JPH0490151A - Information processing method and information processor - Google Patents

Information processing method and information processor

Info

Publication number
JPH0490151A
JPH0490151A JP20660690A JP20660690A JPH0490151A JP H0490151 A JPH0490151 A JP H0490151A JP 20660690 A JP20660690 A JP 20660690A JP 20660690 A JP20660690 A JP 20660690A JP H0490151 A JPH0490151 A JP H0490151A
Authority
JP
Japan
Prior art keywords
electrode
probe
probe electrode
recording
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20660690A
Other languages
Japanese (ja)
Other versions
JP2862352B2 (en
Inventor
Hiroshi Matsuda
宏 松田
Isaaki Kawade
一佐哲 河出
Yoshihiro Yanagisawa
芳浩 柳沢
Toshihiko Takeda
俊彦 武田
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2206606A priority Critical patent/JP2862352B2/en
Priority to DE69024571T priority patent/DE69024571T2/en
Priority to EP90309760A priority patent/EP0416920B1/en
Priority to US07/579,041 priority patent/US5182724A/en
Publication of JPH0490151A publication Critical patent/JPH0490151A/en
Application granted granted Critical
Publication of JP2862352B2 publication Critical patent/JP2862352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To attain the high density, highly accurate and rapid recording/ reproducing by adopting highly accurate position detecting and controlling functions in an electric high density recording/reproducing system using a probe electrode. CONSTITUTION:In a recording medium 1 constituted of forming a recording layer 101 on an electrode base 104 having a regular and periodical structure on its face, a position detecting probe electrode 103 out of two probe electrodes is used for detecting an atomic array to be the positional coordinates of the base 104. On the other hand, a recording/reproducing probe electrode 102 is held at a fixed position from the electrode 103 in the X and Y directions (an interval between both the electrodes 102, 103 can be adjusted by a probe electrode interval fine adjustment mechanism 111) and used for data recording/ reproducing/erasing in/from the recording layer 101. Thus, a recording bits or a recording bit array is set up on a position corresponding to the atomic array formed on the crystal base. Consequently, a positional error can be reduced at the time of recording/reproducing information and high density recording can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報の記録・再生を高密度且つ高精度に行い
、情報の消去を高精度に行うことが可能な新規な情報処
理方法及び情報処理装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a novel information processing method and method capable of recording and reproducing information with high density and high precision, and erasing information with high precision. It relates to an information processing device.

〔背景技術〕[Background technology]

近年メモリ材料の用途は、コンピュータおよびその関連
機器、ビデオディスク、ディジタルオーデイディスク等
のエレクトロニクス産業の中核をなすものであり、その
材料開発も極めて活発に進んでいる。メモリ材料に要求
される性能は用途ににより異なるが、一般的には ■高密度で記録容量が大きい。
In recent years, the use of memory materials has become the core of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc., and the development of these materials has been extremely active. The performance required of memory materials varies depending on the application, but in general: 1) High density and large storage capacity.

■記録再生の応答速度が早い。■Recording and playback response speed is fast.

■消費電力が少ない。■Low power consumption.

■生産性が高く価格が安い。■High productivity and low price.

等が挙げられる。etc.

従来までは磁性体や半導体を素材とした半導体メモリや
磁気メモリが主であったが、近年レーザー技術の進展に
ともない有機色素、フォトポリマーなどの有機簿膜を用
いた光メモリによる安価で高密度な記録媒体が登場して
きた。
Until now, semiconductor memory and magnetic memory were mainly made of magnetic materials and semiconductors, but with the recent advances in laser technology, inexpensive and high-density optical memory using organic films such as organic dyes and photopolymers has become available. Recording media have appeared.

一方、最近、導体の表面原子の電子構造を直接観察でき
る走査型トンネル顕微鏡(以後STMと略す)が開発さ
れ、CG、B1nn1g et al、、 He1ve
ticaPhysica  Acta、  55. 7
26 (1982))単結晶、非晶質を問わず実空間像
の高い分解能の測定ができるようになり、しかも媒体に
電流による損傷を与えずに低電力で観測できる利点をも
有し、さらに大気中でも動作し種々の材料に対して用い
ることができるため広範囲な応用が期待されている。
On the other hand, recently, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of a conductor has been developed, and CG, B1nn1g et al., He1ve.
ticaPhysica Acta, 55. 7
26 (1982)) It has become possible to measure real space images with high resolution regardless of whether they are single crystal or amorphous, and it also has the advantage of being able to observe with low power without damaging the medium due to current. It is expected to have a wide range of applications because it can operate in the atmosphere and can be used with various materials.

STMは金属の探針(プローブ電極)と導電性物質の間
に電圧を加えてlnm程度の距離まで近づけるとトンネ
ル電流が流れることを利用している。この電流は両者の
距離変化に非常に敏感であり、トンネル電流を一定に保
つように探針を走査することにより実空間の表面を描く
ことができると同時に表面原子の全電子雲に関する種々
の情報をも読み取ることができる。この際、面内方向の
分解能は1人程度である。従って、STMの原理を応用
すれば十分に原子オーダー(数人)での高密度記録再生
を行うことが可能である。この際のき記録再生方法とし
て特開昭63−204531号公報には、粒子線(電子
線、イオン線)或いはX線等の高エネルギー電磁波及び
可視・紫外光等のエネルギー線を用いて適当な記録層の
表面状態を変化させて記録を行い、STMで再生する方
法や、特開昭63−161552号公報や特開昭63−
161553号公報には記録層として電圧電流のスイッ
チング特性に対してメモリ効果をもつ材料、たとえばπ
電子系有機化合物やカルコゲン化物類の薄膜層を用いて
記録・再生をSTMを用いて行う方法等が提案されてい
る。
STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance and the probe is brought close to a distance of about 1 nm. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunnel current constant, it is possible to draw the surface of real space and at the same time obtain various information about the total electron cloud of surface atoms. can also be read. At this time, the resolution in the in-plane direction is about one person. Therefore, by applying the principle of STM, it is possible to sufficiently perform high-density recording and reproduction on the atomic order (several people). In this case, as a recording and reproducing method, JP-A-63-204531 discloses an appropriate method using high-energy electromagnetic waves such as particle beams (electron beams, ion beams) or X-rays, and energy rays such as visible and ultraviolet light. A method of performing recording by changing the surface condition of the recording layer and reproducing it with STM, as well as JP-A-63-161552 and JP-A-63-
Publication No. 161553 discloses that the recording layer is made of a material that has a memory effect on the switching characteristics of voltage and current, such as π.
Methods have been proposed in which recording and reproduction are performed using STM using thin film layers of electronic organic compounds and chalcogenides.

これらの記録方法は、何れもSTMの特徴を生かした高
密度記録を可能ならしめる手法であることに間違いない
が、係る高密度化は、記録面内方向(x−y方向)への
プローブ電極の走査精度並びに位置制御精度に大きく依
存する。現在プローブ電極の微小移動機構(微動機構)
は、圧電素子を用いた圧電アクチュエーターを利用した
ものであるが、圧電体のヒステリシスという問題点があ
り、記録の高密度化に対する障害となっている。更には
、プローブ電極のX−Y方向への微動、走査の機構は一
般にX軸とY軸の直交度という点で必ずしも十分ではな
い。即ち、記録・再生時に於けるプローブ電極の微動或
いは走査機構の位置再現性に問題点がある。係る問題点
を解決する手段としては記録媒体上に位置及び方向に対
して基準となる目盛を作成しておき、係る目盛から位置
及び方向性に関する情報を検出し、検出された位置情報
に対応する位置で、記録・再生を行うことが考えれる。
There is no doubt that all of these recording methods are methods that make high-density recording possible by taking advantage of the characteristics of STM. It greatly depends on the scanning accuracy and position control accuracy of Current probe electrode micro movement mechanism (fine movement mechanism)
Although this method uses a piezoelectric actuator using a piezoelectric element, it has the problem of hysteresis of the piezoelectric material, which is an obstacle to increasing the recording density. Furthermore, the mechanism for finely moving and scanning the probe electrode in the X-Y direction is generally not necessarily sufficient in terms of orthogonality between the X and Y axes. That is, there is a problem in the fine movement of the probe electrode during recording and reproduction or in the position reproducibility of the scanning mechanism. A means to solve this problem is to create a scale as a reference for position and direction on the recording medium, detect information regarding position and direction from the scale, and respond to the detected position information. It is conceivable to perform recording and playback based on the position.

この様な手法はVTRによる記録・再生方式を始め、今
日一般に高密度記録方式に分類される記録方式、例えば
、光ディスク或いは光カード等に於いても採用されてい
る。この際、記録の高密度・微細化に伴って、当然より
微細な位置情報が記入されかつ検出されねばならない。
Such a method is employed not only in recording and reproducing systems using VTRs, but also in recording systems that are generally classified as high-density recording systems, such as optical disks and optical cards. At this time, as recording becomes more dense and finer, naturally more minute positional information must be recorded and detected.

係る微小位置検出手段としては、光学式手法、磁気式手
法或いは静電容量式手法を挙げることができるが、これ
らの内で最も高分解能が得られるのは格子干渉の原理を
用いた光学式手法である。これは単色光を基準目盛とし
ての回折格子に入射させ、回折させた±1次の回折光を
半透鏡を用いて合成・干渉させ、得られた明暗の干渉光
を光検出器で光電変換し、干渉光の明暗から光学系と基
準目盛の相対変位量を検知するものである。
Such minute position detection means include an optical method, a magnetic method, and a capacitance method, but among these, the optical method using the principle of grating interference provides the highest resolution. It is. In this method, monochromatic light is incident on a diffraction grating as a reference scale, the diffracted light of the ±1st order is synthesized and interfered with using a semi-transparent mirror, and the resulting bright and dark interference light is photoelectrically converted by a photodetector. , the amount of relative displacement between the optical system and the reference scale is detected from the brightness and darkness of the interference light.

然し乍ら、上記従来例に於いて、最も高分解能を有する
格子干渉光学式位置検出法の性能(分解能)は主に格子
ピッチで決められ、これをいかに精度よく微小間隔で刻
み、かつそれを精度よく検出できるかが重要な点であり
、現状の精密加工技術(EB描画やイオンビーム加工)
ではせいぜい0.01μm(=100人)の精度が限界
であり。又検出技術(光ヘテロゲイン法)に於いても0
.01μmの分解能が限界である。従ってSTMを用い
た記録・再生には著しく精度に劣ると共に、格子作成の
為に複雑な工程が必要という問題があった。
However, in the above conventional example, the performance (resolution) of the grating interferometric optical position detection method, which has the highest resolution, is mainly determined by the grating pitch, and how accurately this can be carved into minute intervals and how precisely it can be The important point is whether it can be detected, and the current precision processing technology (EB writing and ion beam processing)
Therefore, the accuracy is at most 0.01 μm (=100 people). Also, the detection technology (optical heterogain method)
.. The resolution is 0.01 μm. Therefore, there are problems in recording and reproducing using STM, which are significantly inferior in accuracy and require complicated steps to create grids.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このためSTMを用いた記録・再生において記録媒体面
内の規則的原子配列に基づく原子周期をトラッキングに
利用した提案がなされていた(特開平1−53363号
公報及び特開平1−53364号公報)。
For this reason, proposals have been made to utilize the atomic period based on the regular atomic arrangement within the surface of the recording medium for tracking in recording and reproduction using STM (Japanese Patent Laid-Open Nos. 1-53363 and 1-53364). .

しかしこれらの方式に於いては、記録媒体上の一部に記
録層を堆積しない領域を設け、かかる領域に存在する基
板表面の原子周期を検出してトラッキングに利用するも
のであったので記録媒体の構造が複雑にるとなるいう問
題があった。
However, in these methods, an area where no recording layer is deposited is provided on a part of the recording medium, and the atomic period of the substrate surface existing in this area is detected and used for tracking. There was a problem that the structure became complicated.

そこで本発明の目的は、プローブ電極を用いた電気的な
高密度記録・再生方式に於いて、高精度な位置検出機能
並びに位置制御機能を導入し、記録再生を高密度、高精
度且つ高速に行うことができる情報処理方法並びに情報
処理装置を提供することにある。
Therefore, an object of the present invention is to introduce a highly accurate position detection function and a position control function in an electrical high-density recording/reproducing method using probe electrodes, and to achieve high-density, high-accuracy, and high-speed recording and reproduction. An object of the present invention is to provide an information processing method and an information processing device that can perform the following steps.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、以下の本発明によって達成される。 The above object is achieved by the present invention as follows.

