JPS63209172A - Insulated-gate self-turn-off thyristor - Google Patents

Insulated-gate self-turn-off thyristor

Info

Publication number
JPS63209172A
JPS63209172A JP4135687A JP4135687A JPS63209172A JP S63209172 A JPS63209172 A JP S63209172A JP 4135687 A JP4135687 A JP 4135687A JP 4135687 A JP4135687 A JP 4135687A JP S63209172 A JPS63209172 A JP S63209172A
Authority
JP
Japan
Prior art keywords
turn
type
layer
region
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4135687A
Other languages
Japanese (ja)
Other versions
JP2557367B2 (en
Inventor
Takashi Shinohe
孝 四戸
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62041356A priority Critical patent/JP2557367B2/en
Publication of JPS63209172A publication Critical patent/JPS63209172A/en
Application granted granted Critical
Publication of JP2557367B2 publication Critical patent/JP2557367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • H01L29/745Gate-turn-off devices with turn-off by field effect
    • H01L29/7455Gate-turn-off devices with turn-off by field effect produced by an insulated gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/749Thyristor-type devices, e.g. having four-zone regenerative action with turn-on by field effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To shorten the turn-on time by augmenting the trigger sensitivity while sustaining the high turn-off capacity by a method wherein a MIS-GTO region and a conductive modulation type MOSFET region are formed adjacently to be parallel-actuated. CONSTITUTION:Gate electrodes 8, 15 are impressed with positive voltage to turn on a conductive modulation type MOSFET. Thus, electrons are injected from n<+>-type source layer 13 in a conductive modulation type MOSFET region (a) into an n-type base layer 2 so that holes corresponding to the injected electrons may be injected from a p-type emitter layer 1 to turn off said MOSFET (a). On the other hand, within an insulated-gate type self on-off thyristor (MIS-GTO) region (b), a base current in proportion to the rising factor of gate voltage runs to a p-type base layer 3 to inject electrons from n-type emitter layer 4 while these electrons passing through a depletion layer reach the n<+>-type base layer 2 accelerating the injection of holes from the p-type emitter layer 1 to turn off the MIS-GTO. Through these procedures, the time to increase the carrier concentration in the n-type base layer 2 can be cut down to shorten the turn-on time.

Description

【発明の詳細な説明】 〔倦明の目的〕 (産業上の利用分野) 本壜明は、絶縁ゲートによりオン、オフ制御を行なう絶
縁ゲート型自己ターンオフサイリスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the invention] (Industrial application field) The present invention relates to an insulated gate self-turn-off thyristor that performs on/off control using an insulated gate.

(従来の技術) ゲートタンオフナイリスタ(以下、GTO)は通常、ゲ
ート4極に負のバイアスを印QOしてアノード4流の一
部をゲート¥!L流として外部に排出することにより、
自己ターンオフするように構成されている。しかしこの
@乍は、電流1ilIJ@fllであるため、力)なり
大きいゲート電力を必要とする。これに対し、ゲート・
カソード間を短絡するMI8トランジスタを設け、この
MI8トランジスタによりゲートttaを外部に排出す
るようにしq GTO(11,MII−GTO)は、1
111作が11E圧i11JMMであるtめ、小さいゲ
ート′晟力で自己ターンオフすることができる。このM
I 5−GTOには、MI8トランジスタをnチャネル
型とするものとp型チャネル型とするものがある。nチ
ャネルWMIS−GTOは特公昭59−47469号、
pチャネル型MIS−GTOは特公昭60−9668号
公報に開示されており公知の構造である。
(Prior art) A gate turn-off Nyristor (hereinafter referred to as GTO) usually applies a negative bias QO to the gate 4 poles and supplies part of the anode 4 flow to the gate ¥! By discharging to the outside as L flow,
Configured to self-turn off. However, since the current is 1ilIJ@fll, a large gate power is required. On the other hand, gate
An MI8 transistor is provided to short-circuit the cathodes, and this MI8 transistor discharges the gate tta to the outside.q GTO (11, MII-GTO) is 1
Since the 111 product has a 11E pressure and a 11JMM, it can self-turn off with a small gate force. This M
Some I5-GTOs have an n-channel type MI8 transistor and some have a p-type channel type MI8 transistor. The n-channel WMIS-GTO is designated by Special Publication No. 59-47469,
The p-channel type MIS-GTO is disclosed in Japanese Patent Publication No. 60-9668 and has a known structure.

