JPS63211678A - Manufacture of insulated-gate field-effect transistor - Google Patents

Manufacture of insulated-gate field-effect transistor

Info

Publication number
JPS63211678A
JPS63211678A JP4343487A JP4343487A JPS63211678A JP S63211678 A JPS63211678 A JP S63211678A JP 4343487 A JP4343487 A JP 4343487A JP 4343487 A JP4343487 A JP 4343487A JP S63211678 A JPS63211678 A JP S63211678A
Authority
JP
Japan
Prior art keywords
gate
region
insulating film
source
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343487A
Other languages
Japanese (ja)
Inventor
Atsuo Yagi
八木 厚夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4343487A priority Critical patent/JPS63211678A/en
Publication of JPS63211678A publication Critical patent/JPS63211678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of a parasitic capacity which is caused by the parts of the source and drain which creep under the thin gate insulating film by forming a channel forming region in self alignment with the section in which a gate is to be formed, or the section on which the thin part of the insulating layer is deposited. CONSTITUTION:On a preformed low impurity concentration region 12, an insulating layer 13 is formed which has a thin part 13A in a part in which a channel is to be finally formed, or a position in which a gate section is to be formed, and the remaining of which is made to be 13B, and with this as a mask an impurity doping is performed. Accordingly, a region in which the channel is to be formed is formed in alignment with the position where the thin part 13A is to be formed, or the position where a gate insulating film 16 is to be formed, and the respective opposed edges 17S, 17d of a source region 18S and a drain region 18d are constructed by the low impurity concentration region 12. With this, these regions are prevented from being opposed through the thin gate insulating film 16 to a gate electrode 15, so that the generation of a parasitic capacity is drastically reduced between the source and drain add the gate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単体半導体素子あるいは半導体集積回路等に
おける絶縁ゲート型電界効果トランジスタ(MIS−F
ET)の製法に関わる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to insulated gate field effect transistors (MIS-F) in single semiconductor devices or semiconductor integrated circuits.
Related to the manufacturing method of ET).

〔発明の概要〕[Summary of the invention]

本発明は半導体基板表面に第1導電型の低不純物濃度領
域を形成し、これの上に肉薄部を有し他部が肉厚とされ
た絶縁層を形成し、この絶縁層をマスクとしてその肉薄
部を通じて不純物ドープを行って第1導電型の低不純物
濃度領域の導電型を打ち消して、第2導電型に変するこ
とによって第2導電型のチャンネル形成領域を自己整合
によって形成し、絶縁層の肉薄部をゲート絶縁膜としで
あるいはこの肉薄部を排除して新たに形成したゲート絶
縁膜上にゲート電極を形成するようにしてゲート−ソー
ス間及びゲート−ドレイン間の寄生容量を滅じ、さらに
ドレイン側端縁の電界集中部すなわちホットキャリア発
生源がゲート絶縁膜直下に生ずるを回避し、このホット
キャリアのゲート絶縁膜への入り込みによる特性の不安
定性の招来を回避する。
The present invention forms a low impurity concentration region of the first conductivity type on the surface of a semiconductor substrate, forms an insulating layer having a thin part and a thick part on the top of the region, and uses this insulating layer as a mask to form a low impurity concentration region. By doping impurities through the thin portion to cancel the conductivity type of the first conductivity type low impurity concentration region and changing it to the second conductivity type, a channel formation region of the second conductivity type is formed by self-alignment, and the insulating layer The parasitic capacitance between the gate and the source and between the gate and the drain is eliminated by using the thin part of the gate as a gate insulating film or by eliminating this thin part and forming a gate electrode on the newly formed gate insulating film, Furthermore, it is possible to avoid the generation of an electric field concentration area at the edge of the drain side, that is, a hot carrier generation source directly under the gate insulating film, and to avoid instability of characteristics due to hot carriers entering the gate insulating film.

〔従来の技術〕[Conventional technology]

