JPS6321286A - Epitaxy for compound semiconductor on substrates of different kinds - Google Patents

Epitaxy for compound semiconductor on substrates of different kinds

Info

Publication number
JPS6321286A
JPS6321286A JP16732186A JP16732186A JPS6321286A JP S6321286 A JPS6321286 A JP S6321286A JP 16732186 A JP16732186 A JP 16732186A JP 16732186 A JP16732186 A JP 16732186A JP S6321286 A JPS6321286 A JP S6321286A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
semiconductor
compd
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16732186A
Other languages
Japanese (ja)
Other versions
JPH0633224B2 (en
Inventor
Harunori Sakaguchi
春典 坂口
Shoji Kuma
隈 章二
Kazuhiro Kurata
倉田 一宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16732186A priority Critical patent/JPH0633224B2/en
Publication of JPS6321286A publication Critical patent/JPS6321286A/en
Publication of JPH0633224B2 publication Critical patent/JPH0633224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To mass-produce high-performance elements consisting of the title semiconductor crystal capable of preventing the warpage of a substrate at a low cost by growing a compd. semiconductor thin film on the buffer layers formed by growing a compd. semiconductor thin film on both faces of a specified single crystal substrate while removing a part of the layer. CONSTITUTION:A compd. semiconductor (e.g., amorphous GaAs) thin film is grown in the same thickness on both faces of the single crystal substrate consisting of Si or alpha-Al2O3, etc., to form buffer layers. The material is then set in a liq. phase epitaxial growth furnace, and the above-mentioned compd. semiconductor is successively grown on at least the one buffer layer while removing a part of the buffer layer by meltback. The material is worked, for example, and a light emitting diode having an excellent light emitting characteristic, etc., is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はSt或はα−Aj7203等の異種単結晶基板
の上にGaAs等の化合物半導体をエピタキシャル成長
させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for epitaxially growing a compound semiconductor such as GaAs on a heterogeneous single crystal substrate such as St or α-Aj7203.

[従来の技術] GaAs等の化合物半導体デバイスは、イオン打ち込み
法を用いて作成されるFET、IC等を除き、液相成長
(L P E)法、気相成長(VPE)法、分子線エピ
タキシャル(MBE)法または有機金属化学気相成長(
MOCVD)法等のエピタキシャル成長法を用いて作成
されることが多い。
[Prior Art] Compound semiconductor devices such as GaAs are manufactured using liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), and molecular beam epitaxy, except for FETs, ICs, etc. that are manufactured using ion implantation. (MBE) method or metalorganic chemical vapor deposition (
It is often created using an epitaxial growth method such as the MOCVD method.

一般に、基板と成長層は、例えばGaAs/GaAs5
GaAs/GaAρAs或はINP/INPのように同
種の結晶が用いられる。これらの基板は、現在の半導体
産業の主流素材であるSL基板あるいはα−Al2O3
に比べ、高価である、重い更に大面積化が難しい等の欠
点を有する。
Generally, the substrate and growth layer are, for example, GaAs/GaAs5
Similar crystals such as GaAs/GaAρAs or INP/INP are used. These substrates are SL substrates or α-Al2O3, which are the mainstream materials in the current semiconductor industry.
It has drawbacks such as being expensive, heavy, and difficult to increase in area.

従って、Si等の異種基板上にGaAs等の化合物半導
体をエピタキシャル成長できれば、光集積回路、宇宙衛
星搭載用ソーラーセル或いはパワーFET等の実現、高
性能化及び低価格化に道が開ける。この技術はMBE法
やMOCVD等の非平衡系のエピタキシャル成長法によ
り可能となりつつあるが、LPE法等の平衡系成長法で
は原理的に不可能である。
Therefore, if a compound semiconductor such as GaAs can be epitaxially grown on a heterogeneous substrate such as Si, it will open the way to the realization of optical integrated circuits, solar cells for use in space satellites, power FETs, etc., with higher performance and lower cost. This technique is becoming possible with non-equilibrium epitaxial growth methods such as MBE and MOCVD, but is not possible in principle with equilibrium growth methods such as LPE.

しかし、MBE法、MOCVD法等の非平衡系成長法に
より化合物半導体の最大の特色である光デバイスを作成
することについては、信頼性などの点で問題があり、現
在は量産性に優れたLPE法が光デバイス作成の主流技
術となっている。
However, there are problems in terms of reliability when creating optical devices, which is the most distinctive feature of compound semiconductors, using non-equilibrium growth methods such as MBE and MOCVD. has become the mainstream technology for creating optical devices.

従って、MBE法、MOCVD法等の成長技術によるS
i基板上への化合物半導体の成長とその成長層上へのL
PE法による良質結晶成長を組合わせれば、耐放射線性
に優れた大面積ソーラーセルや光集積回路等の作成が実
現可能となる。
Therefore, S
Growth of compound semiconductor on i-substrate and L on the growth layer
By combining high-quality crystal growth using the PE method, it becomes possible to create large-area solar cells, optical integrated circuits, etc. with excellent radiation resistance.

[発明が解決しようとする問題点] しかし、LPE成長させる場合、基板は平坦でなければ
ならないが、Si基板に化合物半導体をMBE法、MO
CVD法により成長させた基板は、Stと化合物半導体
の熱膨張率が異なるため、大きなそりを生じてしまい、
実際にはLPE成長ができない状態にあった。
[Problems to be solved by the invention] However, in the case of LPE growth, the substrate must be flat, but when compound semiconductors are grown on a Si substrate by MBE or MO
The substrate grown by the CVD method has a large warpage due to the difference in thermal expansion coefficient between St and the compound semiconductor.
In reality, LPE growth was not possible.

[発明の目的] 本発明は上記した従来技術の問題点に鑑み、St等の異
種基板上に化合物半導体をMBE成長あるいはMOCV
D成長させても基板にそりを生ずることなく、LPE成
長させることができるエピタキシャル成長方法を提供す
ることを目的とする。
[Object of the Invention] In view of the problems of the prior art described above, the present invention has been developed by growing a compound semiconductor by MBE growth or MOCVD on a heterogeneous substrate such as St.
It is an object of the present invention to provide an epitaxial growth method that allows LPE growth without causing warpage in the substrate even during D growth.

[発明の概要] 本発明は、Si或はα−Ag203等の単結晶基板の両
面に同じ厚さの化合物半導体薄膜を成長させてバッファ
層を形成し、少くとも一方のバッファ層の上にバッファ
層の表面の一部をメルトバックにより除去しながら化合
物半導体薄膜をLPE成長させることを要旨とする。
[Summary of the Invention] The present invention involves growing compound semiconductor thin films of the same thickness on both sides of a single crystal substrate such as Si or α-Ag203 to form a buffer layer, and forming a buffer layer on at least one of the buffer layers. The gist of this method is to grow a compound semiconductor thin film by LPE while removing a portion of the surface of the layer by meltback.

[作 用] すなわち、Si或はα−A I 20 a等の単結晶基
板の両面に同じ厚さの化合物半導体薄膜をMBE法或は
MOCVD法により成長させてバッファ層を形成するこ
とにより、Si等の基板と化合物半導体との熱膨張率が
異なっていても、基板の両面に同じ厚さのバッファ層が
あるため基板にそりが生ずることがなくなり、従ってバ
ッファ層の上にLPE成長させることが可能になる。
[Function] That is, by growing a compound semiconductor thin film of the same thickness on both sides of a single crystal substrate such as Si or α-A I 20a by MBE method or MOCVD method to form a buffer layer, Si Even if the thermal expansion coefficients of the substrate and the compound semiconductor are different, since there is a buffer layer of the same thickness on both sides of the substrate, the substrate will not warp, and therefore LPE growth can be performed on the buffer layer. It becomes possible.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

両面をミラー研磨したキャリア濃度5X1018cII
l−3のSi単結晶基板を900℃で5分程度アニール
し、450℃においてSi基板の両面にアモルファスG
aAs層を100 程度MOCVD成長させ、このアモ
ルファスGaAs層をアニールした後、更に基板の両面
にMOCVD法によりバッファ層となるn”GaAs層
を2μm成長させる。このようにSi基板の両面に同じ
厚さのGaAs層を形成することにより、基板のそりを
防止することができる。
Carrier concentration 5X1018cII with mirror polishing on both sides
1-3 Si single crystal substrate was annealed at 900℃ for about 5 minutes, and amorphous G was formed on both sides of the Si substrate at 450℃.
After MOCVD growing an aAs layer of about 100 μm and annealing this amorphous GaAs layer, 2 μm of n” GaAs layers to serve as buffer layers are grown on both sides of the substrate by MOCVD. In this way, the same thickness is grown on both sides of the Si substrate. By forming the GaAs layer, warpage of the substrate can be prevented.

このSi基板をLPE炉にセットし、 n” GaAsバッファ層をメルトバックにより1μm
エツチングし、その上にn  GaAsを10μm、n
Ga   Aρ  Asを10 μm sO,70,3 p G a   A、77   A sを10μmそし
て0.7    0.3 p”GaAsを1μmずつ順次LPE成長させる。
This Si substrate was set in an LPE furnace, and an n” GaAs buffer layer was melted back to a thickness of 1 μm.
Etch and layer n GaAs on top with a thickness of 10 μm.
Ga Aρ As is grown by LPE to 10 μm sO, 70.3 p Ga A, 77 As is grown to 10 μm, and 0.7 0.3 p”GaAs is grown by 1 μm by LPE.

これを加工し、発光ダイオードを作成したところ、良好
な発光特性が得られた。
When this was processed to create a light emitting diode, good light emitting characteristics were obtained.

なお、α−A 、920 a基板を用いて基板両面にG
aAsバッファ層をMOCVD成長させ、片面にGaA
s或いはInP等をLPE成長させた後加工してGaA
sICを形成することができる。
In addition, using α-A, 920a substrate, G was applied on both sides of the substrate.
MOCVD growth of aAs buffer layer with GaA on one side.
After LPE growth of S or InP, etc., it is processed to form GaA.
sIC can be formed.

又、本実施例ではバッファ層を形成させる方法としてM
OCVD法について説明したが、MBE法であっても何
等差し支えない。
In addition, in this example, M is used as a method for forming the buffer layer.
Although the OCVD method has been explained, the MBE method may also be used.

[発明の効果] 以上に説明したように、本発明によれば、SL或はα−
Al1203等の単結晶基板の両面に同じ厚さの化合物
半導体薄膜をMOCVD成長或はMBE成長させてバッ
ファ層を形成し、少くとも一方の該バッファ層の上に該
バッファ層の表面の一部をメルトバックにより除去しな
がら化合物半導体薄膜を LPE成長させたことにより、基板にそりを生ずること
がなく、量産性に優れたLPE成長により高性能な素子
を低価格で量産できる、という顕著な効果を奏する。
[Effect of the invention] As explained above, according to the present invention, SL or α-
Buffer layers are formed by MOCVD or MBE growth of compound semiconductor thin films of the same thickness on both sides of a single crystal substrate such as Al1203, and a part of the surface of the buffer layer is formed on at least one of the buffer layers. By growing the compound semiconductor thin film by LPE while removing it by meltback, there is no warpage on the substrate, and LPE growth, which has excellent mass productivity, has the remarkable effect that high-performance devices can be mass-produced at low cost. play.

Claims (1)

【特許請求の範囲】[Claims] (1)Si或はα−Al_2O_3等の単結晶基板の両
面に同じ厚さの化合物半導体薄膜を成長させてバッファ
層を形成し、少くとも一方の該バッファ層の上に該バッ
ファ層の表面の一部をメルトバックにより除去しながら
化合物半導体薄膜を液相エピタキシャル成長させること
を特徴とする異種基板上の化合物半導体エピタキシャル
成長方法。
(1) A buffer layer is formed by growing compound semiconductor thin films of the same thickness on both sides of a single crystal substrate such as Si or α-Al_2O_3, and the surface of the buffer layer is formed on at least one of the buffer layers. A compound semiconductor epitaxial growth method on a heterogeneous substrate, characterized by growing a compound semiconductor thin film by liquid phase epitaxial growth while removing a portion by meltback.
JP16732186A 1986-07-16 1986-07-16 Method for epitaxial growth of compound semiconductor on heterogeneous substrate Expired - Fee Related JPH0633224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16732186A JPH0633224B2 (en) 1986-07-16 1986-07-16 Method for epitaxial growth of compound semiconductor on heterogeneous substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16732186A JPH0633224B2 (en) 1986-07-16 1986-07-16 Method for epitaxial growth of compound semiconductor on heterogeneous substrate

Publications (2)

Publication Number Publication Date
JPS6321286A true JPS6321286A (en) 1988-01-28
JPH0633224B2 JPH0633224B2 (en) 1994-05-02

Family

ID=15847580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16732186A Expired - Fee Related JPH0633224B2 (en) 1986-07-16 1986-07-16 Method for epitaxial growth of compound semiconductor on heterogeneous substrate

Country Status (1)

Country Link
JP (1) JPH0633224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907116A (en) * 2022-05-10 2022-08-16 武汉理工大学 Preparation method of strontium titanate film with adjustable heat conductivity coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907116A (en) * 2022-05-10 2022-08-16 武汉理工大学 Preparation method of strontium titanate film with adjustable heat conductivity coefficient

Also Published As

Publication number Publication date
JPH0633224B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
CA1299068C (en) Semiconductor deposition method and device
US4872046A (en) Heterojunction semiconductor device with <001> tilt
US3802967A (en) Iii-v compound on insulating substrate and its preparation and use
JPH0794420A (en) Manufacture of compound semiconductor crystal substrate
JPS63169717A (en) Semiconductor device
KR20010090165A (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
CA1265980A (en) Gallium arsenide crystal grown on silicon substrate and method of growing such crystal
KR930009805B1 (en) Semiconcuctor device with buffer structure for eliminating defect from growing semiconductor layer
US4314873A (en) Method for depositing heteroepitaxially InP on GaAs semi-insulating substrates
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
JPS6321286A (en) Epitaxy for compound semiconductor on substrates of different kinds
JP2002053398A (en) Crystal substrate
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JPS6066811A (en) Manufacture of compound semiconductor device
JPS6398120A (en) Crystal growth method
US20030073272A1 (en) Hetero-integration of dissimilar semiconductor materials
JPS63184320A (en) Semiconductor device
JPS61145823A (en) Molecular beam epitaxial growth method
JPH05144727A (en) Manufacture of heteroepitaxial wafer
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPS61101496A (en) Crystal growth process
JPH01179797A (en) Method for growing semiconductor crystal
JPS59171115A (en) Manufacture of substrate for semiconductor device
JPH03197393A (en) Epitaxial growth of iii-v compound semiconductor on silicon substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees