JPS63206709A - Production of flush type single mode light guide - Google Patents

Production of flush type single mode light guide

Info

Publication number
JPS63206709A
JPS63206709A JP62039891A JP3989187A JPS63206709A JP S63206709 A JPS63206709 A JP S63206709A JP 62039891 A JP62039891 A JP 62039891A JP 3989187 A JP3989187 A JP 3989187A JP S63206709 A JPS63206709 A JP S63206709A
Authority
JP
Japan
Prior art keywords
ion exchange
ion
ions
glass substrate
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62039891A
Other languages
Japanese (ja)
Other versions
JPH0462644B2 (en
Inventor
Masafumi Seki
雅文 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP62039891A priority Critical patent/JPS63206709A/en
Publication of JPS63206709A publication Critical patent/JPS63206709A/en
Publication of JPH0462644B2 publication Critical patent/JPH0462644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a flush type single mode light guide consisting of a waveguide having nearly a circular or elliptical shape without requiring electric field impression by executing heat ion exchange in both the 1st stage and 2nd stage of a stage for ion exchange and specifying the ion exchange conditions of the 1st and 2nd stages. CONSTITUTION:A glass substrate 1 contains the univalent ion selected from a group consisting of univalent alkali ion, univalent Tl ion and Ag ion for ion exchange. After a coating film 2a for controlling the ion exchange is deposited by evaporation on one face of the substrate 1, an aperture 2c of a prescribed waveguide pattern is formed thereon to form a mask film 2b. The substrate 1 which is subjected to the 1st stage of the heat ion exchange treatment in a 1st fused salt 4a then to the removal of the mask film 2b is thereafter subjected to the 2nd stage of the heat ion exchange treatment in a 2nd fused salt 4b. The ion exchange is so executed in this case that the products D1t1 and D2t2 of the 1st and 2nd effective ion exchange constants D1, D2 and ion exchange time t1, t2 satisfy the equations I and II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン交換法による埋込み型シングルモード
光導波路作製方法に関し、特に電界印加を必要としない
シングルモード光導波PrT’A造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a buried single-mode optical waveguide using an ion exchange method, and particularly to a method for manufacturing a single-mode optical waveguide PrT'A that does not require the application of an electric field.

〔従来の技術〕[Conventional technology]

ムや光センサ−システムには、分岐合流や分波合波など
のために種々のシングルモード光デバイスが必要となる
。これらのデバイスをガラス基板上に作製する方法とし
ては、いくつかのイオン交換法が知られている。しかし
、実用上の効果を考えると、ガラス基板導波路は埋込み
型であって、しかもシングルモードファイバとの直接結
合の効率が良いように電界分布がほぼ一致したものが望
ましい。従来公知の技術で上述の導波路を作製できる方
法に近いものとしては、コ段N電界印加イオン交換法が
あった。この方法は、ガラス基板の上に金属などのマス
ク膜を積層した後、導波路の形状にパターニングし、電
界を印加した状態で溶融塩と接触させ該基板の表面付近
に屈折率の高い部分を形成し、次いでマスクを除去した
のち第2回目のイオン交換をするものである。
Systems and optical sensor systems require various single-mode optical devices for branching, merging, demultiplexing, and multiplexing. Several ion exchange methods are known as methods for producing these devices on glass substrates. However, in consideration of practical effects, it is desirable that the glass substrate waveguide be of a buried type, and that the electric field distribution be approximately the same so that the direct coupling with the single mode fiber is efficient. As a method close to the method for producing the above-mentioned waveguide using a conventionally known technique, there is a co-stage N electric field application ion exchange method. In this method, a mask film made of metal or the like is laminated on a glass substrate, then patterned into the shape of a waveguide, and brought into contact with molten salt while an electric field is applied to form a high refractive index part near the surface of the substrate. After the mask is removed, a second ion exchange is performed.

上記の方法については例えばSpringer−Ver
lag社刊の[Integrated 0ptics 
J第11頁に記験されているH、 Li1ienhof
らの論文に詳しく説明されている。
For the above method, for example, Springer-Ver.
[Integrated 0ptics] published by lag
H, Li1ienhof, as reported on page 11 of J.
It is explained in detail in the paper by et al.

また特公昭l1l−j973号公報には、2段階のイオ
ン交換を行なってガラス基板中に、断面上で中心より周
辺に向かって徐々に屈折率の減少する光伝送路をつくる
方法が示されている。
Furthermore, Japanese Patent Publication No. 111-j973 discloses a method of creating an optical transmission path in a glass substrate in which the refractive index gradually decreases from the center toward the periphery in a cross section by performing two-step ion exchange. There is.

〔発明が解決しようとする間頴点〕[Intermediate point that the invention attempts to solve]

電界印加を用いた導波路作製方決では、ガラス基板表裏
に接触させる溶炉′塩にうまく電界をかける必要があり
、イオン交換工程が複雑になるという問題点があった。
The method of fabricating a waveguide using the application of an electric field has the problem of complicating the ion exchange process because it is necessary to apply an electric field to the blast furnace salt that is brought into contact with the front and back surfaces of the glass substrate.

また特公昭lAl−3973号公報には、押込み型の導
波路の断面を円形ないし楕円形にするための条件、さら
にはシングルモード導波tとすることについて具体的に
示していない。
Moreover, Japanese Patent Publication No. 1973/1973 does not specifically indicate the conditions for making the cross section of the push-in type waveguide circular or elliptical, nor does it specifically indicate the conditions for making the cross section a single mode waveguide.

本発明は、電界印加を必要としない簡単な熱イオン交換
法で、断面が円形ないし楕円形に近い埋込み型シングル
モード光導波路を製造する方法を新規に提供しようとす
るものである。
The present invention aims to provide a novel method for manufacturing a buried single-mode optical waveguide having a circular or nearly elliptical cross section using a simple thermal ion exchange method that does not require the application of an electric field.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明はイオン交換の工
程を第1段及び第2段とも熱イオン交換とし、さらに埋
込み型の断面が円形ないし楕円形に近い導波路を実現す
るために必要とされるイオン交換条件を第1段及び第2
段に対して明確に定めた。
In order to solve the above problems, the present invention uses thermal ion exchange in both the first and second stages of ion exchange, and furthermore, it is necessary to realize an embedded waveguide with a circular or elliptical cross section. The ion exchange conditions for the first and second stage
It is clearly defined for each stage.

すなわち、第1の熱イオン交換時の実効イオン交換定N
DIとイオン交換時間t1との積Dltlを、! <D
i tl<30 とし、 第2の熱イオン交換時の実効イオン交換定数D2とイオ
ン交換時間t2との!tiDzt2を、0.6<D2t
2<0.7jXDltlとする。
That is, the effective ion exchange constant N during the first thermionic exchange
The product Dltl of DI and ion exchange time t1 is,! <D
It is assumed that itl<30, and the effective ion exchange constant D2 and ion exchange time t2 during the second thermionic exchange! tiDzt2, 0.6<D2t
2<0.7jXDltl.

本発明に使用できるイオン交換用イオンとしては1価の
アルカリイオ>f5JちLi、Na、に、Rb、Osイ
オンの他1価のTA’イオン及びAgイオンがある。
Ions for ion exchange that can be used in the present invention include monovalent alkali ions>f5J, Li, Na, Rb, Os ions, monovalent TA' ions, and Ag ions.

またイオン交換用マスクとしてはTi+iの他、5i0
2などの誘電体Wi膜が使用できる。
In addition to Ti+i, ion exchange masks include 5i0
A dielectric Wi film such as No. 2 can be used.

〔作 用〕[For production]

ガラス基板と溶融塩との間のイオン交換はイオンの実効
的交換定数りと実効的交換時間tの積Dtで指定するこ
とができる。ここで言う実効的交換定数とは、2種のイ
オン間で交換が行われた時に、一方のイオンの移動が拡
散方程式で記述されるとした場合の見かけ上の拡散定数
である。
Ion exchange between the glass substrate and the molten salt can be specified by the product Dt of the effective exchange constant of ions and the effective exchange time t. The effective exchange constant referred to here is an apparent diffusion constant when the movement of one ion is described by a diffusion equation when two types of ions are exchanged.

一般に実効的交換室vkDは温度の関数であるから、D
i積は厳密には積分で求められるものである。
In general, the effective exchange chamber vkD is a function of temperature, so D
Strictly speaking, the i product is determined by integration.

そして第1段、第2段のイオン交換処理におけるDi積
を前述した範囲内とすることにより、断面が円形に近い
シングルモード光導波路が得られる。
By setting the Di product in the first and second stage ion exchange treatments within the above-mentioned range, a single mode optical waveguide with a nearly circular cross section can be obtained.

〔実 施 例〕〔Example〕

第1図は本発明の一実施例を段階的に示す断面図である
FIG. 1 is a cross-sectional view showing step-by-step an embodiment of the present invention.

lはガラス基板であり、イオン交換用に1価イオンとし
てNa及びKを合計/ J mode%含有し、510
g、BgO3を主たる網目形成酸化物とした研磨済みの
高品質ガラス板から成る。
l is a glass substrate, containing Na and K as monovalent ions for ion exchange at a total of 510
g, consisting of a polished high-quality glass plate with BgO3 as the main network-forming oxide.

ガラス基板lの片面にスパッタ法で厚さ1μm程度のT
1膜から成る被@膵2aを蒸着し、この被覆膜Jaにフ
ォトリングラフィとエツチング工程により所定の導波路
パターンの開口2Cを形成してマスク膜2bとする。
A T film with a thickness of about 1 μm is deposited on one side of the glass substrate l by sputtering.
A single film to be covered 2a is deposited, and openings 2C of a predetermined waveguide pattern are formed in this coating film Ja by photolithography and etching steps to form a mask film 2b.

上記のマスク膜2bを施したガラス基板lは第1の溶計
塩<<a中に浸漬して第1段の熱イオン交換処理を行な
う。
The glass substrate l coated with the mask film 2b described above is immersed in a first melting salt <<a to perform a first-stage thermal ion exchange treatment.

図外の電気炉内に置かれたるつぼ3中に保持されている
第1の溶融塩ダaは、ガラス基板lの、マスク膜xby
c設けられた開ロコC付近の屈折率を増加させるために
用いるもので、7価のイオンからなる群より選ばれた少
なくとも1つの第1のイオンを含有する溶融塩である。
The first molten salt powder a held in a crucible 3 placed in an electric furnace (not shown) is connected to a mask film xby of a glass substrate l.
It is used to increase the refractive index in the vicinity of the open loco C provided in c, and is a molten salt containing at least one first ion selected from the group consisting of heptavalent ions.

この溶融塩ダaとしては硫酸塩または硝酸塩の他に1イ
オン交換を均一にするため、またガラス基板の損傷を防
ぐために必要に応じて塩化塩が添加される。
In addition to sulfate or nitrate, chloride salt is added to the molten salt solution as necessary to ensure uniform ion exchange and to prevent damage to the glass substrate.

上記の第2段熱イオン交換処理を終えた後、基板lの表
面からマスク膜2bを除去し、このマスク膜を除去した
基板lを第2の溶融塩lIb中に浸漬して第2段熱イオ
ン交換処理を行なう。
After completing the second stage thermal ion exchange treatment, the mask film 2b is removed from the surface of the substrate l, and the substrate l from which the mask film has been removed is immersed in a second molten salt lIb to perform the second stage thermal ion exchange treatment. Perform ion exchange treatment.

第2溶融廖Ilbは、ガラス基板lの表面付近の屈折率
を減少させるために用いるもので、7価のイオンからな
る群より選ばれた少なくとも1つの第2のイオンを含有
する溶融塩である。
The second melting chamber Ilb is used to reduce the refractive index near the surface of the glass substrate l, and is a molten salt containing at least one second ion selected from the group consisting of heptavalent ions. .

ここで、第1のイオンと第一のイオンはガラス基板lに
対して屈折率を変化させる作用が、少なくとも互いに反
対でなければならない。
Here, the first ion and the second ion must have at least opposite effects on the glass substrate l to change the refractive index.

上記の第2段熱イオン交換処理を終了した後、ガラス基
板l内に埋込み型の導波路部5が形成される。
After completing the second stage thermionic exchange treatment, an embedded waveguide portion 5 is formed within the glass substrate l.

上述の実施例においては、第1のイオンとしてTlイオ
ンが、第2のイオンとしてにイオンが用いられた。第1
の溶融塩+aはTlイオンを含有する硝酸塩、第2の溶
融塩+bはにイオンを含有する硫酸塩である。イオン交
換を行なう温度は、イオン交換定数が大きく、シかもガ
ラス基板lに反りなどの変形が生じないガラス転移点付
近の1M度に設定した。
In the above example, Tl ions were used as the first ions and Tl ions were used as the second ions. 1st
The molten salt +a is a nitrate containing Tl ions, and the second molten salt +b is a sulfate containing ions. The temperature at which the ion exchange was performed was set at 1M degrees, which is around the glass transition point, where the ion exchange constant is large and the glass substrate l does not undergo any deformation such as warping.

次に本発明におけるイオン交換条件について詳しく説明
する。
Next, the ion exchange conditions in the present invention will be explained in detail.

ガラス基板と溶融塩との間のイオン交換は、イオンの実
効的交換定PDと実効酌交ν時間tとの@Dtで指定す
ることができる。
The ion exchange between the glass substrate and the molten salt can be specified by @Dt, which is the effective exchange constant PD of ions and the effective mixing time ν time t.

ここで言う実効的交換定数とは、2種のイオン間で交換
が行われた時に、一方のイオンの移動が拡散方程式で記
述されるとした場合の見かけ上の拡散定数である。
The effective exchange constant referred to here is an apparent diffusion constant when the movement of one ion is described by a diffusion equation when two types of ions are exchanged.

一般に実効的交換定数りは温度の関数であるから、fa
t稍は厳密には積分で求められるものである。
In general, the effective exchange constant is a function of temperature, so fa
Strictly speaking, t is determined by integration.

実施例においては、第1表に示す組合せで第1段及び第
2段のイオン交換条件を実談じた(条件はDt積で表す
)。
In the examples, the ion exchange conditions for the first and second stages were discussed using the combinations shown in Table 1 (conditions are expressed as Dt products).

第1表に示したように、試料厘/〜jでは導波路断面の
寸法が長軸/lI−、?/μm1短軸、r−13μmで
あるものが得られる。
As shown in Table 1, the dimensions of the waveguide cross section are long axis /lI-, ? /μm1 short axis, r-13μm is obtained.

この導波路寸法において最大屈折率差をo、ooq程度
に設定すると導波路がシングルモードとなり、しかもシ
ングルモード7アイパに対し比較的結合効率を良くする
ことができる。
When the maximum refractive index difference is set to about o, ooq in this waveguide dimension, the waveguide becomes a single mode, and the coupling efficiency can be made relatively good for a single mode 7 eyer.

試料屋6では導波路寸法が大きすぎシングルモード導波
路にすることが困難である。
In the sample shop 6, the waveguide dimensions are too large, making it difficult to form a single mode waveguide.

試料屋7〜IOでは第2段のイオン交換が進みすぎ、導
波路寸法が小さくなると同時に、第1のイオンの最大濃
度領域が著しく小さくなってしまう。
In the sample stores 7 to IO, the ion exchange in the second stage progresses too much, and the waveguide dimensions become smaller, and at the same time, the maximum concentration region of the first ions becomes significantly smaller.

即ち、試料A/から&6までは導波路の断面形状が概ね
適しているのに対し、試料A7からA / 0までは全
て不適当となった。
That is, while the waveguide cross-sectional shapes of samples A/ to &6 were generally suitable, all of the samples A7 to A/0 were inappropriate.

第2図に試料Ajで得られた導波路部5の屈折率分布を
示す。
FIG. 2 shows the refractive index distribution of the waveguide section 5 obtained in sample Aj.

実験条件の組合せを図表示すると第JrgJのようにな
る。図中の○印、Δ印、X印はそれぞれ「適」、「やや
不適」、「不適」を表している。
If the combination of experimental conditions is shown graphically, it will look like No. JrgJ. The ○, Δ, and X marks in the figure represent "suitable,""slightlyunsuitable," and "unsuitable," respectively.

第1段イオン交換のDtは3以上でないと導波ト;の断
面寸法が小さすぎ(長軸がIOμmH度以下となる)、
また30以下でないと大きすぎる。
If the Dt of the first stage ion exchange is not 3 or more, the cross-sectional dimension of the waveguide will be too small (the long axis will be IOμmH degrees or less),
Also, if it is not 30 or less, it is too large.

また第2段イオン交換のDtは第1段のDtの7!%よ
り小さくないと導波路部が実質上消失してしまうし、ま
た0、6より小さいと第2段イオン交換の効果がない、
すなわち埋込み型にならず半円形に近い導波路となって
しまう。
Also, the Dt of the second stage ion exchange is 7! of the Dt of the first stage! If it is less than %, the waveguide section will virtually disappear, and if it is less than 0.6, the second stage ion exchange will not be effective.
In other words, the waveguide does not become a buried type, but becomes a nearly semicircular waveguide.

従って、第1の熱イオン交換時の実効イオン交換定数D
1とイオン交換時間tlとの積Di tlを、3くDl
tlく3Q とし、第2の熱イオン交換時の実効イオン交換定数D2
とイオン交換時間t2の積D2t2を、0.6 <p2
t2<0.7!;XDlt、1とすることが必要である
Therefore, the effective ion exchange constant D during the first thermionic exchange
The product Di tl of 1 and the ion exchange time tl is 3 times Dl
tl×3Q, and the effective ion exchange constant D2 during the second thermionic exchange
The product D2t2 of and ion exchange time t2 is 0.6 < p2
t2<0.7! ;XDlt, it is necessary to set it to 1.

さらに望ましくは、第1のイオン交換においてj <D
ltl <、 / jの条件を満たすことが推奨される
More preferably, in the first ion exchange, j <D
It is recommended that the following conditions be satisfied: ltl <, /j.

以上で埋込み型で円形ないし楕円形の導波路が得られる
が、さらにシングルモード導波路とするためには、導波
路の屈折率差が0.00J〜o、oosである必要があ
ることが実験よりわかった。
As described above, an embedded circular or elliptical waveguide can be obtained, but experiments have shown that in order to create a single mode waveguide, the refractive index difference of the waveguide needs to be 0.00 J to o, oos. I understand more.

なお、導波路の断面寸法が大きい場合は屈折率差は小さ
いこと、また導波路の断面寸法が小さい場合は屈折率差
は大きいことが、シングルモードファイバとの電界分布
マツチングの点で望ましい。
Note that it is desirable for the refractive index difference to be small when the cross-sectional size of the waveguide is large, and for the refractive index difference to be large when the cross-sectional size of the waveguide is small, from the viewpoint of electric field distribution matching with the single mode fiber.

一般的には、望ましい導波路パラメータは、大体長軸径
10−.20μm1短軸、r−tsμm1屈折率差0.
00J〜o、oosである。
Generally, the desired waveguide parameters are approximately 10-. 20μm1 short axis, r-tsμm1 refractive index difference 0.
00J~o, oos.

そして所定の屈折率差をつけるためには、ガラス基板の
アルカリ含有量と溶融塩組成を選択する必要がある。一
般にガラス基板のアルカリ含有量が多い場合には、溶融
塩組成の中の屈折率への寄与穴なるイオンの含有量を少
なくすることが望ましい。反対に、ガラス基板のアルカ
リ含有量が少ない場合には、溶融塩組成の中の屈折率へ
の寄与穴なるイオンの含有量を多くすることが望ましい
In order to create a predetermined refractive index difference, it is necessary to select the alkali content and molten salt composition of the glass substrate. Generally, when the alkali content of the glass substrate is high, it is desirable to reduce the content of ions, which are holes contributing to the refractive index, in the molten salt composition. On the other hand, when the alkali content of the glass substrate is low, it is desirable to increase the content of ions that serve as holes contributing to the refractive index in the molten salt composition.

−例として、導波路径/fX10μm1屈折率差o、o
oIIが推奨される。
- As an example, waveguide diameter/fX10μm1 refractive index difference o, o
oII is recommended.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来不可能であった熱イオン交換法に
よる埋込み型シングルモード導波路が実現できる。
According to the present invention, it is possible to realize an embedded single-mode waveguide using thermionic exchange method, which was previously impossible.

本発明方法は電界印加を必要としないのでイオン交換が
非常に簡単になるという利点のほか、電界印加法で発生
しがちなガラス表面のtklfMや導波路の不均一性が
減らせるという利点もある。
The method of the present invention has the advantage that ion exchange is very simple because it does not require the application of an electric field, and it also has the advantage of reducing tklfM on the glass surface and non-uniformity of the waveguide, which tend to occur with the electric field application method. .

従って、本発明による埋込み型シングルモード光導波路
の製造方法は安価な大量生産に極めて適している。
Therefore, the method for manufacturing a buried single-mode optical waveguide according to the present invention is extremely suitable for inexpensive mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を段階的に示す艶面図、第J
IiUは本発明方法で得られるイオン交換導波路のイオ
ン濃度分布の一例を示す断面図、第3図は第1段及び第
2段の実効イオン交換定数とイオン交換時間の積と導波
路寸法の適、不適を示す図である。 l・・・・・・ガラス基板 コb・・・・・・マスク膜
2C・・・・・・導波路パターン開口 ≠a・・・・・・第1の溶融塩 qb・・・・・・第2
の溶#!埴よ・・・・・・導波路 第1図 第2図
Fig. 1 is a gloss diagram showing step by step an embodiment of the present invention.
IiU is a cross-sectional view showing an example of the ion concentration distribution of the ion exchange waveguide obtained by the method of the present invention, and Figure 3 shows the product of the effective ion exchange constant and ion exchange time of the first and second stages and the waveguide dimensions. It is a diagram showing suitability and unsuitability. l...Glass substrate cb...Mask film 2C...Waveguide pattern opening≠a...First molten salt qb... Second
Melting #! Hani... Waveguide Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)イオン交換用イオンとして1価のアルカリイオン
及び1価のTlイオン及びAgイオンからなる群より選
ばれた1価イオンを含んだガラス基板にイオン交換制御
用のマスク膜を形成する工程と、該マスク膜に所定の導
波路パターンを形成する工程と、該ガラス基板の屈折率
を変える第1の1価イオンを少なくとも1種含有する溶
融塩中に該ガラス基板を高温時に浸漬し第1の熱イオン
交換をする工程と、該ガラス基板の屈折率を該第1のイ
オンとは反対の方向に変化させる第2の1価イオンを少
なくとも1種含有する溶融塩中に、前記マスクを除去し
たガラス基板を高温時に浸漬し第2の熱イオン交換をす
る工程とからなる2段階熱イオン交換法であって、第1
の熱イオン交換時の実効イオン交換定数D_1とイオン
交換時間t_1の積D_1・t_1を 3≦D_1t_1≦30 とし、第2の熱イオン交換時の実効イオン交換定数D_
2とイオン交換時間t_2の積D_2t_2を0.6≦
D_2t_2≦0.75×D_1t_1とした埋込み型
シングルモード光導波路の製造方法。
(1) Forming a mask film for ion exchange control on a glass substrate containing monovalent ions selected from the group consisting of monovalent alkali ions, monovalent Tl ions, and Ag ions as ion exchange ions; , forming a predetermined waveguide pattern on the mask film, and immersing the glass substrate at high temperature in a molten salt containing at least one first monovalent ion that changes the refractive index of the glass substrate. and removing the mask into a molten salt containing at least one second monovalent ion that changes the refractive index of the glass substrate in a direction opposite to that of the first ions. A two-step thermionic exchange method consisting of a second thermionic exchange process by immersing a heated glass substrate at a high temperature, the first
Let the product D_1・t_1 of the effective ion exchange constant D_1 during the second thermionic exchange and the ion exchange time t_1 be 3≦D_1t_1≦30, and the effective ion exchange constant D_ during the second thermionic exchange
The product D_2t_2 of 2 and ion exchange time t_2 is 0.6≦
A method for manufacturing a buried single mode optical waveguide satisfying D_2t_2≦0.75×D_1t_1.
(2)前記第1の1価イオンがTl又はCsイオンの少
なくとも1つが含まれるイオンであり、該第2の1価イ
オンがNa又はKイオンの少なくとも1つが含まれるイ
オンである特許請求の範囲第1項記載の埋込み型シング
ルモード光導波路の製造方法。
(2) Claims in which the first monovalent ion is an ion containing at least one of Tl or Cs ions, and the second monovalent ion is an ion containing at least one of Na or K ions. 2. A method for manufacturing an embedded single-mode optical waveguide according to item 1.
JP62039891A 1987-02-23 1987-02-23 Production of flush type single mode light guide Granted JPS63206709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039891A JPS63206709A (en) 1987-02-23 1987-02-23 Production of flush type single mode light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039891A JPS63206709A (en) 1987-02-23 1987-02-23 Production of flush type single mode light guide

Publications (2)

Publication Number Publication Date
JPS63206709A true JPS63206709A (en) 1988-08-26
JPH0462644B2 JPH0462644B2 (en) 1992-10-07

Family

ID=12565591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039891A Granted JPS63206709A (en) 1987-02-23 1987-02-23 Production of flush type single mode light guide

Country Status (1)

Country Link
JP (1) JPS63206709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125946A (en) * 1990-12-10 1992-06-30 Corning Incorporated Manufacturing method for planar optical waveguides
US5139556A (en) * 1990-03-07 1992-08-18 Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of adjusting the operation characteristics of integrated optical devices
US5160360A (en) * 1989-11-06 1992-11-03 Nippon Sheet Glass Co., Ltd. Process for producing low-loss embedded waveguide
US5359682A (en) * 1990-03-07 1994-10-25 Cselt-Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of adjusting the operation characteristics of integrated optical devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160360A (en) * 1989-11-06 1992-11-03 Nippon Sheet Glass Co., Ltd. Process for producing low-loss embedded waveguide
US5139556A (en) * 1990-03-07 1992-08-18 Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of adjusting the operation characteristics of integrated optical devices
US5359682A (en) * 1990-03-07 1994-10-25 Cselt-Centro Studi E Laboratori Telecomunicazioni S.P.A. Method of adjusting the operation characteristics of integrated optical devices
US5125946A (en) * 1990-12-10 1992-06-30 Corning Incorporated Manufacturing method for planar optical waveguides

Also Published As

Publication number Publication date
JPH0462644B2 (en) 1992-10-07

Similar Documents

Publication Publication Date Title
EP0467579B1 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US3843228A (en) Production of light-conducting glass structures with refractive index distribution
KR20100130201A (en) Method of manufacturing flat optical elements, and elements obtained
US3997312A (en) Method of manufacturing colored glass articles
JPS6259556A (en) Optical wave guide produced from special base glass by ion exchange of cs(+) ion
JPS63206709A (en) Production of flush type single mode light guide
US7095935B2 (en) Method for forming optical waveguide
US5160360A (en) Process for producing low-loss embedded waveguide
US4108621A (en) Process of producing soft aperture filter
US3628983A (en) Coating method for strengthening vitreous and vitrocrystalline bodies
JPS552263A (en) Production of optical guide circuits
JPH09222525A (en) Production of optical waveguide
GB1342674A (en) Process for production of glass articles with increased and more durable mechanical strength
TW202028139A (en) Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same
JPS62191449A (en) Chemically strengthened float glass
JPS62207728A (en) Glass material for molding
JPH0244041B2 (en)
JPH02196048A (en) Photosensitive glass
JPS63250608A (en) Production of flush type light guide
Pantchev Multimode strip waveguide formed by ion-electro-diffusion from solid state silver: Side diffusion reduction
JPS63169601A (en) Distributed index type optical element
JPH02262110A (en) Production of flush type optical waveguide
JPH01261243A (en) Production of optical waveguide
JPS59137346A (en) Manufacture of glass waveguide
JP4156136B2 (en) Method for manufacturing buried optical waveguide