単体半導体素子あるいは半導体集積回路等におけるMi
s−FETを得る方法として、例えば第2図に示すよう
にシリコン等の半導体基板(11上に熱酸化等による所
要の薄いSiO□ゲート絶縁膜(2)を介して低比抵抗
シリコン多結晶層等のゲート電極(3)を形成し、これ
をマスクとして基板(1)に不純物ドーピング例えば不
純物のイオン注入を行って不純物の活性化処理のアニー
ルを施してソース及びドレイン各領域(4)及び(5)
をゲート部に対して自己整合して形成する方法がとられ
る。この場合ソース及びドレイン各領域(4)及び(5
)とゲート部すなわちゲート電極(3)の配置部とは上
述したように自己整合(セルファライン)されるという
ものの、両頭域(4)及び(5)の不純物の拡散がゲー
ト電極(3)下にそれぞれ幅Ls及びLdをもって入り
込むことによってソース及びドレイン各領域(4)及び
(5)が薄いゲート絶縁膜(2)を介してゲート電極(
3)と対向することになって、ここにおいてそれぞれ寄
生容量すなわちゲート及びソース間容量、ゲート及びド
レイン間容量を発生させるという問題点がある。
Mi in single semiconductor devices or semiconductor integrated circuits, etc.
As a method of obtaining an s-FET, for example, as shown in FIG. A gate electrode (3) is formed, and using this as a mask, the substrate (1) is doped with an impurity, such as by implanting impurity ions, and annealing is performed to activate the impurity, thereby forming the source and drain regions (4) and ( 5)
A method is used in which the gate electrode is formed by self-aligning with the gate portion. In this case, the source and drain regions (4) and (5)
) and the gate part, that is, the arrangement part of the gate electrode (3), are self-aligned (self-aligned) as described above, but the diffusion of impurities in the double-headed regions (4) and (5) is caused by the diffusion of impurities under the gate electrode (3). By entering the source and drain regions (4) and (5) with widths Ls and Ld, respectively, through the thin gate insulating film (2), the gate electrode (
3), there is a problem in that parasitic capacitances, that is, capacitance between the gate and the source and capacitance between the gate and the drain are generated.

また、ゲート電極(3)下のソース及びドレイン各領域
(4)及び(5)間のチャンネル形成領域(6)におい
て特に旧5−FETのチャンネルの短チャンネル化がは
かられると、ドレイン領域(5)端部での強い電界強度
部分がホットキャリア発生源となって、これがSiO□
ゲート絶縁膜にトラツブされてFET動作の不安定性を
招来するという問題点がある。
In addition, if the channel of the old 5-FET is made particularly short in the channel forming region (6) between the source and drain regions (4) and (5) under the gate electrode (3), the drain region ( 5) The strong electric field strength area at the edge becomes a hot carrier generation source, which causes SiO□
There is a problem that the gate insulating film is troubled, leading to instability in FET operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述した諸問題すなわちゲート電極と薄い絶縁
膜を介してソース及びドレイン各領域が重なり合うこと
による寄生容量の発生の問題、またホットキャリアの影
響に基づく特性の不安定化等の問題を確実に解決しよう
とするものである。
The present invention eliminates the above-mentioned problems, such as the generation of parasitic capacitance due to the overlapping of the source and drain regions via the gate electrode and thin insulating film, and the instability of characteristics due to the influence of hot carriers. This is what we are trying to solve.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、ゲート部に対してチャンネル形成領
域を自己整合させる方法をとる。
In the present invention, a method is adopted in which the channel forming region is self-aligned with the gate portion.

すなわち、本発明においては、第1図Aに示すように半
導体基板(11)の表面に第1導電型の低不純物濃度領
域(12)を形成する工程と、半導体基板(11)の表
面に低不純物濃度領域(12)の一部の、例えば中央部
の最終的にチャンネル形成領域を構成する部分に肉薄部
(13A)を有し、他部が肉厚部(13B)とされた絶
縁層(13)を形成する工程と、第1図Bに示すように
この絶縁層(13)をマスクとしてその肉薄部(13^
)を通じて第2導電型の不純物ドープを行って、低不純
物濃度領域(12)の一部を第2導電型のチャンネル形
成領域(14)に変する工程とを経る。そして絶縁N 
(13)上の肉薄部(13^)自体をゲート絶縁膜(1
6)として、あるいは例えば画部分(13A)及び(1
3B)の厚さの差を利用した全面的エツチングによって
肉薄部(13A)を一旦エッチング除去し、ここに再び
熱酸化等によってゲート絶縁膜(16)を形成し、これ
の上にゲート電極となる例えば金属ゲート電極(15)
を被着する。
That is, in the present invention, as shown in FIG. The insulating layer ( 13), and as shown in FIG. 1B, the thin part (13^) is
) to convert a part of the low impurity concentration region (12) into a channel forming region (14) of the second conductivity type. and insulation N
(13) The upper thin part (13^) itself is covered with the gate insulating film (1
6) or, for example, the image part (13A) and (1
The thin part (13A) is once removed by etching the entire surface using the difference in thickness of 3B), and a gate insulating film (16) is formed thereon again by thermal oxidation, etc., and becomes a gate electrode on this. For example, metal gate electrode (15)
be coated with.