第6図はpチャネル型M I S −G T Oの素子
断面図である。図において、lはp型の第1エミッタ1
−12はn賊の@1ベース唱、3はp型の第2ベース1
.4はn型の嘉2エミッタ層である。第1エミツタ41
にはアノード′tit極10が、第2エミツタ+d 4
 Vcはカソード電極11がそれぞれオーミックに取付
けられ1いる。第2エミツタl1I4と電なるように低
濃度のn型つェル啼5が形成され。
FIG. 6 is a cross-sectional view of a p-channel type MIS-GTO element. In the figure, l is the p-type first emitter 1
-12 is n bandit @1 bass singing, 3 is p type 2nd bass 1
.. 4 is an n-type Ka2 emitter layer. 1st emitter 41
The anode 'tit pole 10 is connected to the second emitter +d 4
Vc has cathode electrodes 11 ohmically attached to each other. A low concentration n-type transistor 5 is formed so as to be electrically connected to the second emitter I1I4.

その内側Vcp+ffi唱6を設け、このp 警鳴6と
第2ベース噛3に挟まれたn型ウェル1i15六面部を
チャネル領域とし、この上にゲート絶縁膜7を介してM
ISゲート電極8を形成して、ターンオフ用のpチャネ
ル型MIS)ランジスタが構成されている。9は絶縁膜
である。
A Vcp+ffi channel 6 is provided inside the Vcp+ffi channel 6, and the six-sided portion of the n-type well 1i15 sandwiched between this p alarm 6 and the second base plate 3 is used as a channel region.
An IS gate electrode 8 is formed to constitute a p-channel type MIS transistor for turn-off. 9 is an insulating film.

この素子のターンオツII!jJ作は次のように行なわ
れる。ターンオフ用pチャネル型MISトランジスタの
MISゲート電極8に負の電圧を印7JOすると、@2
ベース層3はMI8ゲーデーCLW18下のチャネル領
域を介してp+凰rF!J6と短絡し、更にp+型@6
にオーミックFeQしているカソードt M 11と短
絡される。これによりMIS−GTOはターンオフする
This element's turn-off II! jJ production is performed as follows. When a negative voltage is applied 7JO to the MIS gate electrode 8 of the turn-off p-channel MIS transistor, @2
The base layer 3 is connected via the channel region under the MI8 gate CLW18 to p+凰rF! Shorted to J6 and further p+ type @6
It is short-circuited with the cathode t M 11 which is in ohmic FeQ. This turns off the MIS-GTO.

一方、この素子のターンオン動作は次のように行なわれ
る。MI8ゲート電極8に正の電圧を印加fbと1Ml
8ゲー) 1cW&8 ト等2 ヘ−* r@ 3は絶
縁膜7を介して容量結合しているので、MI8ゲート成
極8に与えた正の電圧の立上り率に比列したベース電流
が@2ベース113に流れ、第2エミツタtm<からの
電子の注入を促し1M1s−GTOはターンオンする。
On the other hand, the turn-on operation of this element is performed as follows. Applying positive voltage to MI8 gate electrode 8fb and 1Ml
8G) 1cW & 8 etc. 2 H-*r@3 are capacitively coupled via the insulating film 7, so the base current proportional to the rise rate of the positive voltage applied to the MI8 gate polarization 8 is @2 The current flows to the base 113, prompting injection of electrons from the second emitter tm<, and turning on the 1M1s-GTO.

しかしながら、この様な、ゲート1圧の立上りによる変
位′1lCfLでターンオンする方法では、大きなベー
ス電流が得られずターンオン時間が長くなるという問題
があった。従来は。
However, this method of turning on at the displacement '11CfL due to the rise of the gate voltage 1 has the problem that a large base current cannot be obtained and the turn-on time becomes long. conventionally.

この問題を回避するために@2ベースIi3の不純物総
量を減らして第1ベース112.第2ベース13、第2
エミッタ層4からなるNPN トランジスタの電流増幅
率を大きくシトリガW&度を上げるという方法がとられ
てき九。しかし、この方法を採用すると第2ベース+1
3の抵抗が大きくなるtめビークターンオフ電流が低下
するという析tな問屋を生じてい友。
In order to avoid this problem, the total amount of impurities in @2 base Ii3 is reduced and the first base 112. 2nd base 13, 2nd
A method has been taken in which the current amplification factor of the NPN transistor consisting of the emitter layer 4 is increased to a large extent. However, if this method is adopted, the second base +1
It is a common problem that the peak turn-off current decreases as the resistance of 3 increases.

(揚明が解決しようとする問題点) 以上のように従来のMI 5−GTOは、ゲート電圧の
立上りによる変位電流だけでターンオンさせてい九ので
、十分なベース電流が得られずターンオン時間が長いと
いう間頃があった。
(Problem that Yangming is trying to solve) As mentioned above, the conventional MI 5-GTO is turned on only by the displacement current caused by the rise of the gate voltage, so a sufficient base current cannot be obtained and the turn-on time is long. There was a period of time.

本比例はこの様な問題を解決したMid−GTt)を長
浜することを目的とする。
The purpose of this proportion is to develop a Mid-GTt (Nagahama model) that solves these problems.