即ち本発明は、面内に規則的な周期構造を有する電極基
板上に記録層を設けた記録媒体に対し、複数のプローブ
電極を用い、そのうち少なくとも1つのプローブ電極(
第1のプローブ電極)を用いて前記記録層を介して電極
基板の周期構造上の位置を検出し、かかる検出された位
置に対応する記録層上の任意の設定位置に少なくとも1
つのプローブ電極(第2のプローブ)を用いて記録層へ
情報の記録を行うか、記録された情報の再生を行うかも
しくは記録された情報の消去を行うことを特徴とする情
報処理方法である。
That is, the present invention uses a plurality of probe electrodes for a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in the plane, and at least one probe electrode (
A position on the periodic structure of the electrode substrate is detected via the recording layer using a first probe electrode), and at least one probe is placed at an arbitrary set position on the recording layer corresponding to the detected position.
An information processing method characterized by recording information on a recording layer, reproducing recorded information, or erasing recorded information using two probe electrodes (second probes). .

又本発明は、面内に規則的な周期構造を有する電極基板
上に記録層を設けた記録媒体に対し、複数のプローブ電
極を用い、そのうち少なくとも1つのプローブ電極(第
1のプローブ電極)を用いて前記記録層を介して電極基
板の周期構造上の位置を検出し、かかる検出された位置
に対応する記録層上の任意の設定位置に少なくとも1つ
のプローブ電極(第2のプローブ電極)を用いて記録層
へ情報の記録を行うか、記録された情報の再生を行うか
もしくは記録された情報の消去を行い、少なくとも1つ
のプローブ電極(第3のプローブ電極)を用いてプロー
ブ電極と電極基板の距離の変動量を検出し、係る変動量
に基づいて第2のプローブ電極と記録媒体表面との間の
距離を調整することを特徴とする情報処理方法である。
Further, the present invention uses a plurality of probe electrodes for a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in the plane, and at least one probe electrode (first probe electrode) among them is used. detect the position on the periodic structure of the electrode substrate through the recording layer, and place at least one probe electrode (second probe electrode) at an arbitrary set position on the recording layer corresponding to the detected position. At least one probe electrode (third probe electrode) is used to record information on the recording layer, to reproduce recorded information, or to erase recorded information. This information processing method is characterized in that the amount of variation in the distance of the substrate is detected, and the distance between the second probe electrode and the surface of the recording medium is adjusted based on the amount of variation.

更に本発明は、面内に規則的な周期構造を有する電極基
板上に記録層を設けた記録媒体と該記録媒体に対向した
位置に配置された複数のプローブ電極を有し、そのうち
少なくとも1つのプローブ電極を(第1のプローブ電極
)を用いて前記記録層を介して電極基板の周期構造上の
位置を検出する手段、及びかかる検出された位置に対応
する記録層上の任意の設定位置に少なくとも1つのプロ
ーブ電極(第2のプローブ電極)を用いて記録層へ情報
の記録を行うか、記録された情報の再生を行うかもしく
は記録された情報の消去を行う手段を備えたことを特徴
とする情報処理装置である。
Furthermore, the present invention has a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in a plane, and a plurality of probe electrodes arranged at positions facing the recording medium, at least one of which means for detecting a position on the periodic structure of the electrode substrate via the recording layer using a probe electrode (first probe electrode), and at an arbitrary set position on the recording layer corresponding to the detected position; It is characterized by comprising means for recording information on the recording layer, reproducing recorded information, or erasing recorded information using at least one probe electrode (second probe electrode). This is an information processing device.

本発明は、面内に規則的な周期構造を有する電極基板上
に記録層を設けた記録媒体と該記録媒体に対向した位置
に配置された複数のプローブ電極を有し、そのうち少な
くとも1つのプローブ電極(第1のプローブ電極)を用
いて前記記録層を介して電極基板の周期構造上の位置を
検出する手段、かかる検出された位置に対応する記録層
上の任意の設定位置に少なくとも1つのプローブ電極(
第2のプローブ電極)を用いて記録層へ記録を行うか、
記録された情報の再生を行うかもしくは記録された情報
の消去を行う手段、少なくとも1つのプローブ電極(第
3のプローブ電極)を用いてプローブ電極と記録媒体と
の距離の変動量を検出する手段及び係る変動量に基づい
て第2のプローブ電極と記録媒体表面との間の距離を調
整する手段を備えたことを特徴とする情報処理装置であ
る。
The present invention has a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in a plane, and a plurality of probe electrodes arranged at positions facing the recording medium, and at least one probe electrode among them is provided. means for detecting a position on the periodic structure of the electrode substrate via the recording layer using an electrode (first probe electrode), at least one at an arbitrary set position on the recording layer corresponding to the detected position; Probe electrode (
recording to the recording layer using the second probe electrode) or
means for reproducing recorded information or erasing recorded information; means for detecting the amount of variation in the distance between the probe electrode and the recording medium using at least one probe electrode (third probe electrode); The information processing apparatus is characterized by comprising means for adjusting the distance between the second probe electrode and the surface of the recording medium based on the amount of variation.

〔本発明の好ましい態様〕[Preferred embodiment of the present invention]

本発明における位置検出は、情報の記録、再生と同様、
導電性探針(プローブ電極)と導電性物質との間にバイ
アス電圧を印加しつつ両者の距離をlnm程度に迄近づ
けると導電性物質の仕事関数に依存したトンネル電流が
流れることを利用している。本発明においては、記録層
を電極基板の上に形成しているが、導電性物質である電
極基板の電子状態は、観測条件を適当に設定することに
より、プローブ電極と電極基板の間に記録層があっても
直接に観測することができる。これを応用して電極基板
表面に規則的な原子配列を有する記録媒体に対し、係る
規則的原子配列を基に位置座標系を導入し、係る位置座
標系に対応する特徴的なトンネル電流の変化を検出する
ことにより位置検出を行うと共に、係る位置検出結果を
基に、係る位置座標系と相対的な位置関係を示す記録媒
体上の記録乃至は再生乃至は消去位置を特定とすると共
に、係る記録・再生位置上へのプローブ電極の位置制御
を行うものである。
Position detection in the present invention includes recording and reproducing information, as well as
By applying a bias voltage between a conductive probe (probe electrode) and a conductive substance and bringing the distance between them close to about 1 nm, a tunnel current flows depending on the work function of the conductive substance. There is. In the present invention, the recording layer is formed on the electrode substrate, but the electronic state of the electrode substrate, which is a conductive material, can be recorded between the probe electrode and the electrode substrate by appropriately setting observation conditions. Even if there is a layer, it can be directly observed. Applying this, we introduce a positional coordinate system based on the regular atomic arrangement into a recording medium that has a regular atomic arrangement on the surface of the electrode substrate, and change the characteristic tunneling current corresponding to the positional coordinate system. The position is detected by detecting the position, and based on the position detection result, the recording, playback, or erasing position on the recording medium that indicates the relative positional relationship with the position coordinate system is specified, and This controls the position of the probe electrode on the recording/reproducing position.

この時の座標軸と記録位置との位置関係を示す模式図が
第1図である。即ち、座標軸上の目盛として位置情報(
A〜工)は記録位置(A’〜I’)と常に相対的な位置
関係(A−A’など)にある。従って位置情報A−Iを
検出することにより、必ずA′〜I′の記録位置を特定
できる訳である。この際、座標軸の各点(目盛)と記録
位置とは必ずしも一義的な相対配置をとる必要はなく、
例えば第2図に示す様に位置情報Aに対応する記録位置
がA′の他にA’A”’ ・・・などと複数以上存在し
てもよい。
FIG. 1 is a schematic diagram showing the positional relationship between the coordinate axes and the recording position at this time. In other words, the position information (
A to A) are always in a relative positional relationship (A-A', etc.) with the recording position (A' to I'). Therefore, by detecting the position information A-I, the recording positions A' to I' can always be specified. At this time, each point (scale) on the coordinate axis and the recording position do not necessarily have to have a unique relative arrangement.
For example, as shown in FIG. 2, there may be a plurality of recording positions corresponding to the position information A, such as A'A''', etc., in addition to A'.

勿論、一義的(1:1対応)である方が精度上望ましい
。また、座標軸は一本である必要はなく、必要に応じて
複数個使用された他、1次元である必要もなく、2次元
(網目状)であってもよい。この場合、2次元座標系の
各格子点に対応して、記録位置も2次元に配置される。
Of course, unambiguous (1:1 correspondence) is preferable in terms of accuracy. Further, the coordinate axes do not need to be one, and a plurality of coordinate axes may be used as necessary, and the coordinate axes need not be one-dimensional, but may be two-dimensional (mesh-like). In this case, recording positions are also two-dimensionally arranged corresponding to each grid point of the two-dimensional coordinate system.

〈座標軸〉 本発明に用いられる位置検出系としての座標軸は電極基
板が有する規則的原子配列を用いて形成される。係る規
則的原子配列を持つ電極基板としては、予め格子間距離
がかわっている導電性材料、即ち各種金属やグラファイ
ト単結晶等を利用することができる他、本発明で利用さ
れるトンネル電流はnA程度の大きさである為、上記導
電性材料は1o−10(Ω・cm)−’以上の電導率を
有していればよく、従ってシリコン等のいわゆる半導体
物の単結晶を用いることもできる。これらの内、代表例
として金属試料を考える。今、距離Zだけ離れたプロー
ブ電極と上記金属試料との間に、仕事関数φより低い電
圧Vを印加すると、電子はポテンシャル障壁をトンネル
することが知られている、トンネル電流密度J工を自由
電子近似で求めると、JT=(βV/2yrλZ) e
xp (−22/λ)    ・=(1)の様に表すこ
とができる。
<Coordinate Axes> The coordinate axes of the position detection system used in the present invention are formed using the regular atomic arrangement of the electrode substrate. As an electrode substrate having such a regular atomic arrangement, conductive materials with predetermined interstitial distances, such as various metals and graphite single crystals, can be used. In addition, the tunnel current used in the present invention is nA. Since the conductive material has a conductivity of 10-10 (Ω cm)-' or more, it is sufficient to use a single crystal of a so-called semiconductor such as silicon. . Among these, consider metal samples as a representative example. Now, when a voltage V lower than the work function φ is applied between the probe electrode and the metal sample separated by a distance Z, the tunneling current density J is freed, which is known to cause electrons to tunnel through the potential barrier. When calculated using electronic approximation, JT=(βV/2yrλZ) e
It can be expressed as xp (-22/λ) .=(1).

但し  λ−h/ f万Wf ・ 金属の外の真空中又
は大気中ての波動関数の減衰距離 h = r/2π    r、ブランク定数m 電子の
質量 β=e2/h:    e:電子電荷 式(1)に於いて、Z=Zcと一定の値とすれば、トン
ネル電流密度J□は基準原子配列の仕事関数φに応じ変
化する。従ってプローブ電極を係る金属試料面上、Z=
Zcに保ちつつ任意の直線方向に走査させれば金属原子
配列に従って周期的にトンネル電流が変化する。ここで
、格子定数が予めわかっている金属試料を用いた場合、
任意の結晶面上の成る格子点を基準とした任意の方向の
原子配列状態は自明であり、係る方向へプローブ電極を
走査させた場合に得られる周期的トンネル電流の変化は
十分に予測し得る。従って係るトンネル電流変化の予測
値と実際にプローブ電流を走査して得られたトンネル電
流変化の測定値とが等しい値をとる様にプローブ電極の
走査方向を補正すれば、プローブ電極の動きは、試料の
原子配列に沿ったものになる。即ち、原子配列を座標軸
とみなせば、プローブ電極はこの座標軸上を移動するこ
とになる。
However, λ-h/f 10,000 Wf - Attenuation distance of the wave function in vacuum or atmosphere outside the metal h = r/2π r, blank constant m Mass of electron β = e2/h: e: Electron charge formula ( In 1), if Z=Zc and a constant value, the tunnel current density J□ changes depending on the work function φ of the reference atomic arrangement. Therefore, on the metal sample surface related to the probe electrode, Z=
By scanning in an arbitrary linear direction while maintaining Zc, the tunnel current changes periodically according to the metal atomic arrangement. Here, when using a metal sample whose lattice constant is known in advance,
The state of atomic arrangement in any direction based on the lattice points on any crystal plane is obvious, and the change in periodic tunneling current obtained when the probe electrode is scanned in such a direction can be fully predicted. . Therefore, if the scanning direction of the probe electrode is corrected so that the predicted value of the tunnel current change and the measured value of the tunnel current change obtained by actually scanning the probe current are equal, the movement of the probe electrode is It follows the atomic arrangement of the sample. That is, if the atomic arrangement is regarded as a coordinate axis, the probe electrode will move on this coordinate axis.

今、係る位置検出用の第1のプローブ電極の動きと機械
的、若しくは電気的に連動し得る第2のプローブ電極を
設けることにより、第1のプローブ電極で定めた特定の
点に対応する記録層上の特定の位置において、第2のプ
ローブ電極を用いて情報の記録、再生成いは消去を行う
ことができる。
Now, by providing a second probe electrode that can be mechanically or electrically linked to the movement of the first probe electrode for position detection, recording can be made that corresponds to a specific point determined by the first probe electrode. At specific locations on the layer, the second probe electrode can be used to record, reproduce or erase information.

この場合、先に述べた様に電極基板上に記録層が堆積さ
れていても適当な条件を選べば記録層を介してその下に
存在する電極基板の周期的原子構造をプローブ電極を用
いて読み出すことが可能である。従って電極基板上に電
極基板、即ち座標軸としての原子配列が露出している様
な位置検出領域を特別に設ける必要はな(電極基板表面
に全て、或いは殆んどの領域に記録層が堆積されていて
も構わない。記録層を介してその下の原子構造をプロー
ブ電極を用いて検出するには、先に記した様に適当な条
件が必要である。先づ、記録層の厚さは出来る限り薄い
ことが望ましく、好ましくは500Å以下、より好まし
くは100Å以下である。この他プローブ電極と電極基
板間に印加されるバイアス電圧Vやトンネル電流密度J
工についても適当な値を選んで使用する必要がある。こ
れらの値の最適値を求めるに当たって、現状では完全な
理論は確立されていないが、基板の原子構造を係る基板
上の堆積層、即ち本発明においては記録層を介して検出
する際のプローブ電極と基板との間に印加されるバイア
電圧の絶対値及びトンネル電流を各々l V (sub
) l 、及びJT(Sub)、又は堆積層、即ち記録
層表面の構造を検出する際に用いられるタブローブ電極
と基板との間に印加されるバイアス電圧の絶対値及びト
ンネル電流を各々v (ads) l及びJ7(ads
)で表すと、V (sub) l < l V (ad
s)J  (sub)>J  (ads) の何れか一方又は両方の関係が成立することが望ましい
In this case, even if the recording layer is deposited on the electrode substrate as described above, if appropriate conditions are selected, it is possible to detect the periodic atomic structure of the electrode substrate underlying the recording layer using the probe electrode. It is possible to read. Therefore, there is no need to specially provide a position detection area on the electrode substrate where the electrode substrate, that is, the atomic arrangement as the coordinate axis, is exposed (if the recording layer is deposited on all or most of the electrode substrate surface). In order to detect the atomic structure beneath the recording layer using a probe electrode, appropriate conditions are required as described above.First, the thickness of the recording layer must be It is desirable that the thickness be as thin as possible, preferably 500 Å or less, more preferably 100 Å or less.In addition, the bias voltage V applied between the probe electrode and the electrode substrate and the tunnel current density J
It is also necessary to select and use an appropriate value for the In determining the optimal values of these values, although a complete theory has not been established at present, the probe electrode used in detecting the atomic structure of the substrate through the deposited layer on the substrate, that is, the recording layer in the present invention. The absolute value of the via voltage and the tunnel current applied between the substrate and the substrate are respectively l V (sub
) l and JT (Sub), or the absolute value of the bias voltage applied between the tablobe electrode and the substrate used to detect the structure of the surface of the recording layer, and the tunnel current, respectively, are v (ads ) l and J7 (ads
), V (sub) l < l V (ad
s) It is desirable that one or both of the following relationships hold: J (sub)>J (ads).

具体的な1V(sub)1の値としては、1v以下、好
ましくは500〜20 m Vである。なお、後述する
ように本発明の記録・再生・消去は全て電気的(電圧印
加)によって行われるので、上記基板構造を検出する際
にプローブ電極と基板との間に印加するバイアス電圧は
、係る電圧印加によって記録層への記録又は消去が起り
得ない様な値を選ぶ必要があるが、例えば記録層がLB
膜で形成されている場合においてはIV (sub) 
lが1v以下であれば問題はない。又、JT (sub
)については式(1)に於いて、Z=ZCの一定値に保
ってプローブ電極を走査させる場合にはJT (sub
)の値は当然電極基板の原子配列に従って変化する訳で
あるが、その平均値が100pA〜10nA程度、より
好ましくは500pA〜3nA程度になる様に設定する
ことがことが好ましい。以上のV (sub)及びJT
(Sub)値はあくまでも一例であり、これ以外の条件
であっても構わない。
A specific value of 1V (sub)1 is 1V or less, preferably 500 to 20 mV. As will be described later, recording, reproduction, and erasing in the present invention are all performed electrically (voltage application), so the bias voltage applied between the probe electrode and the substrate when detecting the substrate structure is It is necessary to select a value that will prevent recording or erasing from the recording layer due to voltage application. For example, if the recording layer is LB
IV (sub) if it is formed of a membrane
There is no problem if l is 1v or less. Also, JT (sub
), in equation (1), if the probe electrode is scanned while keeping Z=ZC constant, JT (sub
Although the value of ) naturally changes according to the atomic arrangement of the electrode substrate, it is preferable to set the average value to about 100 pA to 10 nA, more preferably about 500 pA to 3 nA. V (sub) and JT above
The (Sub) value is just an example, and other conditions may be used.

以上より、電極基板表面の一部又は全てが規則的原子配
列を有し、かつその配列状態が既知である場合には、係
る原子配列の結晶格子を利用した座標軸に対して一義的
な相対関係を示すx−y座標系を電極基板上に堆積させ
た記録層上に設定することができる。なお、記録媒体上
の記録部位と位置検出部位とは互いに分離されているこ
とが望ましい。
From the above, if part or all of the electrode substrate surface has a regular atomic arrangement and the arrangement state is known, there is a unique relative relationship with respect to the coordinate axis using the crystal lattice of the atomic arrangement. An x-y coordinate system can be established on the recording layer deposited on the electrode substrate. Note that it is desirable that the recording site and the position detection site on the recording medium are separated from each other.

〈記録媒体〉 本発明で用いられる記録媒体は、基板(電極基板)とそ
の上に設けられた記録層とからなり、しかも電流・電圧
特性に於いて、メモリースイッチング現象(電気メモリ
ー効果)をもつものを利用できる。即ち、記録媒体は、
電圧印加に応じて少なく共2つ以上の明確に異なる抵抗
状態で示し、係る各状態間は記録層の導電率を変化させ
る閾値以上の電圧又は電流を印加することにより自由に
遷移し得る(スイッチング現象)。又、作り出された各
抵抗状態は域値以内の電圧又は電流印加の場合、その状
態を保存し得る(メモリ現象)。記録層を構成する具体
的な材料として例えば、 (1)酸化物ガラスやホウ酸塩カラスあるいは周期律表
m、 rv、 、V、 VI族元素と化合したSe、 
Te。
<Recording medium> The recording medium used in the present invention consists of a substrate (electrode substrate) and a recording layer provided thereon, and has a memory switching phenomenon (electrical memory effect) in current/voltage characteristics. can use things. That is, the recording medium is
It exhibits at least two or more clearly different resistance states depending on the applied voltage, and can freely transition between these states by applying a voltage or current equal to or higher than a threshold that changes the electrical conductivity of the recording layer (switching). phenomenon). Also, each resistance state created can retain its state if a voltage or current is applied within a threshold value (memory phenomenon). Examples of specific materials constituting the recording layer include (1) Se combined with oxide glass, borate glass, or elements of groups m, rv, , V, and VI of the periodic table;
Te.

Asを含んだカルコゲン化物カラス等のアモルファス半
導体が挙がられる。それらは光学的ハントキャップEg
が0.6〜1.4eVあるいは電気的活性化エネルギー
ΔEが0.7〜1.6eV程度の真性半導体である。カ
ルコゲン化物ガラスの具体例としては、As−3e−T
e系、Ge−As−3e系、5i−Ge−AsTe系、
例えばSi 16 Ge 14 As 5 Teas 
(添字は原子%)、あるいはGe−Te−X系、5i−
Te−X系(X=少量のV、VI族元素)例えばG e
 +s T e s+ S b 2 S 2が挙げられ
る。
Examples include amorphous semiconductors such as chalcogenide glass containing As. They are optical hunt cap Eg
It is an intrinsic semiconductor with an electric activation energy ΔE of about 0.6 to 1.4 eV or about 0.7 to 1.6 eV. As a specific example of chalcogenide glass, As-3e-T
e series, Ge-As-3e series, 5i-Ge-AsTe series,
For example, Si 16 Ge 14 As 5 Teas
(subscripts are atomic %), or Ge-Te-X system, 5i-
Te-X system (X = small amount of V, group VI element) e.g.
+s T e s+ S b 2 S 2 is mentioned.

更にはGe−5b−3e系カルコゲン化物ガラスも用い
ることができる。
Furthermore, Ge-5b-3e type chalcogenide glass can also be used.

上記化合物を電極上に堆積したアモルファス半導体層に
おいて、膜面に垂直な方向にプローブ電極を用いて電圧
を印加することにより媒体の電気メモリー効果を発現す
ることができる。
In an amorphous semiconductor layer in which the above compound is deposited on an electrode, an electric memory effect of the medium can be expressed by applying a voltage using a probe electrode in a direction perpendicular to the film surface.

係る材料の堆積法としては従来公知の薄膜形成技術で充
分本発明の目的を達成することができる。
As a method for depositing such a material, conventionally known thin film forming techniques are sufficient to achieve the object of the present invention.

例えば好適な成膜法としては、真空蒸着法やクラスター
イオンビーム法等を挙げることができる。
For example, suitable film-forming methods include a vacuum evaporation method, a cluster ion beam method, and the like.

船釣には、係る材料の電気メモリー効果は数μm以下の
膜厚て観測されているが、均一性、記録性の観点からも
1μm以下の膜厚のものが良い。更に本発明では係る記
録層を介して、その下に存在する電極基板の原子配列を
検出する要請から、その膜厚が500Å以下であること
が望ましい。更には記録媒体としての記録分解能の観点
からも記録層は出来る丈薄いことが望ましく、より好ま
しい膜厚は30人〜200人である。
For boat fishing, the electrical memory effect of such materials has been observed with film thicknesses of several μm or less, but from the viewpoint of uniformity and recording performance, a film thickness of 1 μm or less is preferable. Further, in the present invention, since it is necessary to detect the atomic arrangement of the electrode substrate existing below through the recording layer, it is desirable that the film thickness is 500 Å or less. Furthermore, from the viewpoint of recording resolution as a recording medium, it is desirable that the recording layer be as thin as possible, and the more preferable film thickness is 30 to 200 layers.

(2)更にはテトラキノジメタン(TCNQ)、TCN
Q誘導体、例えばテトラフルオロテトラシアキノンメタ
ン(TCNQF4)、テトラシアノエチレン(TCNE
)およびテトラシアノナフトキノジメタン(TNAP)
などの電子受容性化合物と銅や銀などの還元電位が比較
的低い金属との塩を電極上に堆積した有機半導体層も挙
げることができる。
(2) Furthermore, tetraquinodimethane (TCNQ), TCN
Q derivatives, such as tetrafluorotetracyaquinonemethane (TCNQF4), tetracyanoethylene (TCNE
) and tetracyanonaphthoquinodimethane (TNAP)
An example may also be an organic semiconductor layer in which a salt of an electron-accepting compound (e.g., copper, silver, etc.) and a metal having a relatively low reduction potential, such as copper or silver, is deposited on an electrode.

係る有機半導体層の形成法としては、銅あるいは銀の電
極上に前記電子受容性化合物を真空蒸着する方法が用い
られる。
As a method for forming such an organic semiconductor layer, a method is used in which the electron-accepting compound is vacuum-deposited on a copper or silver electrode.

かかる有機半導体の電気メモリー効果は、数十μm以下
の膜厚のもので観測されているが、成膜性、均一性の観
点から・1μm以下、更には基板構造を検出する観点か
らより薄<30人〜500人の膜厚であることが好まし
い。
The electrical memory effect of organic semiconductors has been observed in films with a thickness of several tens of micrometers or less, but from the viewpoint of film formability and uniformity, it can be reduced to 1 micrometer or less, and even thinner from the viewpoint of detecting the substrate structure. The film thickness is preferably 30 to 500 people.

(3)また更にはπ電子準位をもつ群とび電子準位のみ
を有する群を併用する分子を電極上に積層した記録媒体
を挙げることができる。
(3) Furthermore, there may be mentioned a recording medium in which molecules using both a group having a π electron level and a group having only an electron level are laminated on an electrode.

本発明に好適なπ電子系を有する色素の構造としては例
えば、フタロシアニン、テトラフェニルポルフィン等の
ポリフィリン骨格を有する色素、スクアリリウム基及び
クロコニックメチン基を結合鎖としてもつアズレン系色
素及びキノリン、ベンゾチアゾール、ペンゾオキシサゾ
ール等の2ケの含窒素複素環をスクアリリウム基及びク
ロコニックメチン基により結合したシアニン系類似の色
素、またはシアニン色素、アントラセン及びピレン等の
縮合多環芳香族、及び芳香環及び複素環化合物が重合し
た鎖状化合物及びジアセチレン基の重合体、さらにはテ
トラキノジメタンまたはテトラチアフルバレンの誘導体
およびその類縁体およびその電荷移動錯体また更にはフ
ェロセン、トリスビピリジンルテニウム錯体等の金属錯
体化合物が挙げられる。
Examples of structures of dyes having a π-electron system suitable for the present invention include phthalocyanine, dyes having a porphyrin skeleton such as tetraphenylporphine, azulene dyes having squarylium groups and croconic methine groups as bonding chains, quinoline, and benzothiazole. , cyanine-based similar dyes in which two nitrogen-containing heterocycles are bonded by a squarylium group and a croconic methine group, such as penzooxysazole, or cyanine dyes, fused polycyclic aromatics such as anthracene and pyrene, and aromatic rings. and chain compounds obtained by polymerization of heterocyclic compounds and polymers of diacetylene groups, further derivatives of tetraquinodimethane or tetrathiafulvalene, analogs thereof, charge transfer complexes thereof, and further ferrocene, trisbipyridine ruthenium complexes, etc. Examples include metal complex compounds.

以上の如き、低分子材料に加えて各種の高分子材料を利
用することも可能である。例えば、ポリアクリル酸誘導
体等の付加重合体、ポリイミド又はポリフェニレン、又
はポリチオフェン等の縮合重合体、ナイロン等の開環重
合体、或いはポリペプチドやバクテリオロドプシン等の
生体高分子材料を挙げることができる。
In addition to the above-mentioned low-molecular materials, it is also possible to use various polymeric materials. Examples include addition polymers such as polyacrylic acid derivatives, condensation polymers such as polyimide or polyphenylene, or polythiophene, ring-opening polymers such as nylon, and biopolymer materials such as polypeptides and bacteriorhodopsin.

有機記録媒体の形成に関しては、具体的には蒸着法やク
ラスターイオンビーム法等の適用も可能であるが、制御
性、容易性そして再現性から公知の従来技術の中ではL
B法が極めて好適である。
Regarding the formation of organic recording media, it is possible to specifically apply vapor deposition methods, cluster ion beam methods, etc., but among the known conventional techniques, L
Method B is extremely preferred.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness on the order of a molecule. , and can stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は分子内に親水性部位と疎水性部位とを有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれている時、分子は水面上で親水性基
を下に向けて単分子の層になることを利用して単分子膜
またはその累積膜を作製する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule lowers the hydrophilic group on the water surface. This is a method of producing a monomolecular film or a cumulative film thereof by utilizing the fact that it becomes a monomolecular layer toward.

疎水性部位を構成する基としては、一般に広(知られて
いる飽和及び不飽和炭化水素基や縮合多環芳香族及び鎮
状多環フェニル基等の各種疎水基が挙げられる。これら
は各々単独又はその複数が組み合わされて疎水性部位を
構成する。一方、親水性部位の構成要素として最も代表
的なものは、例えばカルボキシル基、エステル基、酸ア
ミド基、イミド基、ヒドロキシル基、更にはアミノ基、
(l。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as widely known saturated and unsaturated hydrocarbon groups, fused polycyclic aromatic groups, and cyclopolycyclic phenyl groups. or a combination of two or more thereof constitutes a hydrophobic site.On the other hand, the most typical constituent elements of a hydrophilic site are, for example, a carboxyl group, an ester group, an acid amide group, an imide group, a hydroxyl group, and an amino group. basis,
(l.

2.3級及び4級)等の親水性基等が挙げられる。Examples include hydrophilic groups such as 2.tertiary and quaternary).

これらも各々単独又はその複数が組み合わされて上記分
子の親水性部分を構成する。
These also constitute the hydrophilic portion of the above molecule either singly or in combination.

これらの疎水性基と親水性基をバランス良く併有してい
れば、水面上で単分子膜を形成することが可能であり、
本発明に対して極めて好適な材料となる 具体例としては、例えば下記の如き分子等が挙げられる
If it has both these hydrophobic groups and hydrophilic groups in a well-balanced manner, it is possible to form a monomolecular film on the water surface.
Specific examples of materials that are extremely suitable for the present invention include the following molecules.

〈有機材料〉 [1]  クロコニックメチン色素 [IIコ スクアリリウム色素 [r]で挙げた化合物のクロコニックメチン基を下記の
構造を持つスクアリリウム基で置き換えた化合物。
<Organic Materials> [1] Croconic methine dye [II Co. A compound in which the croconic methine group of the compound listed in Squarylium dye [r] is replaced with a squarylium group having the following structure.

[III ] ■) ポルフィリ ン系色素化合物 ここでR1は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5≦n≦
30が好適である。
[III] ■) Porphyrin-based dye compound Here, R1 corresponds to the group with the above-mentioned σ electron level, and is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface. , the number of carbon atoms n is 5≦n≦
30 is preferred.

M==H2、Cu、 Ni、 Al−Cl及び希土類金
属イオン [IV] 縮合多環芳香族化合物 (CH2)2 OOH Br− Rは単分子膜を形成しやすくするために導入されたもの
で、ここで挙げた置換基に限るものではない。
M==H2, Cu, Ni, Al-Cl and rare earth metal ion [IV] Condensed polycyclic aromatic compound (CH2)2 OOH Br- R was introduced to facilitate the formation of a monomolecular film, The substituents are not limited to those listed here.

又、R1−R4,Rは前述したσ電子準位をもつ群に相
当している。
Further, R1-R4,R corresponds to the group having the above-mentioned σ electron level.

[V] ジアセチレン化合物 CH3千CH2ヂ。[V] diacetylene compound CH3,000 CH2ji.

CミC C=C÷CH2:)、x 0 ≦ n、  f  ≦ 20 但し n−11!> Xは親水基で一般的には一〇〇〇Hが用いられるが−O
H,−CONH2等も使用できる。
CmiC C=C÷CH2:), x 0 ≦ n, f ≦ 20 but n-11! >X is a hydrophilic group, generally 1000H is used, but -O
H, -CONH2, etc. can also be used.

[VI] その他 l) 〈有機高分子材料〉 [I]付加重合体 】)ポリアクリ酸   R1 ÷CH−C÷ 02H 2)ポリアクリル酸エステル ÷CH−C+ 02R5 3)アクリル酸コポリマー R1 6)酢酸ヒニルコポリマ− 1)ポリイミド 2)ポリアミド 4)アクリル酸エステルコポリマー 5)ポリビニルアセテート ÷0CO−CH−CH2÷ [I[I]開環重合体 1)ポリエチレンオキシド −(−0−CH−CH2−玩 ここで、R1は水面上で単分子膜を形成し易(するため
に導入された長鎖アルキル基で、その炭素数nは5≦n
≦30が好適である。
[VI] Others l) <Organic polymer materials> [I] Addition polymers]) Polyacrylic acid R1 ÷CH-C÷ 02H 2) Polyacrylic acid ester ÷CH-C+ 02R5 3) Acrylic acid copolymer R1 6) Hinyl acetate copolymer - 1) Polyimide 2) Polyamide 4) Acrylic ester copolymer 5) Polyvinyl acetate ÷0CO-CH-CH2÷ [I [I] Ring-opening polymer 1) Polyethylene oxide -(-0-CH-CH2-) where, R1 is a long-chain alkyl group introduced to easily form a monomolecular film on the water surface, and its carbon number n is 5≦n.
≦30 is suitable.

また、R5は短鎖アルキル基であり、炭素数nは1≦n
≦4が好適である。重合度mは100≦m≦5000が
好適である。
Further, R5 is a short-chain alkyl group, and the number of carbon atoms n is 1≦n
≦4 is suitable. The degree of polymerization m is preferably 100≦m≦5000.

以上、具体例として挙げた化合物は基本構造のみであり
、これら化合物の種々の置換体も本発明に於いて好適て
るあことは言うにおよばない。
The compounds mentioned above as specific examples are only basic structures, and it goes without saying that various substituted products of these compounds are also suitable in the present invention.

尚、上記以外でもLB法に適している色素材料であれば
、本発明に好適なのは言うまでもない。例えば、近年研
究が盛んになりつつある生体材料(例えばバクプリオロ
トプシンやチトクロームC)や合成ポリペプチド(PB
LGなど)等も適用が可能である。
It goes without saying that dye materials other than those mentioned above are suitable for the present invention as long as they are suitable for the LB method. For example, biomaterials (e.g. bacpriolotopsin and cytochrome C) and synthetic polypeptides (PB
LG, etc.) can also be applied.

これらのπ電子準位を有する化合物の電気メモリー効果
は数十μm以下の膜厚のもので観測されれているが(例
えばに、5akai  et  al、Applied
Physics Letters誌 第53巻1274
〜1276頁、1988年)、成膜性、均一性の観点か
ら2000Å以下、更には基板構造の検出の観点から1
0〜200人の膜厚のものが好ましい。
The electrical memory effect of compounds with these π-electron levels has been observed with film thicknesses of several tens of μm or less (for example, 5akai et al., Applied
Physics Letters Magazine Volume 53 1274
~1276 pages, 1988), 2000 Å or less from the viewpoint of film formability and uniformity, and 1 from the viewpoint of substrate structure detection.
A film thickness of 0 to 200 people is preferred.

以上(1)〜(3)項に亘って述べた電気メモリー効果
を有する材料を支持する電極基板としては、電極として
の性格を有する必要があるが、10″6(Ω・cm=)
以上の電導率を有する導電体であれば全て使用すること
ができる。即ちAu、  Pt、  Pd、  Ag。
The electrode substrate that supports the material having the electrical memory effect described in items (1) to (3) above needs to have the characteristics of an electrode, but the electrode substrate must have the characteristics of an electrode.
Any conductor having the above electrical conductivity can be used. That is, Au, Pt, Pd, Ag.

Af  In、 Sn、 Pb、 W等の金属板やこれ
らの合金、或いはこれら金属や合金をガラス、セラミッ
クス、又はプラスチック基板に堆積させたものを用いる
ことができる。更にはSi単結晶やグラファイトを始め
として数多くの材料が挙げられる。但しこれらの電極基
板は先にも述べた様に座標軸としての役割も担う訳であ
るから、当然、規則的な原子配列を有することが前提と
なる。
Metal plates such as Af In, Sn, Pb, and W, alloys thereof, or deposits of these metals and alloys on glass, ceramics, or plastic substrates can be used. Furthermore, there are many materials including Si single crystal and graphite. However, since these electrode substrates also play the role of coordinate axes as mentioned above, it is naturally assumed that they have a regular atomic arrangement.

従って、少なく共所望の記録領域の大きさに相当する単
結晶領域を有する必要がある。
Therefore, it is necessary to have a single crystal area at least as large as the desired recording area.

くプローブ電極〉 本発明で用いられるプローブ電極の先端は情報の記録/
再生/消去の分解能を上げるために出来るだけ尖らせる
必要がある。その材料として例えばPt、 Pt−Rb
、 Pt−Ir、 W、 Au、 Ag等を挙げること
ができる。本発明では1 m mφのタングステンを電
界研磨法を用い先端形状を制御した上でプローブ電極と
して用いているが、プローブ電極の製作法及び形状は何
らこれに限定するものではない。
Probe electrode> The tip of the probe electrode used in the present invention is used to record information.
It is necessary to make it as sharp as possible in order to increase the resolution of reproduction/erasure. Examples of the material include Pt, Pt-Rb
, Pt-Ir, W, Au, Ag, etc. In the present invention, tungsten with a diameter of 1 mm is used as a probe electrode after controlling its tip shape using an electric field polishing method, but the manufacturing method and shape of the probe electrode are not limited thereto.

〈プローブ電極と記録媒体の距離の変動の検出〉本発明
において情報の記録/再生/消去は、記録・再生用プロ
ーブ電極を記録媒体表面との距離を一定に保ちつつ、該
記録媒体表面上を走査せしめることで連続的に行われる
が、記録媒体が熱ドリフトや振動等の原因により変動し
た場合にも上記距離を一定値に保つ為の工夫が必要とな
る。
<Detection of variation in distance between probe electrode and recording medium> In the present invention, information is recorded/reproduced/erased by moving the recording/reproducing probe electrode over the surface of the recording medium while keeping the distance from the surface of the recording medium constant. Although scanning is performed continuously, it is necessary to take measures to keep the above-mentioned distance at a constant value even if the recording medium fluctuates due to causes such as thermal drift or vibration.

係る要請はプローブ電極を利用して、該プローブ電極と
電極基板間に流れるトンネル電流Jアを測定し、この際
若しJlに変化があれば、係る変化量を基に記録・再生
用プローブ電極の位置(高さ方向)を補正することで解
決される。この場合、記録再生用プローブ電極と電極基
板との間に印加するバイアス電圧を時間分割して一方を
記録/再生//v4去に用い、他方を電極基板の厚さ方
向位置検出に用いることもてきるが駆動方法が複雑にな
る他、情報の記録に伴って記録層中の記録部位の導電率
或いは形状が変化するので、特に記録情報の再生時にお
いて検出されるトンネル電流の変化が記録媒体の位置変
動に因るものなのか、或いは記録情報に因るものなか判
別することが困難となる問題がある。従って、記録・再
生用プローブ電極と電極基板の厚さ方向変動量検出用の
プローブ電極(以後、これをZ方向変動量検出用プロー
ブ電極と呼ぶ)とは異なることが望ましい。係るZ方向
変動量検出用プローブ電極と電極基板の原子配列検出用
プローブ電極は同一であっても異なっていてもどちらで
もよい。なお、記録媒体の面内方向に関する変動が生じ
た際には、原子配列検出用プローブ電極を用いてその変
動量を検出できることはいうまでもな(、これを基に記
録・再生用プローブ電極の走査方向は補正される。Z方
向変動量検出用プローブ電極は1本に限定される必要は
なく、複数のプローブ電極を用いてもよい。
Such a request is made by measuring the tunnel current JA flowing between the probe electrode and the electrode substrate using a probe electrode, and if there is a change in Jl at this time, the recording/reproducing probe electrode is adjusted based on the amount of change. This can be solved by correcting the position (height direction). In this case, the bias voltage applied between the recording/reproducing probe electrode and the electrode substrate may be time-divided to use one for recording/reproducing//v4 and the other for detecting the position in the thickness direction of the electrode substrate. However, the driving method becomes complicated, and the conductivity or shape of the recording area in the recording layer changes as information is recorded, so changes in tunnel current detected during reproduction of recorded information may affect the recording medium. There is a problem in that it is difficult to determine whether this is due to positional fluctuations or recorded information. Therefore, it is desirable that the recording/reproducing probe electrode is different from the probe electrode for detecting the amount of variation in the thickness direction of the electrode substrate (hereinafter referred to as the probe electrode for detecting the amount of variation in the Z direction). The Z-direction variation detection probe electrode and the atomic arrangement detection probe electrode of the electrode substrate may be the same or different. It goes without saying that when a change occurs in the in-plane direction of the recording medium, the amount of change can be detected using a probe electrode for detecting atomic arrangement (based on this, it is possible to detect the amount of change using a probe electrode for recording/reproducing). The scanning direction is corrected.The number of probe electrodes for detecting the amount of variation in the Z direction does not need to be limited to one, and a plurality of probe electrodes may be used.

〈情報処理装置の構成) 第3図は本発明に於いてプローブ電極が、位置検出用の
ものと記録・再生用の2本有する場合の情報処理装置を
示すブロック図である。第3図中、102及び103は
各々記録・再生用及び位置検出に用いられるプローブ電
極であり、これら2本のプローブ電極間の距離は、圧電
素子を用いたプローブ電極間隔微調節機構112により
微調節可能であるが、通常は一定の間隔に保たれる。1
06はバイアス電圧源、及びプローブ電流増巾器で、1
08は圧電素子を用いたZ軸方向微動機構107を制御
するサーボ回路である。112は記録・再生用プローブ
電極102と電極基板104との間に記録/消去用のパ
ルス電圧を印加するための電流である。
(Configuration of Information Processing Apparatus) FIG. 3 is a block diagram showing an information processing apparatus according to the present invention having two probe electrodes, one for position detection and one for recording/reproducing. In FIG. 3, 102 and 103 are probe electrodes used for recording/reproducing and position detection, respectively, and the distance between these two probe electrodes is finely adjusted by a probe electrode spacing fine adjustment mechanism 112 using a piezoelectric element. Adjustable, but usually kept at a constant spacing. 1
06 is a bias voltage source and probe current amplifier, 1
08 is a servo circuit that controls the Z-axis direction fine movement mechanism 107 using a piezoelectric element. Reference numeral 112 denotes a current for applying a recording/erasing pulse voltage between the recording/reproducing probe electrode 102 and the electrode substrate 104.

パルス電圧を印加するときプローブ電流が急激に変化す
るためサーボ回路108は、その間出方電圧が一定にな
るように、HOLD回路をONにするように制御してい
る。
Since the probe current changes rapidly when a pulse voltage is applied, the servo circuit 108 controls the HOLD circuit to be turned on so that the output voltage is constant during that time.

110はxy力方向一対のプローブ電極102.103
を移動制御するための、XY走査駆動回路である。
110 is a pair of probe electrodes 102 and 103 in the x and y force directions.
This is an XY scanning drive circuit for controlling the movement of the .

113と114は、あらかじめI O−’ [度のプロ
ーブ電流が得られるようにプローブ電極102,103
と記録媒体lとの距離を粗動制御したり、プローブ電極
と基板とのXY方向相対変位を大きくとる(微動制御機
構の範囲外)のに用いられる。
113 and 114 are connected in advance to the probe electrodes 102 and 103 so that a probe current of IO-' [degrees] is obtained.
It is used to coarsely control the distance between the probe electrode and the recording medium l, or to increase the relative displacement in the XY direction between the probe electrode and the substrate (outside the range of the fine movement control mechanism).

これらの各機器は、すべてマイクロコンピュータ115
により中央制御されている。また116は表示機器を表
わしている。
All of these devices are microcomputer 115
Centrally controlled by Further, 116 represents a display device.

また、圧電素子を用いた移動制御における機械的性能を
下記に示す。
In addition, the mechanical performance in movement control using piezoelectric elements is shown below.

Z方向微動制御範囲:0.1nm〜1μmZ方向粗動制
御範囲: l On m 〜10 m mXY方向走査
範囲二0.1〜1μm xy方向粗動制御範囲:lOnm−10mm計測、制御
許容誤差:<0.1nm(微動制御時)計測、制御許容
誤差:<lnm(微動制御時)以下、本発明の情報処理
方式について、実施例により詳細な説明を行う。
Z-direction fine movement control range: 0.1 nm to 1 μm Z-direction coarse movement control range: l On m to 10 m mXY direction scanning range 20.1 to 1 μm 0.1 nm (during fine movement control) Measurement and control tolerance: <lnm (during fine movement control) The information processing method of the present invention will be described in detail below with reference to embodiments.

〔実施例1〕 第3図に示す情報処理装置を用いた。プローブ電極10
2,103としてタングステン製のプローブ電極を用い
た。このプローブ電極102,103は記録媒体1の表
面との距離(Z)を制御するためのもので、電流を一定
に保つように圧電素子により、その距離(Z)は、各々
独立に微動制御されている。
[Example 1] An information processing device shown in FIG. 3 was used. Probe electrode 10
As No. 2,103, a tungsten probe electrode was used. These probe electrodes 102 and 103 are used to control the distance (Z) from the surface of the recording medium 1, and the distance (Z) is independently and finely controlled by a piezoelectric element to keep the current constant. ing.

更に微動制御機構は距離(Z)を一定に保ったまま面内
(x、  y)方向にも微動制御できる様に設計されて
いる。
Furthermore, the fine movement control mechanism is designed to be able to perform fine movement control in the in-plane (x, y) directions while keeping the distance (Z) constant.

2本あるプローブ電極の内、位置検出用プローブ電極1
03は電極基板104の位置座標としての原子配列の検
出に用いられる。他方記録・再生用プローブ電極102
は位置検出用プローブ電極103とX・Y方向に関して
一定の位置(プローブ電極間隔微調節機構111を用い
てその間隔を調節することができる)に保持され、記録
層101への記録・再生・消去に用いられる。
Of the two probe electrodes, position detection probe electrode 1
03 is used to detect the atomic arrangement as the position coordinates of the electrode substrate 104. The other recording/reproducing probe electrode 102
is held at a constant position with respect to the position detection probe electrode 103 in the X and Y directions (the interval can be adjusted using the probe electrode interval fine adjustment mechanism 111), and is used for recording, reproduction, and erasing on the recording layer 101. used for.

これら2本のプローブ電極は、基本的には互いに連動し
て面内(x、 y)方向へ微動制御できる様に設計され
ているが、Z方向に対しては各々独立に微動制御される
。又、記録媒体1は高精度のX−Yステージ117上に
置かれ、任意の位置に移動させることがてきる(X−Y
粗動機構)。なお粗動機構のX−Y方向と微動機構のX
−Y方向とは、各移動制御機構の精度の差に起因する誤
差の範囲内で一致させることができる。
These two probe electrodes are basically designed to be able to perform fine movement control in the in-plane (x, y) directions in conjunction with each other, but they are each independently fine movement controlled in the Z direction. Furthermore, the recording medium 1 is placed on a high-precision X-Y stage 117, and can be moved to any position (X-Y
coarse movement mechanism). Note that the coarse movement mechanism's X-Y direction and the fine movement mechanism's
The −Y direction can be matched within the range of error caused by the difference in accuracy between the movement control mechanisms.

次に本実施例で用いた記録媒体の詳細について述べる。Next, details of the recording medium used in this example will be described.

基板105としてマイカを用い、これを大気中て襞間し
た後、係る襞間面上に金を2500人厚に蒸着し、金の
単結晶薄膜から成る電極基板104を形成した。蒸着条
件は真空度lX1O−6TORR,基板温度500°C
1蒸着速度20人/ m i nであった。
Mica was used as the substrate 105, and after it was folded in the atmosphere, gold was evaporated to a thickness of 2500 nm on the surface between the folds to form an electrode substrate 104 made of a single crystal thin film of gold. Vapor deposition conditions: vacuum level 1X1O-6TORR, substrate temperature 500°C
The deposition rate was 20 persons/min.

次に係る電極基板上に2〜8層のポリイミドLB膜を積
層し、記録層101とした。
Next, two to eight layers of polyimide LB films were laminated on the electrode substrate to form a recording layer 101.

以下、ポリイミドLB膜の作成方法について述べる。Hereinafter, a method for producing a polyimide LB film will be described.

(2)式に示すポリアミック酸をN、  N−ジメチル
アセトアミド溶媒に溶解させた(単量体換算濃度lXl
0−3)後、別途調製したN、  N−ンメチルオクタ
デシルアミンの同溶媒による1×lO−′M溶液とを1
 : 2 (V/V)に混合して(3)式に示すポリア
ミック酸オクタデシルアミン塩溶液を調製した。
The polyamic acid shown in formula (2) was dissolved in N,N-dimethylacetamide solvent (monomer equivalent concentration lXl
After 0-3), a separately prepared 1×1O−′M solution of N,N-methyloctadecylamine in the same solvent was added to
: 2 (V/V) to prepare a polyamic acid octadecylamine salt solution shown in formula (3).

かかる溶液を水温20°Cの純水から成る水相上に展開
し、水面上に単分子膜を形成した。溶媒除去後、表面圧
を25 m N / mにまで高めた。表面圧を一定に
保ちながら、上述対向電極付き基板を水面を横切る方向
に速度5 m m / mi nで静かに浸漬した後、
続いて5 m m / m i nで静かに引き上げて
2層のY型単分子累積膜を作製した。更にかかる操作を
繰り返して、4. 6.8層のポリアミック酸オクタデ
シルアミン塩の単分子累積膜も形成した。
This solution was spread on an aqueous phase consisting of pure water at a water temperature of 20°C to form a monomolecular film on the water surface. After solvent removal, the surface pressure was increased to 25 mN/m. After gently immersing the substrate with the counter electrode described above at a speed of 5 mm/min in the direction across the water surface while keeping the surface pressure constant,
Subsequently, it was gently pulled up at 5 mm/min to produce a two-layer Y-type monomolecular cumulative film. 4. Repeat this operation further. A monomolecular cumulative film of 6.8 layers of polyamic acid octadecylamine salt was also formed.

次にかかる基板を300℃で10分間の熱処理を行い、
ポリアミック酸オクタデシルアミン塩をイミド化しく式
(4))、2.4.6或いは8層のポリイミドLB膜を
得た。
Next, the substrate is heat treated at 300°C for 10 minutes,
Polyamic acid octadecylamine salt was imidized to obtain a polyimide LB film of formula (4)) with 2.4.6 or 8 layers.

■ (CH2)17CH3 以上により作成された記録媒体lを用いて記録・再生の
実験を行った。以下その詳細を記す。
(CH2) 17CH3 A recording/reproducing experiment was conducted using the recording medium I prepared above. The details are described below.

ポリイミド2層を積層した記録層101を持つ記録媒体
1をX、 Yステージ117の上に置いた。次に位置検
出用プローブ電極103を動かし、係る位置検出用プロ
ーブ電極103と金電極基板104との間にO,lVの
プローブ電圧を印加した。この後トンネル電流が約1n
Aになる迄、Z軸方向微動制御機構107とサーボ回路
108を用いてプローブ電極103を記録媒体lの表面
との間の距離を近づけた。次にxy方向微動制御機構1
09とXY方向走査駆動回路を用いて位置検出用プロー
ブ電極103を60人角の範囲に亘って走査させ、電極
基板即ち金の原子配列を検出した。得られた金の結晶構
造に関して、その(1,0,1)方向をプローブ電極走
査系のX方向に、又(丁、  2. 1)方向をプロー
ブ電極走査系のY方向になる様に調整を行った。この際
、AuAu原子間ピッチはX方向に関して2.88人、
Y方向に関して5.0OAであった。この時、同時に粗
動機構のXY力方向、調整した微動機構のXY力方向粗
動機構の制御誤差範囲内で一致する様に調整した。
A recording medium 1 having a recording layer 101 made of two polyimide layers was placed on an X, Y stage 117. Next, the position detection probe electrode 103 was moved, and a probe voltage of O, lV was applied between the position detection probe electrode 103 and the gold electrode substrate 104. After this, the tunnel current is about 1n
The distance between the probe electrode 103 and the surface of the recording medium 1 was brought closer using the Z-axis direction fine movement control mechanism 107 and the servo circuit 108 until A was reached. Next, the xy direction fine movement control mechanism 1
The probe electrode 103 for position detection was scanned over a range of 60 human angles using an XY direction scanning drive circuit to detect the atomic arrangement of the electrode substrate, that is, gold. The crystal structure of the obtained gold was adjusted so that its (1,0,1) direction was in the X direction of the probe electrode scanning system, and the (2.1) direction was in the Y direction of the probe electrode scanning system. I did it. At this time, the AuAu interatomic pitch is 2.88 people in the X direction,
It was 5.0OA in the Y direction. At this time, at the same time, the XY force directions of the coarse movement mechanism were adjusted so that they matched within the control error range of the coarse movement mechanism in the XY force direction of the adjusted fine movement mechanism.

次に記録・再生用プローブ電極102と電極基板104
との間に0.5■のプローブ電圧を印加し、トンネル電
流が1nAになる様にZ軸微動制御機構107とサーボ
回路108を用いてプローブ電極102と記録媒体1の
表面との距離を調整した。次にプローブ電極間隔微調節
機構111を用いて記録・再生用プローブ電極102と
位置検出用プローブ電極103との間の距離をX=2m
m  Y=Ommになる様に調整した。
Next, the recording/reproducing probe electrode 102 and the electrode substrate 104
A probe voltage of 0.5■ is applied between the probe electrode 102 and the surface of the recording medium 1, and the distance between the probe electrode 102 and the surface of the recording medium 1 is adjusted using the Z-axis fine movement control mechanism 107 and the servo circuit 108 so that the tunnel current becomes 1 nA. did. Next, using the probe electrode spacing fine adjustment mechanism 111, the distance between the recording/reproducing probe electrode 102 and the position detection probe electrode 103 is adjusted to X=2 m.
It was adjusted so that m Y = Omm.

次に位置検出用プローブ電極103を第4図に示す走査
パターンに従って走査させた。この時、先に記したプロ
ーブ電圧=0.IVの条件でプローブ電極103と記録
媒体lとの間の距離は最初に決めた条件で固定し、金の
原子配列に起因するトンネル電流強度の変化をモニター
し乍ら、走査方向が正しく全単結晶の(1,O,丁)方
向(X軸)及び(丁。
Next, the position detection probe electrode 103 was scanned according to the scanning pattern shown in FIG. At this time, the probe voltage described earlier = 0. Under the IV condition, the distance between the probe electrode 103 and the recording medium l was fixed at the initially determined condition, and while monitoring changes in the tunneling current intensity caused by the gold atomic arrangement, the scanning direction was correct and all units were checked. (1, O, D) direction (X-axis) and (D) direction of the crystal.

2、丁)方向(Y軸)と一致する様、常時補正を行った
。以上の位置検出用プローブ電極走査パターンに従って
、記録再生用プローブ電極102も連動して同等の走査
パターン上を動(ことになるが、記録層101上に所望
の記録を行った。本発明の記録は記録層101の電気メ
モリー効果を利用して形成される。即ち情報に従って第
5図に示した波形を持つ三角波パルス電圧をパルス電源
112を用いて印加し、ポリアミド2層、LB膜から成
る記録層101上に低抵抗状Q (ON状態)を生じさ
せた。この時、記録・再生用プローブ電極102を+側
金電極基板104を一側とした。なお、記録ビットは5
.76nmピッチに設定した。記録後、再び第4図のパ
ターンに従って記録情報の再生を行った。この際、記録
・再生用プローブ電極102を金電極基板104との間
に電気メモリー効果を生じる、或いは消去し得る閾値電
圧を越えていない電圧である0、5vの読み出し用電圧
を印加してトンネル電流を測定し、記録情報の再生を行
った。以上の再生実験に於いてデータ転送速度をI M
 Hzとした時のピットエラーレートは8X10−’で
あった。
2. Constant correction was made to match the direction (Y axis). According to the above scanning pattern of the probe electrode for position detection, the probe electrode 102 for recording and reproduction also moved in conjunction with the same scanning pattern (desired recording was performed on the recording layer 101. Recording of the present invention is formed using the electric memory effect of the recording layer 101. That is, a triangular wave pulse voltage having the waveform shown in FIG. A low resistance state Q (ON state) was generated on the layer 101. At this time, the recording/reproducing probe electrode 102 was placed on one side with the + side gold electrode substrate 104. Note that the number of recorded bits was 5.
.. The pitch was set to 76 nm. After recording, the recorded information was reproduced again according to the pattern shown in FIG. At this time, a reading voltage of 0.5 V, which does not exceed the threshold voltage that can cause or erase an electric memory effect, is applied between the recording/reproducing probe electrode 102 and the gold electrode substrate 104 to perform tunneling. The current was measured and recorded information was reproduced. In the above playback experiment, the data transfer speed was
The pit error rate when expressed as Hz was 8×10-'.

なお、記録・再生用プローブ電極102と金電極基板1
04との間にON状態にある記録部位をOFF状態へ遷
移せしめる第6図に示すパルス電圧を情報記録部に印加
した後、再び再生してみると、第6図のパルス電圧を印
加したON状態部では、その記録状態が消去されOFF
状態に遷移すること、即ちトンネル電流が1nAに戻る
ことが確認された。
Note that the recording/reproducing probe electrode 102 and the gold electrode substrate 1
After applying the pulse voltage shown in FIG. 6 to the information recording section that causes the recording region that is in the ON state to transition to the OFF state between In the status section, the recorded status is erased and turned OFF.
It was confirmed that the tunnel current returned to 1 nA.

更に記録媒体Iの記録層102をポリイミド2層LB膜
から、先に述べた4、6或いは8層のポリゴミ1;r−
B膜に変更した場合に於いて、上述と同様の記録・再生
・消去が可能であることを確認した。
Furthermore, the recording layer 102 of the recording medium I is made of a polyimide two-layer LB film, and the above-mentioned 4, 6 or 8 layers of polydust 1; r-
In the case of changing to the B film, it was confirmed that recording, reproduction, and erasing similar to those described above are possible.

因に、実施例1に於いてプローブ電極を1本とし、係る
1本のプローブ電極を用いて位置検出と記録・再生の両
方を時間分割して行った場合、記録情報の再生時に於い
て、転送速度をl M b p sとした時のピットエ
ラーレートが3X10−’てあった。
Incidentally, in Example 1, when one probe electrode is used and both position detection and recording/reproduction are performed in a time-divided manner using the one probe electrode, when reproducing recorded information, The pit error rate was 3X10-' when the transfer rate was 1 Mbps.

〔実施例2〕 実施例1におけるポリイミド2層LB膜に代えて2層の
スクアリリウム−ビス−6−オクチルアズレン(以下5
OAZと略する)LB膜を記録層101とした他は実施
例1と同様にして記録・再生実験を行った。以下、記録
層形成方法ついて述べる。先ず、5OAZを濃度0.2
mg/ml!で溶かしたベンゼン溶液を20℃の水相上
に展開し、水面上に単分子膜を形成した。溶媒の蒸発を
待ち、係る単分子膜の表面圧を20 m N / mま
で高め、更にこれを一定に保ちながら前記基板を水面を
横切る方向に速度3mm/分て静かに浸漬・引き上げを
行い、5OAZ単分子膜の2層累積膜を電極基板104
上に形成させた。
[Example 2] In place of the polyimide two-layer LB film in Example 1, two layers of squarylium-bis-6-octylazulene (hereinafter 5
A recording/reproducing experiment was conducted in the same manner as in Example 1 except that an LB film (abbreviated as OAZ) was used as the recording layer 101. The method for forming the recording layer will be described below. First, 5OAZ at a concentration of 0.2
mg/ml! The benzene solution dissolved in 1 was spread on the water phase at 20°C to form a monomolecular film on the water surface. After waiting for the solvent to evaporate, the surface pressure of the monomolecular film was increased to 20 mN/m, and while keeping this constant, the substrate was gently immersed and pulled out at a speed of 3 mm/min across the water surface. A two-layer cumulative film of 5OAZ monolayer is applied to the electrode substrate 104.
formed on top.

再生実験の結果、転送速度がI M b p sの時の
ピットエラーレートは1xlO−5であった。
As a result of playback experiments, the pit error rate was 1xlO-5 when the transfer rate was IM bps.

〔実施例3〕 実施例1に於いて、ポリイミド2iLB膜の代わりに、
CuTCNQF4を用いて記録層103を構成し、実施
例1と同様の記録・再生実験を行った。
[Example 3] In Example 1, instead of the polyimide 2iLB film,
The recording layer 103 was constructed using CuTCNQF4, and recording/reproducing experiments similar to those in Example 1 were conducted.

なお、記録用印加電圧は、2Vmax、Ionsの矩形
パルスを用い、再生用の印加電圧は0.1Vとした。
Note that the applied voltage for recording was a rectangular pulse of 2 Vmax, Ions, and the applied voltage for reproduction was 0.1 V.

また、消去用印加電圧は5Vmax、100nsの矩形
パルスを用いた。再生実験の結果、データ転送速度をI
Mbpsとした時のピットエラーレートは9X10−’
であった。つぎにCuTCNQF4記録層103の作成
方法について述べる。Au基板電極104上に、Cuと
TCNQF4を真空蒸着法により共蒸着してCu+TC
NQF 4層を100人堆積した(基板温度;室温)。
Further, as the applied voltage for erasing, a rectangular pulse of 5 Vmax and 100 ns was used. As a result of playback experiments, the data transfer speed was
The pit error rate when set to Mbps is 9X10-'
Met. Next, a method for creating the CuTCNQF4 recording layer 103 will be described. On the Au substrate electrode 104, Cu and TCNQF4 are co-deposited by vacuum evaporation method to form Cu+TC.
100 NQF 4 layers were deposited (substrate temperature; room temperature).

このとき蒸着速度をCu ; 1人/s、TCNQF 
4;4人/S程度になるようにあらかじめ設定した電流
値を流し加熱した。その結果、CuTCNQF 4生成
による青い膜が堆積することを確認した。
At this time, the deposition rate was Cu; 1 person/s, TCNQF
4; Heating was carried out by passing a preset current value to about 4 people/S. As a result, it was confirmed that a blue film was deposited due to the production of CuTCNQF4.

〔実施例4〕 実施例1に於いて位置検出用プローブ電極103を用い
て、記録媒体の厚さ方向(Z方向)変動量の検出も行っ
た。即ち位置検出用プローブ電極103を第4図のパタ
ーンに従って走査させる際、金原子配列に伴ってトンネ
ル電流は周期的に変化するが、この周期成分をフィルタ
ーで除去した後、トンネル電流が基準となる最初の平均
1nAから300pA以上増加、又は減少した場合にZ
軸方向微動制御機構107とサーボ回路108を用いて
プローブ電極103と金電極基板104との距離を随時
調整した。この時記録・再生用プローブ電極102と金
電極基板104との距離も電気的に同等の調整を行った
。以上のZ方向変位補正を情報の記録・再生・消去の全
ての行程において行つた。その結果再生時に於いて、デ
ーター転送速度がI M b p sの時、ピットエラ
ーレートは4X10−’に減少した。
[Example 4] In Example 1, the position detection probe electrode 103 was used to detect the amount of variation in the thickness direction (Z direction) of the recording medium. That is, when the position detection probe electrode 103 is scanned according to the pattern shown in FIG. 4, the tunnel current changes periodically in accordance with the arrangement of the gold atoms, but after removing this periodic component with a filter, the tunnel current becomes the reference. Z increases or decreases by more than 300 pA from the initial average of 1 nA
The distance between the probe electrode 103 and the gold electrode substrate 104 was adjusted as needed using the axial fine movement control mechanism 107 and the servo circuit 108. At this time, the distance between the recording/reproducing probe electrode 102 and the gold electrode substrate 104 was also adjusted to be electrically equivalent. The above Z-direction displacement correction was performed in all steps of recording, reproducing, and erasing information. As a result, during playback, the pit error rate was reduced to 4x10-' when the data transfer rate was IMbps.

以上述べてきた実施例中で種々の記録媒体の作成法につ
いて述べてきたが、極めて均一な膜が作成てきる成膜法
てあれば良く、実施例の方法に限定されるものではない
Although various methods for producing recording media have been described in the embodiments described above, any film-forming method that can produce an extremely uniform film may be used, and the present invention is not limited to the methods in the embodiments.

又、プローブ電極も2本に限る必要はなく必要に応じて
、より多数のプローブ電極を用いてもよい。
Further, the number of probe electrodes is not limited to two, and a larger number of probe electrodes may be used as necessary.

又、プローブ電極の走査パターンや記録ピットの周期等
についても本実施例に限定されるものではなく、位置座
標に対して記録位置が一義的に定まる方法、構造であれ
ばよい。
Further, the scanning pattern of the probe electrode, the period of recording pits, etc. are not limited to those of this embodiment, and any method or structure may be used as long as the recording position is uniquely determined with respect to the position coordinates.

〔発明の効果〕〔Effect of the invention〕

■光記録に較べても、はるかに高密度な記録が可能な全
く新しい情報処理方法を開示した。
■Disclosed a completely new information processing method that enables much higher density recording than optical recording.

■上記の新規情報処理方法を用いられる新規な記録媒体
を開示した。
■A new recording medium that can use the above-mentioned new information processing method has been disclosed.

■結晶性基板の原子配列を利用して係る原子配列と対応
する位置に記録ビット又は記録ビット列を設定するため
、情報の記録再生時における位置的エラーを少な(する
ことができ、結果としてピットエラーレートを小さくす
ることができた。
■Since the atomic arrangement of the crystalline substrate is used to set recording bits or recording bit strings at positions corresponding to the atomic arrangement, it is possible to reduce positional errors when recording and reproducing information, resulting in pit errors. I was able to reduce the rate.

■基板の原子配列を検出するプローブ電極と情報の記録
・再生・消去に用いられるプローブ電極とを分けた結果
、位置情報と記録情報とが混同される確率が著しく小さ
くなり、又、情報の記録・再生速度が増加した。
■As a result of separating the probe electrodes that detect the atomic arrangement of the substrate from the probe electrodes used for recording, reproducing, and erasing information, the probability that position information and recorded information will be confused is significantly reduced, and - Increased playback speed.

■基板の厚さ方向の変動を検出するプローブ電極を加え
ることによって、情報の記録・再生をより確実に行える
ことを示した。
■We showed that information can be recorded and reproduced more reliably by adding a probe electrode that detects variations in the thickness direction of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の座標軸と記録位置との位
置関係を示した原理図である。 第3図は、本発明の情報処理装置を図解的に示すブロッ
ク図である。 第4図は、本発明の記録媒体表面上の座標軸と記録位置
との位置関係の一形態を示した模式図である。 第5図は、本発明のOFF状態にある記録層にON状態
を形成するのに必要な電気パルスの波形を示す図である
。 第6図は、本発明の記録層上のON状態部位をOFF状
態に戻すのに必要な電気パルスの波形を示す図である。 溌禮軸 錠櫛僅! 塵糟軸 変確血夏 竿 霞 8号 聞 第 乙 区 e) 貨
FIGS. 1 and 2 are principle diagrams showing the positional relationship between the coordinate axes and recording positions of the present invention. FIG. 3 is a block diagram schematically showing the information processing apparatus of the present invention. FIG. 4 is a schematic diagram showing one form of the positional relationship between the coordinate axes on the surface of the recording medium and the recording position according to the present invention. FIG. 5 is a diagram showing the waveform of an electric pulse necessary for forming an ON state in a recording layer that is in an OFF state according to the present invention. FIG. 6 is a diagram showing the waveform of an electric pulse necessary to return an ON state portion on the recording layer to an OFF state according to the present invention. Vibrant shaft lock comb only! Dust Axis Change Confirmed Blood Summer Danxia No. 8, No. 2 Ward e) Currency

Claims (32)