〔作 用〕[For production]

上述の本発明製法によって得たMIS−F[!Tによれ
ば、予め形成された低不純物濃度領域(12)上の最終
的にチャンネルを形成する部分すなわちゲート部の形成
位置に肉薄部(13A)を有し他部が肉厚部(13B)
とされた絶縁層(13)を形成し、これをマスクとして
不純物ドープを行うものであるので、肉薄部(13A)
の形成位置すなわちゲート絶縁膜(16)の形成位置に
整合してチャンネル形成領域(14)が形成されるので
、ソース領域及びドレイン領域の各対向端縁は、低不純
物濃度領域(12)によって構成されることになり、こ
れら領域は肉薄のゲート絶縁膜(16)を介してゲート
電極(15)に対向することが回避されるので、これら
ソース及びドレインとゲートとの間の寄生容量の発生が
激減する。
MIS-F[!] obtained by the above-described production method of the present invention. According to T, there is a thin part (13A) at the part where the channel will finally be formed, that is, the gate part, on the pre-formed low impurity concentration region (12), and the other part is the thick part (13B).
An insulating layer (13) is formed, and impurity doping is performed using this as a mask.
Since the channel formation region (14) is formed in alignment with the formation position of the gate insulating film (16), each opposing edge of the source region and the drain region is formed by the low impurity concentration region (12). Since these regions are prevented from facing the gate electrode (15) through the thin gate insulating film (16), the generation of parasitic capacitance between the source and drain and the gate is avoided. drastically decrease.

また、ソース及びドレインの各対向端縁は、低不純物濃
度領域(12)のチャンネル形成領域(I4)が形成さ
れていない両側縁部によって形成されるが、これら対向
端縁における側面は、チャンネル形成領域(14)の側
面の傾斜形状によって傾斜するものであり、特に例えば
、イオン注入のマスクとなる絶縁1 (13)の段部側
面、すなわち肉厚部(13B)の側面を基板(11)側
に向って広がる傾斜面とすることによって傾斜させるこ
とによって充分傾斜させればソース及びドレイン各領域
の各対向縁の先端縁部(17s)及び(17d)は、基
板(11)の表面より内側に入り込んだ位置とすること
ができる。これによってこの先端縁部、特にドレイン側
の先端縁部(17d)に生ずる電界集中部を半導体基板
(11)の内部に発生させることができ、ホットキャリ
アの発生源をゲート絶縁膜(16)より遠去けることが
できて、このホットキャリアがゲート絶縁膜(16)中
にトラップされることによって生ずる特性の不安定性を
回避することができる。
Further, each opposing edge of the source and drain is formed by both side edges of the low impurity concentration region (12) where the channel forming region (I4) is not formed, and the side surfaces of these opposing edges are formed by the channel forming region (I4). It is inclined due to the sloped shape of the side surface of the region (14), and in particular, for example, the stepped side surface of the insulation 1 (13), which serves as a mask for ion implantation, that is, the side surface of the thick portion (13B) is placed on the substrate (11) side. If the slope is sufficiently tilted by forming an inclined surface that spreads toward It can be in a deep position. This makes it possible to generate an electric field concentration area inside the semiconductor substrate (11) at this tip edge, especially at the drain side tip edge (17d), and the source of hot carriers is shifted from the gate insulating film (16). As a result, instability of characteristics caused by hot carriers being trapped in the gate insulating film (16) can be avoided.

〔実施例〕〔Example〕

第1凹入に示すようにn型またはp型を要するシリコン
半導体基板(II)を設け、その−主面に臨んでこの基
板(11)とは異なる導電型例えばp型もしくはn型の
低不純物濃度領域(12)を形成すると共にこれを挟ん
でその両側にソース及びドレインの各高濃度ソース領域
(18s)及び高濃度ドレイン領域(18d)を選択的
拡散等によって形成する。そして、これら各領域(12
) 、 (18s) 、 (18d)が形成された半導
体基Fi(11)の表面に熱酸化等によって所要の厚い
厚さを有する5iOz酸化膜″4tA縁層(13)を全
面的に形成する。そして、この絶縁層(13)に対して
低不純物濃度領域(12)の所定部、すなわち両頭域(
18s)及び(18d)間から所要の距離隔てた位置に
所要の幅をもって選択的エツチングを行って除去し、こ
のエツチング除去部に再び所要の薄い厚さ例えばゲート
絶縁膜を形成し得る厚さをもってSiO□の肉薄部(1
3A)を形成する。
As shown in the first recess, a silicon semiconductor substrate (II) requiring n-type or p-type is provided, and a low impurity impurity of a conductivity type different from that of this substrate (11), for example, p-type or n-type, is provided facing the main surface thereof. A doped region (12) is formed, and on both sides thereof, a highly doped source region (18s) and a heavily doped drain region (18d) for a source and a drain are formed by selective diffusion or the like. And each of these areas (12
), (18s), and (18d) are formed thereon, a 5iOz oxide film "4tA edge layer (13) having a required thickness is formed entirely by thermal oxidation or the like. Then, a predetermined portion of the low impurity concentration region (12), that is, a double-headed region (
18s) and (18d) are removed by selective etching with a required width at a position separated by a required distance, and the etched portion is again etched to a required thin thickness, such as a thickness that can form a gate insulating film. Thin part of SiO□ (1
3A) is formed.

次に第1図Bに示すように絶縁jiJ (13)をマス
クとしてその肉薄部(13A)を通じてp型もしくはn
型の不純物をイオン注入してチャンネル形成領域(14
)及び高濃度のソース領域(18s) 、高濃度のドレ
イン領域(18d)と異なる導電型のn型もしくはp型
の不純物を選択的にイオン注入して低不純物濃度領域(
12)の導電形式を打ち消してその導電型を逆のチャン
ネル形成領域(14)を選択的に形成する。
Next, as shown in FIG. 1B, using the insulator (13) as a mask, the p-type or n-type
A channel forming region (14
), a high concentration source region (18s), and a low impurity concentration region (
A channel forming region (14) having the opposite conductivity type is selectively formed by canceling the conductivity type (12).

第1図Cに示すように肉薄部(13A)をゲート絶縁膜
(16)としてこれの上に金属ゲート電極(15)を形
成すると共に絶縁Jii (13)の肉厚部(13B)
に電極窓開けを行ってそれぞれ高濃度ソース領域(18
3)及び高濃度ドレイン領域(18d)上にオーミック
にソース電極(19s)とドレイン電極(19d) と
を必要に応じて被着形成する。ゲート電極(15)は絶
縁層(13)の肉薄部(13A)上に限定的に形成する
こともできるし、肉厚部(13B)上に跨って形成する
こともできる。
As shown in FIG. 1C, the thin part (13A) is used as a gate insulating film (16), and a metal gate electrode (15) is formed thereon, and the thick part (13B) of the insulating film (13) is
Electrode windows were opened in each region to form high-concentration source regions (18
3) A source electrode (19s) and a drain electrode (19d) are ohmically deposited on the high concentration drain region (18d) as required. The gate electrode (15) can be formed exclusively on the thin part (13A) of the insulating layer (13), or can be formed over the thick part (13B).

尚上述した例では1、絶縁N(13)の肉薄部(13A
)をゲート絶縁膜(16)とした場合であるが、肉薄部
(13A)を肉厚部(13B)との厚さの差を利用して
全面エツチングによって一旦除去して此処に新にゲート
絶縁膜(16)を形成することもできる。また、絶縁層
(13)の各部(13^)及び(13B)は、Sing
等の同一材料によって構成する場合に限られるものでは
なく、互いにエツチング液を異にする材料によって構成
するとか、肉薄部(13A)が肉厚部(13B)に比し
エツチング速度の早い材料とすることによって、肉薄部
(13A)の選択的除去をより確実高精度に行うことが
できる。
In the above example, 1, the thin part (13A) of the insulation N (13)
) is used as a gate insulating film (16), the thin part (13A) is removed by etching the entire surface using the difference in thickness with the thick part (13B), and a new gate insulator is added here. A membrane (16) can also be formed. Further, each part (13^) and (13B) of the insulating layer (13) is
The etching is not limited to being made of the same material, such as, but may be made of materials that use different etching liquids, or the thinner part (13A) is made of a material that has a faster etching speed than the thicker part (13B). By doing so, selective removal of the thin portion (13A) can be performed more reliably and with high precision.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明製法によれば、チャンネル形成領
域(14)をゲート形成部、すなわち絶縁層(13)の
肉薄部(13A)の被着部に自己整合して形成するもの
であるので、ソース及びドレイン領域の薄いゲート絶縁
膜下に入り込む部分によって生ずる寄生容量の発生を回
避できると共に、上述したようにホットキャリアの発生
源を半導体基板(11)のゲート絶縁膜被着部表面より
内部に入り込んだ位置に持ち来すことができることによ
ってゲート絶縁膜中にホットキャリアがトラップされる
ことによる特性の不安定性を回避でき、特に短チャンネ
ル化に伴うドレイン領域端部の電界集中に基づくホット
キャリアの発生の問題を回避でき、実用上の利益は大で
ある。
As described above, according to the manufacturing method of the present invention, the channel forming region (14) is formed in self-alignment with the gate forming part, that is, the adhered part of the thin part (13A) of the insulating layer (13). It is possible to avoid the generation of parasitic capacitance caused by the portions of the source and drain regions that penetrate under the thin gate insulating film, and as described above, the source of hot carriers can be moved inside from the surface of the gate insulating film of the semiconductor substrate (11). By being able to bring hot carriers to the position where they have entered, it is possible to avoid instability of characteristics caused by trapping of hot carriers in the gate insulating film. The problem of generation can be avoided, and the practical benefits are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製法の一例の各工程における路線的拡大
断面図、第2図は従来製法による絶縁ゲート型電界効果
トランジスタの要部の路線的拡大断面図である。 (11)は半導体基板、(12)は低不純物濃度領域、
(13)は絶縁層、(13A)は肉薄部、(13B)は
肉厚部、(16)はゲート絶縁膜、(15)はゲート電
極である。
FIG. 1 is an enlarged linear sectional view of each step of an example of the manufacturing method of the present invention, and FIG. 2 is an enlarged linear sectional view of the main part of an insulated gate field effect transistor manufactured by a conventional manufacturing method. (11) is a semiconductor substrate, (12) is a low impurity concentration region,
(13) is an insulating layer, (13A) is a thin part, (13B) is a thick part, (16) is a gate insulating film, and (15) is a gate electrode.

Claims (1)

【特許請求の範囲】 半導体表面に第1導電型の低不純物濃度領域を形成する
工程と、 上記半導体表面に、上記低不純物濃度領域上において肉
薄部を有し他部が肉厚とされた絶縁層を形成する工程と
、 該絶縁層をマスクとしてその肉薄部を通じて第2導電型
の不純物ドープを行って上記低不純物濃度領域の一部を
第2導電型のチャンネル形成領域に変する工程と、 上記絶縁層上の上記肉薄部上にゲート電極を形成する工
程とを有することを特徴とする絶縁ゲート型電界効果ト
ランジスタの製法。
[Claims] A step of forming a low impurity concentration region of a first conductivity type on a semiconductor surface; a step of doping a second conductivity type impurity through the thin portion of the insulating layer as a mask to transform a part of the low impurity concentration region into a second conductivity type channel forming region; A method for manufacturing an insulated gate field effect transistor, comprising the step of forming a gate electrode on the thin portion on the insulating layer.
JP4343487A 1987-02-26 1987-02-26 Manufacture of insulated-gate field-effect transistor Pending JPS63211678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343487A JPS63211678A (en) 1987-02-26 1987-02-26 Manufacture of insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343487A JPS63211678A (en) 1987-02-26 1987-02-26 Manufacture of insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63211678A true JPS63211678A (en) 1988-09-02

Family

ID=12663590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343487A Pending JPS63211678A (en) 1987-02-26 1987-02-26 Manufacture of insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63211678A (en)

Similar Documents

Publication Publication Date Title
US4845046A (en) Process for producing semiconductor devices by self-alignment technology
US20030057478A1 (en) Mos-gated power semiconductor device
JP3219045B2 (en) Manufacturing method of vertical MISFET
KR970009054B1 (en) Planar structured mos transistor device and its manufacturing method
US4466008A (en) Field effect transistor
JPH0237777A (en) Vertical type field-effect transistor
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
JP2001094099A (en) Silicon carbide semiconductor device and fabrication method thereof
JPS63211678A (en) Manufacture of insulated-gate field-effect transistor
KR970004079A (en) Semiconductor device and manufacturing method
JPH0493083A (en) Semiconductor device and manufacture thereof
JP2759472B2 (en) Method of manufacturing high voltage MOS field effect transistor
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH0728043B2 (en) Semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH0523497B2 (en)
JP2796655B2 (en) Semiconductor device and manufacturing method thereof
JPS5921191B2 (en) Method for manufacturing field effect semiconductor device
JP2765142B2 (en) Method for manufacturing semiconductor device
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPH069245B2 (en) Field effect semiconductor device
JPS62159468A (en) Semiconductor device
JPH0350743A (en) Semiconductor device
JPH02309679A (en) Insulated-gate fieid-effect transistor
JP2001135645A (en) Semiconductor device and its manufacturing method