[宅明の構成] (問題点を解決する之めの手段) 本発明のMI8−GTOは、@1導イ型エミッタ噺、第
2導電型ベース層、第1導電型ベース層および惧2幕1
1Lmエミッタ層から収るナイリスタ構造と、@1惇′
戒型ベース1と第2導電型エミッタ層を短絡する第1導
電匿の絶縁ゲートを素子とをMするMIS−GTO領戎
と隣接して、第16fJL型エミクタ噛と第2導電型ベ
ース層は前記領域と共^とし、前記領域の第1導′lt
をベース層とは実質的に分流され友第1導嵐型ベース−
1そしてこの@1導電型ベース曖と短絡された嬉2専域
型ソースIIおよび第2導電型ベース層と嘱2募1臘ノ
ース−を短絡する第2停成蟹の絶縁ゲート41素子とを
有する惇を変調型MO8FET頂域を形成領域内領域の
第1導1!型エミツタ層に第1の主電極が。
[Takumei's configuration] (Means for solving the problem) The MI8-GTO of the present invention includes a @1 conductivity type emitter layer, a second conductivity type base layer, a first conductivity type base layer, and a second conductivity type emitter layer. 1
The Nyristor structure that fits from the 1Lm emitter layer and @1'
The 16fJL type emitter layer and the second conductivity type base layer are adjacent to the MIS-GTO area that connects the first conductivity type base 1 and the second conductivity type emitter layer to the element. The first conductor'lt of the area is the same as the area.
The base layer is essentially separated from the friend first guide storm type base-
1 and the insulated gate 41 element of the 2nd conductivity type base layer and the 2nd conductivity type base layer short-circuited with the @1 conductivity type base layer and the 2nd conductivity type base layer and the 2nd conductivity type base layer. The first conductor 1 of the region in which the top region of the modulated MO8FET is formed has a modulation type MO8FET! The first main electrode is on the mold emitter layer.

第2導を型エミツタ層および第2導電型ソース層に第2
の主電極が共通に設けられている。
The second conductivity is applied to the type emitter layer and the second conductivity type source layer.
A common main electrode is provided.

(l′F、用) 本色明の素子構造では、MIS−GTO領域とX事″、
rL変調型MO8F’ET領域とが並列に構成されてい
るので、ゲート電圧を印グロすると、第1導を型ベース
層に夜立′4流によるベース′框流が流れるだけでなく
、4底変調覆M08FgT頃頃から第2幕電型ベース層
にベース1流が供給されるのでターンオン時間が短くな
る。
(l'F, for) In the present element structure, the MIS-GTO region and the
Since the rL modulation type MO8F'ET region is configured in parallel, when the gate voltage is applied, not only the base 'wall current due to the nightstand'4 flow flows through the first conductor to the type base layer, but also the base' Since the base 1 current is supplied to the second curtain type base layer from around the modulation over M08FgT, the turn-on time becomes shorter.

(実権列) 以下1本発明の実権列を図面を参照して説明する。以下
の全ての実権列では@1導′t&型としてp席、第2導
電をとしてn盟を用いている。
(Actual power sequence) Hereinafter, one actual power sequence of the present invention will be explained with reference to the drawings. In all the following power columns, the p seat is used as the @1 conductor't& type, and the n member is used as the second conductor.

第1図は@層の実権列の素子構造の断面図である。まず
Mis−GTO領域の構造を説明する。
FIG. 1 is a sectional view of the element structure of the real column of the @ layer. First, the structure of the Mis-GTO region will be explained.

p型エミッター1に接してn型ベース12が形成され、
このnをベース12内iCpをベース−3およびnψエ
ミッタ1!4が順次拡散形成されてpn pn構造を形
成している。p型エミッタ1脅1にはアノード電極(第
層の王“亀・電)10が形成され、n型エミッタiJ 
41cはカノード屯極(第2の主電極)11が杉咲さ几
ている。nfJJエミッタlii 4と瓜なるように低
濃度のngウェルii5、その中にp+戚噛6が1頃欠
拡牧形改され、p+型[−6とp型ベース層3とで挟ま
れる領域のn型ウェル115六面をチャネル領域として
、この上にゲート絶縁膜7を介しエデート電極8を形成
してターンオフ用のpチャネルdMO8FgTが構成さ
れている。9はゲート電極8とカソード′成極1層を絶
縁する絶縁膜である。次に導を変調fiM08FgTJ
域の構造を説明する。
An n-type base 12 is formed in contact with the p-type emitter 1,
The iCp base 3 and the nψ emitters 1 to 4 are successively diffused into the n base 12 to form a pn pn structure. An anode electrode (the king of the third layer) 10 is formed on the p-type emitter 1, and the n-type emitter iJ
In 41c, the cathode electrode (second main electrode) 11 is covered with cedar. A low-concentration NG well ii5, which is similar to the nfJJ emitter lii 4, has a p+ well 6 in it, which has been reshaped around 1 and is a region sandwiched between the p+ type [-6 and the p-type base layer 3. A p-channel dMO8FgT for turn-off is constructed by using six surfaces of the n-type well 115 as a channel region, and forming an edate electrode 8 thereon via a gate insulating film 7. Reference numeral 9 denotes an insulating film that insulates the gate electrode 8 and the cathode' polarization layer. Then modulate the conductor fiM08FgTJ
Explain the structure of the area.

n型エミツタ層1とngベース12はMIS−GTO須
域と共通に形成されてBす、このn型ベース12内にp
型ベース層12およびn 型ソース@13が順次拡散形
成され、n 賊ソース@13とn型ベース@2とで挟ま
れる領域のp麿ベース@12茨面をチャネル@域として
、この上にゲート絶縁膜7を介してゲート電極15を形
成し導電変調型M08FgTが構成されている。p 型
1m14はn十蟹ソース113下のp駁ベースli低、
抗を低くしてラッチアップを防ぐために設けられている
The n-type emitter layer 1 and the ng base 12 are formed in common with the MIS-GTO area.
A type base layer 12 and an n-type source @13 are sequentially diffused and formed, and a gate is formed on the thorny surface of the p-type base @12 in the region sandwiched between the n-type source @13 and the n-type base @2 as a channel region. A conductivity modulation type M08FgT is constructed by forming a gate electrode 15 with an insulating film 7 interposed therebetween. p type 1m14 is p base li low under n ten crab source 113,
This is provided to lower resistance and prevent latch-up.

p梨116はpをベース層12と同時に拡散形成し1両
領域のp型ベース層間の間隙を正41C決めるために設
けられ工いる。以上で説明し九MI8−GTU頑域と導
電変調型MO8FF、T領域は隣接して設けられ、これ
らの頂」或が並列接続されるように、n醸エミッタ1i
lfよびn 酸ソース1113はいずれもカンードを極
11にオーミックにつながれている。なお、この実施列
では、ゲート電極8とデー)t@15は一体形成されて
いる。
The p-type base layer 116 is provided to diffuse p-type at the same time as the base layer 12 and to determine the gap between the p-type base layers in one region by 41C. As described above, the nine MI8-GTU robust regions and conductive modulation type MO8FF, T regions are provided adjacently, and the n-type emitter 1i is connected so that their tops are connected in parallel.
Both the lf and n acid sources 1113 are ohmically connected to the cand to the pole 11. In this example, the gate electrode 8 and the gate electrode 15 are integrally formed.

この素子の勧降は次の通9である。ターンオン動作は、
ゲート′4CIi8.15に正の電圧を印加することに
より行なう。これにより導電変調型MO8−FgT  
領域のn十塁ソースI@13からnをベース層2へ電子
が注入され、それに見合う正孔がn型エミツタ層1から
注入されて導電変調型MO8FETがターンオフする。
The details of this element are as follows. The turn-on operation is
This is done by applying a positive voltage to the gate '4CIi8.15. As a result, the conductivity modulation type MO8-FgT
Electrons are injected from the n ten base source I@13 in the region into the n base layer 2, and corresponding holes are injected from the n-type emitter layer 1, turning off the conductivity modulation type MO8FET.

一方、MIS−GTO領域ではゲートを圧の立上り率に
比列しtベースtaがp型ベースl113に流れ、n型
エミツタ層4から電子の注入が起こり、この成子が空乏
層を通過してn型ベースli2へ到達し、n型エミツタ
層1からの正孔の注入が促されてMIS−GTOがター
ンオフする。−役にゲート1圧の立上りによる変位!を
流は小さいので、導it&調I¥IMIJsFg’r、
iりもl[fi−G ’I’ Oの方がターンオン時間
は長くなる。従り工実際に起こる動作は、まず導′亀変
調植M08FETがターンオンしてn型ベース噛2中の
中ヤリア濃度が高まり、その侵、MI3−GTOがゲー
ト変位電流によりターンオンすることになる。その結果
On the other hand, in the MIS-GTO region, the t-base ta flows into the p-type base l113 in proportion to the rise rate of the gate pressure, electrons are injected from the n-type emitter layer 4, and these electrons pass through the depletion layer and pass through the n-type emitter layer 4. The holes reach the type base li2, prompting injection of holes from the n-type emitter layer 1, and turning off the MIS-GTO. - Displacement due to rise of gate 1 pressure! Since the flow is small, it is
The turn-on time is longer for i[fi-G 'I' O. The operation that actually occurs in the follower is that the conductor modulation implanted M08FET is first turned on, and the concentration in the n-type base transistor 2 increases, and as a result of this, the MI3-GTO is turned on by the gate displacement current. the result.

MIS−GTO領域のn型ベースII Z中のギヤリア
濃度を高めるための時間が節約できるのでターンオン時
間が短くなる。また、ターンオフ動作はゲート電極8,
15に負の電圧を印加することにより行なう。これによ
りMIS−GTOのp1ベース113とn型エミッタr
f714を短絡するpチャネル既MID)ランジスタが
導通し、MIS−GTOはターンオフする。また、導電
変調WMO8FgTはnチャネル型なのでチャネルが非
導通となりターンオフする。本発明の構造によれば、M
IS−GTOのトリガ感度を高めるためにp型ペース@
3の不純物総量を減らす必要がないため1Ml5−GT
Oのピークターンオフ電流が小さくなるという問題は生
じない。
The turn-on time is shortened because time is saved to increase the gearia concentration in the n-type base II Z of the MIS-GTO region. In addition, the turn-off operation is performed by the gate electrode 8,
This is done by applying a negative voltage to 15. As a result, the p1 base 113 of MIS-GTO and the n-type emitter r
The p-channel (MID) transistor that shorts f714 becomes conductive, and the MIS-GTO is turned off. Further, since the conductivity modulation WMO8FgT is an n-channel type, the channel becomes non-conductive and turns off. According to the structure of the present invention, M
P-type pace @ to increase the trigger sensitivity of IS-GTO
1Ml5-GT since there is no need to reduce the total amount of impurities in 3.
The problem that the peak turn-off current of O becomes small does not occur.

第2図は第20実施列の素子構造の断面図である。この
実施列ではMIS−GTO領域のn1!I!ベ一ス層2
に2ける少数キャリアライフタイムを導電変調WMO8
FET領域のそれより大きな籠に設定している。これに
より工導電変、JWMO8FETのラッチアップ電流を
MIS−GTOのピークターンオフ電aより大きくでき
るので、MIS−G’rOの自己ターンオフ能力を最大
限発揮することができる。ま九、導電変調型MO8Fg
Tの方が早くターンオフするので、ターンオフ時に導?
[調型MO8−FgT頃域ヘアノー領域流が集中して′
!tR,密度が上昇し、ラフチアツブ゛峨流[を超える
こともなくなる。
FIG. 2 is a sectional view of the element structure of the 20th implementation row. In this implementation column, n1! of the MIS-GTO area! I! Base layer 2
Conductive modulation of minority carrier lifetime in WMO8
The cage is set to be larger than that of the FET area. As a result, the latch-up current of the JWMO8FET can be made larger than the peak turn-off current a of the MIS-GTO, so that the self-turn-off ability of the MIS-G'rO can be maximized. Maku, conductivity modulation type MO8Fg
Since T turns off faster, is it better to use guide at turn off?
[The hair flow in the area around MO8-FgT is concentrated'
! tR, the density increases and no longer exceeds the rough rise.

第3図は@3の実施的の素子構造の断面図である。この
実施列では導電変調型MO8FET領域のpをエミツタ
1層を取り除いてアノードショート構造とし工いる。こ
れによq”Cも第2の実施列と同隈の効果が得られる。
FIG. 3 is a cross-sectional view of the practical element structure of @3. In this embodiment, one emitter layer is removed from the p part of the conductivity modulation type MO8FET region to create an anode short structure. As a result, the same effect as in the second implementation column can be obtained for q''C.

まt、この実施例の構造では導4f調Fil M (J
 S F E Tがターンオフした時。
However, in the structure of this embodiment, the conductor 4f tone Fil M (J
When SFET turns off.

M I 8− G T O領域側のp型エミリタ11か
ら正孔の注入が起こるので、MiS−GTOd域のng
ベース1置2中のキャリアfilIを速く上昇させるこ
とができ1Ml8−GTOのターンオン時間を短くでき
る。この場会アノードショート構造になっているので少
数Φヤリアライフタイムは大きく設定することが必要で
ある。こT’L以外[4Ml5−GTO領域もアノード
ショート構造とする方法も併用することができる。
Since hole injection occurs from the p-type emitter 11 on the M I 8-GTO region side, the ng of the MiS-GTOd region
The carrier filI in the bases 1 and 2 can be raised quickly, and the turn-on time of 1Ml8-GTO can be shortened. Since this case has a short anode structure, it is necessary to set the minority Φ carrier lifetime to a large value. In addition to this T'L, it is also possible to use a method in which the [4Ml5-GTO region also has an anode short structure.

第4図は第4の実施例の素子構造の断面図である。この
実施例ではMIS−GTOl域のゲート電極8と導電変
、、14型MO8FET領域のゲート電極15とを分離
して独立に制御することができるようにしている。制一
方法の一列を第5図に示す。図に2いて、GIはMIS
−GTOのゲート、戎他8に印QOする電圧を、G、は
導電変調型MO8FE’rのゲート1tffi15に印
η口する電圧を我わしている。まず、G、 VC正の電
圧が印加されると、導電変調型MO8FgTがターンオ
ンし、アノード1圧が導電変調型M(JSFETの電圧
降下の直まで下がりアノード11t流が流れ始める。次
に負バイアスされてい九〇1に正電圧を印加すると、M
IS−GTOがターンオンする。この時既にターンオン
していた導’tc−f!liM(JSFETによりn型
ベース層中のギヤリア密度が高くなりているのでMId
−GTOのターンオンは速やかに行なわれる。また、タ
ーンオフする際には、先にG、の電圧を零にして導電変
調型MO8FETをターンオフさせる。この時。
FIG. 4 is a sectional view of the element structure of the fourth embodiment. In this embodiment, the gate electrode 8 in the MIS-GTOL region and the gate electrode 15 in the 14-type MO8FET region are separated and can be controlled independently. A sequence of control methods is shown in Figure 5. In Figure 2, GI is MIS
- G is applying the voltage applied to the gate 8 of the GTO, and G is applying the voltage applied to the gate 1tffi15 of the conduction modulation type MO8FE'r. First, when G and VC positive voltages are applied, the conduction modulation type MO8FgT turns on, and the anode 1 voltage drops to just below the voltage drop of the conduction modulation type M (JSFET), and the anode 11t current begins to flow.Next, the negative bias When applying a positive voltage to 901, M
IS-GTO turns on. At this time, it was already turned on! liM (JSFET increases the gear density in the n-type base layer, so MId
- GTO turn-on occurs quickly. Moreover, when turning off, the voltage of G is first made zero to turn off the conduction modulation type MO8FET. At this time.

MIS−GTO領域に電流が集中するので電圧降下が大
きくなりアノード電圧が若干高くなる。その後、G、に
負バイアスを印加してMIS−GTOをターンオフさせ
る。この実施列によれば、MIS−GTOをターンオン
する前に導電f!−/lIMO8FETによりn型ベー
ス@2中の中ヤリア密度を十分に高めてぢくことができ
るので1Ml5−GTOのトリガ感度が大きなものが得
られる。尚、ターンオンの際にG、に正の1圧が印加さ
れた後、G、に正電圧が印加されるまでの間に導電変調
型MO8−FgT領域に′、を流が集中することになる
が、この時ラッチアップ電流を超えてもかまわない。G
、が零に設?されてMIS−GTO碩戟にアノード電流
が分流し九時に導電変調型M(J8FET領域の′電流
密度が下がりラッチアップ電流以下になればよいからで
ある。ターンオフの際には共に導゛鑞変調型MO8FE
Tをターンオフするのでこの種の問題は生じない。
Since the current concentrates in the MIS-GTO region, the voltage drop increases and the anode voltage becomes slightly higher. Thereafter, a negative bias is applied to G to turn off the MIS-GTO. According to this implementation, before turning on the MIS-GTO, the conduction f! -/lIMO8FET can sufficiently increase the middle layer density in the n-type base@2, so that a 1Ml5-GTO with high trigger sensitivity can be obtained. In addition, after a positive voltage is applied to G at turn-on, a flow of ', will be concentrated in the conductivity modulation type MO8-FgT region between the time when a positive voltage is applied to G and However, at this time, there is no problem even if the latch-up current is exceeded. G
, is set to zero? Then, the anode current is shunted to the MIS-GTO switch and at 9 o'clock the conduction modulation type M (J8FET region's current density decreases and becomes below the latch-up current. Type MO8FE
Since T is turned off, this type of problem does not occur.

本発明は上記した実惰列にb艮られるものではなく、更
に種々変形して実施することが可能である。
The present invention is not limited to the above-described actual series, but can be implemented with various modifications.

〔活量の効果〕[Effect of activity]

以上述べたように本発明によれば、MIS−GTO領域
と導電変調をM08FET領域を隣接して形成し並列動
作させることにより、高いターンオフ能力を維持しなが
ら、トリガ感度を上げターンオン時間を短くしたMIS
−GTOを実現することができる。
As described above, according to the present invention, by forming the MIS-GTO region and the conductive modulation region adjacent to the M08FET region and operating them in parallel, it is possible to increase the trigger sensitivity and shorten the turn-on time while maintaining high turn-off capability. M.I.S.
- GTO can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

瀉1図ないし第4図は本発明の@工ないし第41・・・
n型エミツタ層、2・・・n櫨ベース喘、3・・・p梨
ベース層、4・・・n型エミッタ層、5・・・nfiウ
ェル層、6・・・p+型層、7・・・ゲート絶縁膜、8
・・・ゲート4極、9・・・絶縁膜、10・・・アノー
ド電極。 11・・・カソード成極、12・・・pWベース層、1
3・・・n+型ノース1,14・・・p十型層、15・
・・ゲート 署!6如【、  16 ・−’  p  
べV層。 第5図 、  A 第6図
Figures 1 to 4 are @works to 41 of the present invention...
n-type emitter layer, 2...n-type base layer, 3...p-pear base layer, 4...n-type emitter layer, 5...nfi well layer, 6...p+-type layer, 7. ...Gate insulating film, 8
...Gate 4 poles, 9...Insulating film, 10...Anode electrode. 11... Cathode polarization, 12... pW base layer, 1
3...n+ type north 1, 14...p ten type layer, 15.
...Gate station! 6 like [, 16 ・-' p
Be V layer. Figure 5, A Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型エミッタ層に接して第2導電型ベース
層を有し、この第2導電型ベース層表面部に第1導電型
ベース層および第2導電型エミッタ層が拡散形成され、
第1導電型エミッタ層に第1の主電極が、第2導電型エ
ミッタ層に第2の主電極がそれぞれ形成されたサイリス
タ構造を有し、前記第1導電型ベース層表面に第1導電
型のターンオフ用絶縁ゲート型素子が形成された絶縁ゲ
ート型自己ターンオフサイリスタ領域と、第1導電型エ
ミッタ層に接して第2導電型ベース層を有し、この第2
導電型ベース層表面部に前記領域の第1導電型ベース層
とは実質的に分離された第1導電型ベース層、および第
2導電型ソース層が拡散形成され、第1導電型エミッタ
層に前記領域と共通に形成される第1の主電極が、第2
導電型ソース層と第1導電型ベース層に前記領域と共通
に形成される第2の主電極がそれぞれ形成され、前記第
2導電型ベース層と前記第2導電型ソース層とを短絡す
る絶縁ゲート型素子が形成された導電変調型MOSFE
T領域とが隣接して形成されることを特徴とする絶縁ゲ
ート型自己ターンオフサイリスタ。
(1) having a second conductivity type base layer in contact with the first conductivity type emitter layer, the first conductivity type base layer and the second conductivity type emitter layer being diffused and formed on the surface of the second conductivity type base layer;
The thyristor structure has a thyristor structure in which a first conductivity type emitter layer is formed with a first main electrode, a second conductivity type emitter layer is formed with a second main electrode, and a first conductivity type base layer is formed on a surface of the first conductivity type base layer. an insulated gate self-turn-off thyristor region in which an insulated gate turn-off element is formed; a second conductivity type base layer in contact with the first conductivity type emitter layer;
A first conductivity type base layer and a second conductivity type source layer, which are substantially separated from the first conductivity type base layer in the region, are diffused and formed on the surface of the conductivity type base layer, and the first conductivity type emitter layer is formed by diffusion. A first main electrode formed in common with the area is a second main electrode.
A second main electrode formed in common with the region is formed on the conductive type source layer and the first conductive type base layer, respectively, and an insulating material short-circuiting the second conductive type base layer and the second conductive type source layer. Conductivity modulation type MOSFE with gate type element formed
An insulated gate self-turn-off thyristor characterized in that a T region is formed adjacent to the T region.
(2)前記絶縁ゲート型自己ターンオフサイリスタ領域
の第1ベース層における少数キャリアライフタイムは前
記導電変調型MOSFET領域のそれより大きいことを
特徴とする特許請求の範囲第1項記載の絶縁ゲート型自
己ターンオフサイリスタ。
(2) The insulated gate self-turn-off thyristor region according to claim 1, wherein the minority carrier lifetime in the first base layer is larger than that of the conductivity modulation MOSFET region. turn-off thyristor.
(3)前記導電変調型MOSFET領域の第1導電型エ
ミッタ層の一部を除去し、第2導電型ベース層を第1の
主電極と接触させたことを特徴とする特許請求の範囲第
1項記載の絶縁ゲート型自己ターンオフサイリスタ。
(3) A portion of the first conductivity type emitter layer of the conductivity modulation type MOSFET region is removed, and the second conductivity type base layer is brought into contact with the first main electrode. Insulated gate self-turn-off thyristor as described in .
(4)前記絶縁ゲート型自己ターンオフサイリスタ領域
に形成されるターンオフ用絶縁ゲート型素子のゲート電
極は前記導電変調塵MOSFET領域に形成される絶縁
ゲート型のゲート電極とは分離されていることを特徴と
する特許請求の範囲第1項記載の絶縁ゲート型自己ター
ンオフサイリスタ。
(4) The gate electrode of the turn-off insulated gate element formed in the insulated gate self-turnoff thyristor region is separated from the insulated gate gate electrode formed in the conductivity modulation dust MOSFET region. An insulated gate self-turn-off thyristor according to claim 1.
JP62041356A 1987-02-26 1987-02-26 Insulated gate type self turn-off thyristor Expired - Fee Related JP2557367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62041356A JP2557367B2 (en) 1987-02-26 1987-02-26 Insulated gate type self turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041356A JP2557367B2 (en) 1987-02-26 1987-02-26 Insulated gate type self turn-off thyristor

Publications (2)

Publication Number Publication Date
JPS63209172A true JPS63209172A (en) 1988-08-30
JP2557367B2 JP2557367B2 (en) 1996-11-27

Family

ID=12606213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041356A Expired - Fee Related JP2557367B2 (en) 1987-02-26 1987-02-26 Insulated gate type self turn-off thyristor

Country Status (1)

Country Link
JP (1) JP2557367B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310171A (en) * 1987-06-12 1988-12-19 Hitachi Ltd Composite semiconductor device
JPH0212969A (en) * 1988-04-22 1990-01-17 Asea Brown Boveri Ag Power semiconductor component having switching-off mechanism
US5040042A (en) * 1989-04-28 1991-08-13 Asea Brown Boveri Ltd. Bidirectional semiconductor component that can be turned off
JPH0499384A (en) * 1990-08-18 1992-03-31 Mitsubishi Electric Corp Thyristor and manufacture thereof
US5105244A (en) * 1989-07-19 1992-04-14 Asea Brown Boveri Ltd. Gate turn-off power semiconductor component
US5349213A (en) * 1991-10-26 1994-09-20 Asea Brown Boveri Ltd. Turn-off power semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPS6158264A (en) * 1984-08-29 1986-03-25 Internatl Rectifier Corp Japan Ltd Semiconductor device
JPS61123184A (en) * 1984-11-20 1986-06-11 Toshiba Corp Conduction modulation type mosfet
JPS61185971A (en) * 1985-02-14 1986-08-19 Toshiba Corp Conductivity modulation type semiconductor device
JPS61185960A (en) * 1985-02-13 1986-08-19 Toshiba Corp Conductivity modulation element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPS6158264A (en) * 1984-08-29 1986-03-25 Internatl Rectifier Corp Japan Ltd Semiconductor device
JPS61123184A (en) * 1984-11-20 1986-06-11 Toshiba Corp Conduction modulation type mosfet
JPS61185960A (en) * 1985-02-13 1986-08-19 Toshiba Corp Conductivity modulation element
JPS61185971A (en) * 1985-02-14 1986-08-19 Toshiba Corp Conductivity modulation type semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310171A (en) * 1987-06-12 1988-12-19 Hitachi Ltd Composite semiconductor device
JPH0212969A (en) * 1988-04-22 1990-01-17 Asea Brown Boveri Ag Power semiconductor component having switching-off mechanism
US5040042A (en) * 1989-04-28 1991-08-13 Asea Brown Boveri Ltd. Bidirectional semiconductor component that can be turned off
US5105244A (en) * 1989-07-19 1992-04-14 Asea Brown Boveri Ltd. Gate turn-off power semiconductor component
JPH0499384A (en) * 1990-08-18 1992-03-31 Mitsubishi Electric Corp Thyristor and manufacture thereof
US5349213A (en) * 1991-10-26 1994-09-20 Asea Brown Boveri Ltd. Turn-off power semiconductor device

Also Published As

Publication number Publication date
JP2557367B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US4514747A (en) Field controlled thyristor with double-diffused source region
US5091766A (en) Thyristor with first and second independent control electrodes
JPH02303069A (en) Bidirectional semiconductor element capable of turn-off
JPH05218395A (en) Turn-off semiconductor element and manufacture thereof
JPS63209172A (en) Insulated-gate self-turn-off thyristor
JPS608628B2 (en) Semiconductor integrated circuit device
JPH03254159A (en) Conductivity modulation type mosfet
US5194394A (en) Thyristor and method of manufacturing the same
DE19511382A1 (en) Insulated gate thyristor for electrical power switch
DE3443363A1 (en) SEMICONDUCTOR DEVICE
US4884114A (en) Disconnectable thyristor
JPS6276557A (en) Insulated gate type self-turn-off element
JPS6424467A (en) Field effect transistor
JPH0654784B2 (en) Semiconductor device
JPS63209169A (en) Insulated-gate thyristor
JPH05121425A (en) Bipolar electrostatic-induction transistor
JP3171917B2 (en) Insulated gate type self-turn-off thyristor
JPH01251755A (en) Thyristor
JPH0548083A (en) Power semiconductor element
JP2815642B2 (en) Field effect transistor
JPH06204463A (en) Semiconductor device
JP3215145B2 (en) Power semiconductor device with insulated gate
JPS63209173A (en) Electrode wiring structure of insulated gate thyristor
KR790001059B1 (en) Semiconductor device
JPS62252168A (en) Insulated gate type self-turn-off thyristor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees