producing a film of a polymer material. Sputtering, LPGVD, plasma CVD, and the like can be used as a method for producing the nitride film and oxide film.

プローブ電極1としては、タングステン、Pt−Ir。The probe electrode 1 is made of tungsten or Pt-Ir.

pt等の尖鋭な針状物が使用される。プローブ電極1は
、記録再生の分解能を良(するため、先端が例えば機械
研削、電解研磨等により尖鋭に加工されていることが好
ましい。
A sharp needle-like object such as PT is used. In order to improve the resolution of recording and reproduction, it is preferable that the tip of the probe electrode 1 be sharpened by, for example, mechanical grinding, electrolytic polishing, or the like.

本発明において、縦方向とは記録媒体2とプローブ電極
1の対向方向をいい、横方向とは縦方向に対する直角方
向をいう。また、記録媒体2とプローブ電極lの相対的
移動は、いずれか一方のみを移動させることで行っても
、両者を同時に移動させることで行ってもよい。
In the present invention, the vertical direction refers to the direction in which the recording medium 2 and the probe electrode 1 face each other, and the horizontal direction refers to the direction perpendicular to the vertical direction. Moreover, the relative movement of the recording medium 2 and the probe electrode 1 may be performed by moving only one of them, or by moving both at the same time.

本発明の記録媒体を用いた記録再生装置の構成を第1図
に示す。
FIG. 1 shows the configuration of a recording/reproducing apparatus using the recording medium of the present invention.

第1図中1はプローブ電極で、記録再生用に用いられる
。2は基板3上に形成された記録媒体、13は2の記録
媒体上に被覆された皮膜、4はプローブ電極1と記録媒
体2の間に流れるトンネル電流を検出するプローブ電流
増幅器、5は図中のZ方向すなわち縦方向にプローブ電
極lの移動制御するZ方向サーボ回路、6はプローブ電
極lをZ方向に駆動する圧電素子等により構成されるZ
方向微動機構である。
Reference numeral 1 in FIG. 1 is a probe electrode, which is used for recording and reproduction. 2 is a recording medium formed on a substrate 3; 13 is a film coated on the recording medium 2; 4 is a probe current amplifier that detects the tunnel current flowing between the probe electrode 1 and the recording medium 2; A Z-direction servo circuit that controls the movement of the probe electrode l in the Z direction, that is, the vertical direction;
It is a directional fine movement mechanism.

Z方向サーボ回路5は、プロ゛−ブ電流増幅器4で検出
したプローブ電流を一定に保つようにZ方向微動機構6
を駆動し、プローブ電極1と記録媒体2との距離を制御
する。
The Z-direction servo circuit 5 uses a Z-direction fine movement mechanism 6 to keep the probe current detected by the probe current amplifier 4 constant.
is driven to control the distance between the probe electrode 1 and the recording medium 2.

7は図中XY方向すなわち、横方向にプローブ電極lを
移動制御する圧電素子等で構成されるXY方向微動機構
である。また8はXY方向粗動機構で、圧電素子または
電磁的手段により駆動される。これらXY方向微動及び
粗動機構7,8を図示せぬ制御回路により制御し、記録
媒体2の記録領域の任意の位置にプローブ電極1を移動
させることができる。
Reference numeral 7 denotes an XY direction fine movement mechanism composed of a piezoelectric element and the like that controls the movement of the probe electrode l in the XY directions, that is, in the lateral direction in the figure. Further, 8 is an XY direction coarse movement mechanism, which is driven by a piezoelectric element or electromagnetic means. These XY direction fine movement and coarse movement mechanisms 7 and 8 are controlled by a control circuit (not shown), and the probe electrode 1 can be moved to any position in the recording area of the recording medium 2.

また、本発明において、特に記録媒体2の電気抵抗率が
比較的高い場合には、第2図に示されるように、この記
録媒体2よりも電気抵抗率の低い下地層14を設けるこ
とが好ましい。
Further, in the present invention, especially when the electrical resistivity of the recording medium 2 is relatively high, it is preferable to provide a base layer 14 having a lower electrical resistivity than the recording medium 2, as shown in FIG. .

実施例1 モリブデンをEB蒸着した石英ガラス基板3の上に、記
録媒体2としてAuを300人スパッタ法で蒸着、さら
に絶縁性皮膜13としてSi3N4の窒化膜をCVD法
を用いて20人つけたものを用いた。
Example 1 On a quartz glass substrate 3 on which molybdenum was EB-deposited, Au was deposited as the recording medium 2 by 300 sputtering methods, and a nitride film of Si3N4 was applied as the insulating film 13 by 20 people using the CVD method. was used.

プローブ電極lとしては、タングステン針の先端を電解
研磨したものを使用した。
As the probe electrode 1, a tungsten needle with an electrolytically polished tip was used.

記録方法については、第2図で、記録すべき記録信号1
2と記録媒体2上の記録位置信号が図示せぬ制御回路か
ら送られて(る。そのときプローブ電極1は、XY方向
微動及び粗動機構7,8により、指定の記録位置まで、
記録媒体2との距離が制御された状態で移動し、記録位
置に到達した時、記録信号12に対応するパルス電圧を
発生するパルス電圧回路11により、プローブ電極lに
書き込み用のパルス電圧(高さ4volt、幅100n
s)が与えられることになる。このパルス電圧により、
記録位置に過大な電流が流れ、局所的に記録媒体2の表
面形状が変化し、第3図に示すような形状の30nmの
画部分が生じ記録がなされた。その際、パルス電圧を印
加すると、プローブ電流が急激に変化するので、Z方向
サーボ回路5は、その間出力電圧が一定となるようにH
OLD回路をONにするように制御している。そのため
、記録時にプローブ電極1と記録媒体2の距離が著しく
変化することはなく、安定な記録が出来た。
Regarding the recording method, see Figure 2 for recording signal 1 to be recorded.
2 and a recording position signal on the recording medium 2 are sent from a control circuit (not shown). At that time, the probe electrode 1 is moved to the designated recording position by the fine and coarse movement mechanisms 7 and 8 in the XY directions.
When the distance to the recording medium 2 is controlled and the recording position is reached, a pulse voltage circuit 11 that generates a pulse voltage corresponding to the recording signal 12 applies a writing pulse voltage (high voltage) to the probe electrode l. 4 volts, width 100n
s) will be given. With this pulse voltage,
An excessive current flowed to the recording position, locally changing the surface shape of the recording medium 2, and a 30 nm image portion having a shape as shown in FIG. 3 was generated and recording was performed. At that time, when a pulse voltage is applied, the probe current changes rapidly, so the Z-direction servo circuit 5 adjusts H so that the output voltage remains constant during that time.
The OLD circuit is controlled to be turned on. Therefore, the distance between the probe electrode 1 and the recording medium 2 did not change significantly during recording, and stable recording was possible.

次に再生方法については、記録時と同様に、図示せぬ制
御回路から再生すべき記録位置が支持され、プローブ電
極1は、XY方向微動及び粗動機構7.8により、指定
の位置まで移動し、再生を開始する。そのとき、プロー
ブ電極1は、Z方向サーボ回路5により、記録媒体2上
の記録により生じた凹凸の表面をトンネル電流が一定(
0,1nA)になるようになぞるので、2方向サーボ回
路5からZ方向微動機構6に与える制御信号は、記録媒
体2の表面の凹凸に対応しており、この制御信号を再生
信号復調回路9で波形整形等の処理をすることにより再
生信号10が得られた。
Next, regarding the reproduction method, the recording position to be reproduced is supported from a control circuit (not shown), and the probe electrode 1 is moved to the specified position by the XY direction fine movement and coarse movement mechanism 7.8, as in the case of recording. and start playback. At this time, the probe electrode 1 is controlled by the Z-direction servo circuit 5 so that a tunneling current is constant (
0,1 nA), the control signal given from the two-direction servo circuit 5 to the Z-direction fine movement mechanism 6 corresponds to the unevenness of the surface of the recording medium 2, and this control signal is sent to the reproduction signal demodulation circuit 9. A reproduced signal 10 was obtained by performing processing such as waveform shaping.

また、(り返し使用してもS/N比の経時変化も見られ
ず安定な記録再生が行なえた。
Furthermore, even after repeated use, no change in the S/N ratio was observed over time, and stable recording and reproduction could be performed.

実施例2 実施例1の記録媒体2. Au300人の上に皮膜13
を以下のようにして形成した。
Example 2 Recording medium 2 of Example 1. 13 films on 300 Au
was formed as follows.

ベンゼン/n−ヘキサン(10/1)混合溶媒を用いポ
リイソブチルメタクリレートのlXl0−3%(重量/
重量)の溶液を調整した。これを純水、水温20℃の水
相上に展開し表面圧を12 m N / mまで高め水
面上に単分子膜を形成した。
0-3% (wt/wt) of polyisobutyl methacrylate using a mixed solvent of benzene/n-hexane (10/1).
(weight) was prepared. This was spread on an aqueous phase of pure water at a water temperature of 20° C., and the surface pressure was increased to 12 mN/m to form a monomolecular film on the water surface.

前述のAu基板を用い、表面圧を一定に保ちながら基板
を水面に横切る方向に5 m m / m i nで浸
漬、引き上げを行い2層の単分子累積膜の形成を行った
Using the aforementioned Au substrate, a two-layer monomolecular cumulative film was formed by dipping the substrate at a rate of 5 mm/min in a direction transverse to the water surface and pulling it up while keeping the surface pressure constant.

斯る操作を繰り返すことにより6層(約60人)の単分
子累積膜を形成した。
By repeating this operation, a monomolecular cumulative film of 6 layers (approximately 60 layers) was formed.

上記媒体に変えた他は実施例1と同様の実験を行なった
The same experiment as in Example 1 was conducted except that the above medium was used.

くり返し使用可能な経時安定性のよい記録再生が行なえ
た。
Recording and playback with good stability over time that can be used repeatedly was achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一台の装置で、STMの原理を応用し
た記録再生を行うことができ、特にSTMの原理により
、数十〜数nmオーダーの非常に高密度の記録再生が可
能となる。
According to the present invention, a single device can perform recording and reproduction using the STM principle, and in particular, the STM principle enables extremely high-density recording and reproduction on the order of tens to several nanometers. .

また記録媒体面が被覆によって保護されているため記録
媒体表面での吸着物の有無・差異等による記録再生の誤
りが減り耐環境性が向上し経時変化によるS/N比の悪
化が少なくすることができる。
In addition, since the recording medium surface is protected by the coating, errors in recording and reproduction due to the presence or absence of adsorbed substances on the recording medium surface, differences, etc. are reduced, and environmental resistance is improved, and deterioration of the S/N ratio due to changes over time is reduced. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る記録再生装置の一実施
例の説明図、第3図は記録形状例を示す斜視図、第4図
は本発明に係る記録再生装置の原理を説明するための構
成図である。
1 and 2 are explanatory diagrams of an embodiment of the recording/reproducing apparatus according to the present invention, FIG. 3 is a perspective view showing an example of a recording shape, and FIG. 4 is an explanation of the principle of the recording/reproducing apparatus according to the present invention. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)局所的電界の印加によって表面形状が局所的に変
化する記録媒体であって、 さらに該記録媒体の表面に一般式 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼ (R_1〜R_4:H、ハロゲンもしくは炭素数が1以
上10以下のアルキル基) から選ばれるモノマーを重合して得られる芳香性を持た
ない高分子材料、酸化膜又は窒化膜からなる皮膜が形成
されている記録媒体。
(1) A recording medium whose surface shape changes locally by the application of a local electric field, and furthermore, the surface of the recording medium has general formulas ▲mathematical formulas, chemical formulas, tables, etc.▼, ▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A recording medium on which a film made of a polymeric material, an oxide film, or a nitride film is formed.
(2)請求項1の記録媒体に対し、プローブ電極より電
界印加をして該記録媒体の表面形状を変化することによ
り記録を行なう工程と、該記録媒体とプローブ電極間の
トンネル電流より前記記録状態の再生を行なう工程とを
有することを特徴とする記録再生方法。
(2) A step of performing recording on the recording medium according to claim 1 by applying an electric field from a probe electrode to change the surface shape of the recording medium; A recording and reproducing method comprising the step of reproducing a state.
JP12514689A 1989-05-17 1989-05-17 Recording medium and recording and reproducing device by using this medium Pending JPH02302945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12514689A JPH02302945A (en) 1989-05-17 1989-05-17 Recording medium and recording and reproducing device by using this medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12514689A JPH02302945A (en) 1989-05-17 1989-05-17 Recording medium and recording and reproducing device by using this medium

Publications (1)

Publication Number Publication Date
JPH02302945A true JPH02302945A (en) 1990-12-14

Family

ID=14903007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12514689A Pending JPH02302945A (en) 1989-05-17 1989-05-17 Recording medium and recording and reproducing device by using this medium

Country Status (1)

Country Link
JP (1) JPH02302945A (en)

Similar Documents

Publication Publication Date Title
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
JP2981804B2 (en) Information processing apparatus, electrode substrate used therein, and information recording medium
JPH06187675A (en) Information processor and information processing method using the same
JPH04321954A (en) Cantilever type probe, and scanning tunnelling microscope using this probe, and information processor
JP2830977B2 (en) Recording medium, recording method and recording / reproducing apparatus using the same
JPH01312753A (en) Recording and reproducing device
JP2603241B2 (en) Recording device and playback device
JPH02302945A (en) Recording medium and recording and reproducing device by using this medium
JPH07220311A (en) Electrode substrate, its production, recording medium and information processing device
JP2942013B2 (en) Recording and / or playback device
JP3044421B2 (en) Recording medium manufacturing method
JPH02146128A (en) Recording and reproducing device
JP3261539B2 (en) Manufacturing method of electrode substrate
JP2981786B2 (en) RECORDING MEDIUM, AND INFORMATION PROCESSOR FOR RECORDING, REPRODUCING, AND ERASING USING THE SAME
JP2949651B2 (en) Method of manufacturing electrode substrate and recording medium
JP2961451B2 (en) Smooth electrode substrate and its manufacturing method, recording medium and its manufacturing method, and information processing device
JP3054895B2 (en) recoding media
JP2926522B2 (en) Recording medium, method of manufacturing the same, and information processing apparatus
JP2932220B2 (en) Recording medium manufacturing method
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JP3093946B2 (en) recoding media
JP2703643B2 (en) Recording / reproducing device using micro probe electrode
JPH0528549A (en) Recording medium and information processor
JP3086988B2 (en) Information processing device
JPH06195770A (en) Recording and reprducing device