【特許請求の範囲】[Claims] (1)面内に規則的な周期構造を有する電極基板上に記
録層を設けた記録媒体に対し、複数のプローブ電極を用
い、そのうち少なくとも1つのプローブ電極(第1のプ
ローブ電極)を用いて前記記録層を介して電極基板の周
期構造上の位置を検出し、かかる検出された位置に対応
する記録層上の任意の設定位置に少なくとも1つのプロ
ーブ電極(第2のプローブ電極)を用いて記録層へ情報
の記録を行うか、記録された情報の再生を行うかもしく
は記録された情報の消去を行うことを特徴とする情報処
理方法。
(1) For a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in the plane, a plurality of probe electrodes are used, and at least one probe electrode (first probe electrode) is used. Detecting a position on the periodic structure of the electrode substrate through the recording layer, and using at least one probe electrode (second probe electrode) at an arbitrary set position on the recording layer corresponding to the detected position. An information processing method characterized by recording information on a recording layer, reproducing recorded information, or erasing recorded information.
(2)前記電極基板の周期構造が原子配列に基づいた構
造である請求項(1)に記載の情報処理方法。
(2) The information processing method according to claim (1), wherein the periodic structure of the electrode substrate is a structure based on an atomic arrangement.
(3)第1のプローブ電極と電極基板との間及び第2の
プローブ電極と電極基板との間にバイアス電圧が印加さ
れる請求項(1)に記載の情報処理方法。
(3) The information processing method according to claim (1), wherein a bias voltage is applied between the first probe electrode and the electrode substrate and between the second probe electrode and the electrode substrate.
(4)第1のプローブ電極と基板との間に印加されるバ
イアス電圧と第2のプローブ電極と電極基板との間に印
加されるバイアス電圧が異なる請求項(3)に記載の情
報処理方法。
(4) The information processing method according to claim (3), wherein the bias voltage applied between the first probe electrode and the substrate is different from the bias voltage applied between the second probe electrode and the electrode substrate. .
(5)第1のプローブ電極と電極基板との間に印加され
るバイアス電圧が、第2のプローブ電極と電極基板との
間に印加されるバイアス電圧より小さい請求項(3)に
記載の情報処理方法。
(5) The information according to claim (3), wherein the bias voltage applied between the first probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate. Processing method.
(6)情報の記録及び消去を、第2のプローブ電極と電
極基板との間にパルス電圧を印加することにより行う請
求項(1)に記載の情報処理方法。
(6) The information processing method according to claim (1), wherein information is recorded and erased by applying a pulse voltage between the second probe electrode and the electrode substrate.
(7)パルス電圧が記録層の導電率を変化させる閾値電
圧を越えた電圧である請求項(6)に記載の情報処理方
法。
(7) The information processing method according to claim (6), wherein the pulse voltage is a voltage exceeding a threshold voltage that changes the conductivity of the recording layer.
(8)面内に規則的な周期構造を有する電極基板上に記
録層を設けた記録媒体に対し、複数のプローブ電極を用
い、そのうち少なくとも1つのプローブ電極(第1のプ
ローブ電極)を用いて前記記録層を介して電極基板の周
期構造上の位置を検出しかかる検出された位置に対応す
る記録層上の任意の設定位置に少なくとも1つのプロー
ブ電極(第2のプローブ電極)を用いて記録層へ情報の
記録を行うか、記録された情報の再生を行うかもしくは
記録された情報の消去を行い、少なくとも1つのプロー
ブ電極(第3のプローブ電極)を用いてプローブ電極と
記録媒体との距離の相対的な位置変動量を検出し、係る
位置変動に基づいて第2のプローブ電極と記録媒体表面
との間の距離を調整することを特徴とする情報処理方法
(8) For a recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in the plane, a plurality of probe electrodes are used, and at least one probe electrode (first probe electrode) is used. Detecting a position on the periodic structure of the electrode substrate through the recording layer and recording using at least one probe electrode (second probe electrode) at an arbitrary set position on the recording layer corresponding to the detected position. Recording information on the layer, reproducing the recorded information, or erasing the recorded information, and using at least one probe electrode (third probe electrode) to connect the probe electrode and the recording medium. An information processing method comprising: detecting a relative positional variation in distance; and adjusting the distance between a second probe electrode and a recording medium surface based on the positional variation.
(9)前記電極基板の周期構造が原子配列に基づいた構
造である請求項(8)に記載の情報処理方法。
(9) The information processing method according to claim (8), wherein the periodic structure of the electrode substrate is a structure based on an atomic arrangement.
(10)第1のプローブ電極と電極基板との間、第2の
プローブ電極と電極基板との間及び第3のプローブ電極
と電極基板との間にバイアス電圧が印加される請求項(
8)に記載の情報処理方法。
(10) A bias voltage is applied between the first probe electrode and the electrode substrate, between the second probe electrode and the electrode substrate, and between the third probe electrode and the electrode substrate (
The information processing method described in 8).
(11)第1のプローブ電極と電極基板との間に印加さ
れるバイアス電圧と第2のプローブ電極と電極基板との
間に印加されるバイアス電圧が異なる請求項(10)に
記載の情報処理方法。
(11) The information processing according to claim (10), wherein the bias voltage applied between the first probe electrode and the electrode substrate is different from the bias voltage applied between the second probe electrode and the electrode substrate. Method.
(12)第1のプローブ電極と電極基板との間に印加さ
れるバイアス電圧が、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧より小さい請求項(10
)に記載の情報処理方法。
(12) Claim (10) wherein the bias voltage applied between the first probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate.
) Information processing method described in .
(13)第2のプローブ電極と電極基板との間に印加さ
れるバイアス電圧と第3のプローブ電極と電極基板との
間に印加されるバイアス電圧が異なる請求項(10)に
記載の情報処理方法。
(13) The information processing according to claim (10), wherein the bias voltage applied between the second probe electrode and the electrode substrate is different from the bias voltage applied between the third probe electrode and the electrode substrate. Method.
(14)第3のプローブ電極と電極基板との間に印加さ
れるバイアス電圧が、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧より小さい請求項(10
)に記載の情報処理方法。
(14) Claim (10) wherein the bias voltage applied between the third probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate.
) Information processing method described in .
(15)第1のプローブ電極が第3のプローブ電極を兼
ねている請求項(8)に記載の情報処理方法。
(15) The information processing method according to claim (8), wherein the first probe electrode also serves as a third probe electrode.
(16)情報の記録及び消去を、第2のプローブ電極と
電極基板との間にパルス電圧を印加することにより行う
請求項(8)に記載の情報処理方法。
(16) The information processing method according to claim (8), wherein information is recorded and erased by applying a pulse voltage between the second probe electrode and the electrode substrate.
(17)パルス電圧が、記録層の導電率を変化させる閾
値電圧を越えた電圧である請求項(16)に記載の情報
処理方法。
(17) The information processing method according to (16), wherein the pulse voltage is a voltage exceeding a threshold voltage that changes the conductivity of the recording layer.
(18)面内に規則的な周期構造を有する電極基板上に
記録層を設けた記録媒体と該記録媒体に対向した位置に
配置された複数のプローブ電極を有し、そのうち少なく
とも1つのプローブ電極(第1のプローブ電極)を用い
て前記記録層を介して電極基板の周期構造上の位置を検
出する手段、及びかかる検出された位置に対応する記録
層上の任意の設定位置に少なくとも1つのプローブ電極
(第2のプローブ電極)を用いて記録層へ情報の記録を
行うか、記録された情報の再生を行うかもしくは記録さ
れた情報の消去を行う手段を備えたことを特徴とする情
報処理装置。
(18) A recording medium in which a recording layer is provided on an electrode substrate having a regular periodic structure in a plane, and a plurality of probe electrodes arranged at positions facing the recording medium, of which at least one probe electrode is provided. means for detecting a position on the periodic structure of the electrode substrate via the recording layer using a first probe electrode; Information characterized by comprising means for recording information on a recording layer using a probe electrode (second probe electrode), reproducing recorded information, or erasing recorded information. Processing equipment.
(19)前記電極基板の周期構造が原子配列に基づいた
構造である請求項(18)に記載の情報処理装置。
(19) The information processing device according to claim (18), wherein the periodic structure of the electrode substrate is a structure based on an atomic arrangement.
(20)第1のプローブ電極と電極基板との間及び第2
のプローブ電極と電極基板との間にバイアス電圧が印加
される請求項(18)に記載の情報処理装置。
(20) Between the first probe electrode and the electrode substrate and the second
19. The information processing device according to claim 18, wherein a bias voltage is applied between the probe electrode and the electrode substrate.
(21)第1のプローブ電極と電極基板との間に印加さ
れるバイアス電圧と、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧が異なる請求項(20)
に記載の情報処理装置。
(21) Claim (20) wherein the bias voltage applied between the first probe electrode and the electrode substrate is different from the bias voltage applied between the second probe electrode and the electrode substrate.
The information processing device described in .
(22)第1のプローブ電極と電極基板との間に印加さ
れるバアイス電圧が、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧より小さい請求項(20
)に記載の情報処理装置。
(22) Claim (20) wherein the bias voltage applied between the first probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate.
).
(23)第2のプローブ電極と電極基板との間にパルス
電圧を印加するための手段を有する請求項(18)に記
載の情報処理装置。
(23) The information processing device according to claim (18), further comprising means for applying a pulse voltage between the second probe electrode and the electrode substrate.
(24)面内に規則的な周期構造を有する電極基板上に
記録層を設けた記録媒体と該記録媒体に対向した位置に
配置された複数のプローブ電極を有し、そのうち少なく
とも1つのプローブ電極(第1のプローブ電極)を用い
て前記記録層を介して電極基板の周期構造上の位置を検
出する手段、かかる検出された位置に対応する記録層上
の任意の設定位置に少なくとも1つのプローブ電極(第
2のプローブ電極)を用いて記録層へ情報の記録を行う
か、記録された情報の再生を行うか、もしくは記録され
た情報の消去を行う手段、少なくとも1つのプローブ電
極(第3のプローブ電極)を用いてプローブ電極と記録
媒体との距離の変動量を検出する手段及び係る変動量に
基づいて第2のプローブ電極と記録媒体表面との間の距
離を調整する手段を備えたことを特徴とする情報処理装
置。
(24) A recording medium having a recording layer provided on an electrode substrate having a regular periodic structure in a plane, and a plurality of probe electrodes arranged at positions facing the recording medium, of which at least one probe electrode is provided. (a first probe electrode) to detect a position on the periodic structure of the electrode substrate via the recording layer; at least one probe at an arbitrary set position on the recording layer corresponding to the detected position; means for recording information on the recording layer using an electrode (second probe electrode), reproducing recorded information, or erasing recorded information; a means for detecting the amount of variation in the distance between the probe electrode and the recording medium using the second probe electrode) and a means for adjusting the distance between the second probe electrode and the surface of the recording medium based on the amount of variation. An information processing device characterized by:
(25)前記電極基板の周期構造が原子配列に基づいた
構造である請求項(24)に記載の情報処理装置。
(25) The information processing device according to claim (24), wherein the periodic structure of the electrode substrate is a structure based on an atomic arrangement.
(26)第1のプローブ電極と電極基板との間、第2の
プローブ電極と電極基板との間及び第3のプローブ電極
と電極基板との間にバイアス電圧が印加される請求項(
24)に記載の情報処理装置。
(26) A bias voltage is applied between the first probe electrode and the electrode substrate, between the second probe electrode and the electrode substrate, and between the third probe electrode and the electrode substrate (
24).
(27)第1のプローブ電極と電極基板との間に印加さ
れるバイアス電圧と第2のプローブ電極と電極基板との
間に印加されるバイアス電圧が異なる請求項(26)に
記載の情報処理装置。
(27) The information processing according to claim (26), wherein the bias voltage applied between the first probe electrode and the electrode substrate is different from the bias voltage applied between the second probe electrode and the electrode substrate. Device.
(28)第1のプローブ電極と電極基板との間に印加さ
れるバアイス電圧が、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧より小さい請求項(26
)に記載の情報処理装置。
(28) Claim (26) wherein the bias voltage applied between the first probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate.
).
(29)第2のプローブ電極と電極基板との間に印加さ
れるバイアス電圧と、第3のプローブ電極と電極基板と
の間に印加されるバイアス電圧が異なる請求項(26)
に記載の情報処理装置。
(29) Claim (26) wherein the bias voltage applied between the second probe electrode and the electrode substrate is different from the bias voltage applied between the third probe electrode and the electrode substrate.
The information processing device described in .
(30)第3のプローブ電極と電極基板との間に印加さ
れるバイアス電圧が、第2のプローブ電極と電極基板と
の間に印加されるバイアス電圧より小さい請求項(26
)に記載の情報処理装置。
(30) Claim (26) wherein the bias voltage applied between the third probe electrode and the electrode substrate is smaller than the bias voltage applied between the second probe electrode and the electrode substrate.
).
(31)第1のプローブ電極が第3のプローブ電極を兼
ねている請求項(24)に記載の情報処理装置。
(31) The information processing device according to claim (24), wherein the first probe electrode also serves as a third probe electrode.
(32)第2のプローブ電極と電極基板との間にパルス
電圧を印加するための手段を有する請求項(24)に記
載の情報処理装置。
(32) The information processing device according to claim (24), further comprising means for applying a pulse voltage between the second probe electrode and the electrode substrate.
JP2206606A 1989-09-07 1990-08-03 Information processing method and information processing apparatus Expired - Fee Related JP2862352B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2206606A JP2862352B2 (en) 1990-08-03 1990-08-03 Information processing method and information processing apparatus
DE69024571T DE69024571T2 (en) 1989-09-07 1990-09-06 Information processing method and device
EP90309760A EP0416920B1 (en) 1989-09-07 1990-09-06 Information processing method and information processing device
US07/579,041 US5182724A (en) 1989-09-07 1990-09-07 Information processing method and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206606A JP2862352B2 (en) 1990-08-03 1990-08-03 Information processing method and information processing apparatus

Publications (2)

Publication Number Publication Date
JPH0490151A true JPH0490151A (en) 1992-03-24
JP2862352B2 JP2862352B2 (en) 1999-03-03

Family

ID=16526174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206606A Expired - Fee Related JP2862352B2 (en) 1989-09-07 1990-08-03 Information processing method and information processing apparatus

Country Status (1)

Country Link
JP (1) JP2862352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020226A1 (en) * 2003-08-20 2005-03-03 Pioneer Corporation Data recording and reproducing device, data recording and reproducing method, and recording medium
US7403468B2 (en) 2003-09-03 2008-07-22 Pioneer Corp. Recording medium having position recognition structure, and position recognition apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261554A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Information memory device
JPS6453363A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPS6453364A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPH0250332A (en) * 1988-08-12 1990-02-20 Canon Inc Recording nad reproducing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556520B2 (en) 1987-07-31 1996-11-20 キヤノン株式会社 Recording device and recording method
JP2603241B2 (en) 1987-03-11 1997-04-23 キヤノン株式会社 Recording device and playback device
JP2556491B2 (en) 1986-12-24 1996-11-20 キヤノン株式会社 Recording device and recording method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261554A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Information memory device
JPS6453363A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPS6453364A (en) * 1987-08-25 1989-03-01 Canon Kk Recording and reproducing device
JPH0250332A (en) * 1988-08-12 1990-02-20 Canon Inc Recording nad reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020226A1 (en) * 2003-08-20 2005-03-03 Pioneer Corporation Data recording and reproducing device, data recording and reproducing method, and recording medium
US7502304B2 (en) 2003-08-20 2009-03-10 Pioneer Corporation Data recording and reproducing device, data recording and reproducing method, and recording medium
US7403468B2 (en) 2003-09-03 2008-07-22 Pioneer Corp. Recording medium having position recognition structure, and position recognition apparatus and method

Also Published As

Publication number Publication date
JP2862352B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US5182724A (en) Information processing method and information processing device
US5623476A (en) Recording device and reproduction device
US5396483A (en) Recording medium having a track and electrode layer provided and recording and reproducing device and system using same
CA2071726C (en) Recording medium, information-processing apparatus using same, and information-erasing method
JPS63161552A (en) Method and device for recording
US5206665A (en) Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
JPH01245445A (en) Recording and detecting device
EP0553937B1 (en) Recording device and reproducing device
JP2603270B2 (en) Recording device and playback device
JPH0490151A (en) Information processing method and information processor
JP2556520B2 (en) Recording device and recording method
JPS63204531A (en) Reproducing device
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
CA2024725C (en) Information processing method and information processing device
JP2926522B2 (en) Recording medium, method of manufacturing the same, and information processing apparatus
JP3220914B2 (en) Recording medium manufacturing method
JP2866164B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JP2782275B2 (en) Method of manufacturing electrode substrate and recording medium
JPH0528549A (en) Recording medium and information processor
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JPH0291836A (en) Device and method for recording and reproducing
JPH07153125A (en) Recording and reproducing device
JPH0512726A (en) Recording medium and information processor performing recording, reproduction, and erasure by using the same
JPH05110011A (en) Manufacture of electrode substrate
JPH03295043A (en) Recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees