JPS62191449A - Chemically strengthened float glass - Google Patents

Chemically strengthened float glass

Info

Publication number
JPS62191449A
JPS62191449A JP3286486A JP3286486A JPS62191449A JP S62191449 A JPS62191449 A JP S62191449A JP 3286486 A JP3286486 A JP 3286486A JP 3286486 A JP3286486 A JP 3286486A JP S62191449 A JPS62191449 A JP S62191449A
Authority
JP
Japan
Prior art keywords
glass
float glass
float
chemically strengthened
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3286486A
Other languages
Japanese (ja)
Other versions
JPH0772093B2 (en
Inventor
Shinichi Araya
眞一 荒谷
Masaaki Katano
正昭 片野
Takeshi Mizoguchi
溝口 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP61032864A priority Critical patent/JPH0772093B2/en
Publication of JPS62191449A publication Critical patent/JPS62191449A/en
Publication of JPH0772093B2 publication Critical patent/JPH0772093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To impart a fine finish surface having a surface compressive stress value within the range of 25-100kg/mm<2> and an amount of warpage within the range of + or -0.4mu/cm to float glass produced by a floating method, by chemically toughening the float glass without surface grinding. CONSTITUTION:Float glass is produced by a floating method. A molten salt or mixed molten salt containing alkali ions, e.g. Na ion or Li ion, of the same kind as an alkali component in the glass composition is applied to the surfaces of the glass without surface grinding and the resultant coats are then treated at 350-650 deg.C for 0.01-100hr to carry out chemical strenghtening by a low-or high-temperature type ion exchange method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フロート方式で製造されたガラス、例えば板
厚が3−以下のソーダ石灰系フロートガラスを、電子材
料の基板、ことに光デイスク用ガラス基板、フォトマス
ク用ガラス基板、各種ディスプレイ、ディバイス部材等
として適用することのできる火造り面を活かした反シも
小さい平坦度のよい高強化度をもつ化学強化フロートガ
ラスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses glass produced by a float method, for example, soda-lime float glass having a thickness of 3 mm or less, to be used as a substrate for electronic materials, particularly for optical disks. The present invention relates to a chemically strengthened float glass having a high degree of reinforcement with a small surface area and good flatness, which can be applied as glass substrates for photomasks, various displays, device members, etc.

さらに本発明は、上記のほか、薄板で大面積の建築用お
よび車輌用窓ガラス、フロートガラスを用いた各種成型
品、調理用硝子製品および各種電子電気機器の基板等、
幅広く用いられるものである。
In addition to the above, the present invention also applies to thin, large-area architectural and vehicle window glasses, various molded products using float glass, cooking glass products, and substrates for various electronic and electrical devices, etc.
It is widely used.

〔従来の技術〕[Conventional technology]

フロートガラスはいわゆる各種板ガラスに比べ表面平滑
性、平担性、厚みの均−性等に優れているので建築、車
輌等の分野に加え電子材料分野、例えば液晶やプラズマ
等のディスプレイなどにも広く利用されつつある。
Float glass has superior surface smoothness, flatness, and thickness uniformity compared to various types of plate glass, so it is widely used in fields such as architecture and vehicles, as well as in the field of electronic materials, such as displays such as liquid crystals and plasma. It is being used.

さらに最近の傾向として3mm厚以下の薄板ガラスが賞
月されておυ、厚みが薄くなるほど、強度の向上が望ま
れている。
Furthermore, as a recent trend, thin glass sheets with a thickness of 3 mm or less are gaining popularity, and as the thickness decreases, it is desired to improve the strength.

、薄板ガラスを効果的に強化するために、低温型あるい
は高温型等のアルカリイオン置換による化学強化方法を
適用することは周知であるが、フロートガラスにそのま
ま化学強化法を用いた場合、ガラスに反シが生じて(例
えば約11厚で0.4〜1.3wV/300frr1n
径)平担性を損ない、ことに光デイスク基板等において
要求される平坦度(例えば約1fi厚で0.2wIV1
500wm 径以下)を得ることができないものであっ
た。
It is well known that in order to effectively strengthen thin glass, chemical strengthening methods such as low-temperature or high-temperature alkali ion substitution are applied. Reverse cracking occurs (for example, 0.4 to 1.3 wV/300 frr1n at approximately 11 thickness)
diameter), which impairs the flatness required for optical disk substrates, etc. (for example, 0.2wIV1 with a thickness of about 1fi)
500 wm diameter or less) could not be obtained.

前記反)の原因はガラスのフロート成形時における溶融
金属、通例snの接触ガラス面への浸入の影響によるも
のと推定されるが、この反りに対する画期的な対処法は
見出されていない。
The cause of the above warpage is presumed to be due to the influence of molten metal, usually sn, entering the contact glass surface during float molding of glass, but no innovative solution to this warpage has been found.

例えば、ガラスのBnn大人面研削、研摩したうえでア
ルカリイオン置換処理することが実施されているが、該
SnO接触ガラス面におけるSnの拡散層は】0〜20
p$υ、最大この層の研削研摩が必要となり、この方法
では工程が煩雑であるのみならず、そのためのガラスの
割れおよび欠陥を生じるという研削研摩自体にも問題が
あるものであって、コスト上も高価なものとなる。
For example, the Bnn large surface of glass is ground and polished, and then subjected to alkali ion replacement treatment, but the Sn diffusion layer on the SnO contact glass surface is 0 to 20
p$υ, this layer requires grinding and polishing, and this method not only requires a complicated process, but also has problems with the grinding and polishing itself, which can cause cracks and defects in the glass, and is costly. The top is also expensive.

したがって、上述の方法では光デイスク基板等にはフロ
ートガラスが採用されないものであった。
Therefore, in the above-mentioned method, float glass was not used for optical disk substrates and the like.

なお、フロートガラスを化学的に強化しようとするもの
としては、例えば、特公昭43−11106号公報およ
び特開昭58−115043号公報ならびにガラス組成
がフロートガラスに限定してないものとしては特公昭5
←17765号公報等があり、特公昭43−11106
号公報には、その表面は実質的に応力をもたないが、化
学的に低原子価状態にある元素に富む表面層をもつガラ
ス物品を形成させ、そしてこの物品の表面を、ガラスの
歪点に近いまたはそれ以下の温度において、該ガラスの
表面層中の低原子価状態の元素と反応し得る物質と接触
させて、低原子価状態の元素より高原子価状態の元素の
化合物に転化させかくしてガラス表面に圧縮層を形成さ
せる増強された破壊強度をもつガラスの製造法が記載さ
れ、溶融錫浴の表面に帯状のガラスを生成せしめるフロ
ート方式において、ガラス帯の下部表面に導入される錫
は一般にその最高原子価を示さない状態にあり、酸化第
一錫の形でガラス帯の下部表面に存在するものと考えら
れるので、ガラス帯の上部表面に酸化第−錫蒸気等を用
いて処理して、ガラス帯の上下部両表面に同等の濃度と
なるよう導入せしめて、酸化雰囲気あるいは酸化剤を用
いて、第一錫化合物を第二錫化合物への転化をさせるこ
とで、ガラス表面に圧縮層を形成せしめ、平らな変形の
少ない増強された破壊強度をもつガラスとなることが開
示されている。
Examples of methods for chemically strengthening float glass include Japanese Patent Publication No. 43-11106 and Japanese Unexamined Patent Application Publication No. 58-115043, and examples of glass compositions that are not limited to float glass include: 5
←There is Publication No. 17765, etc., and Special Publication No. 11106, 1977.
The publication discloses forming a glass article whose surface is substantially stress-free but having a surface layer rich in elements that are in a chemically low valence state, and the surface of this article is subjected to straining of the glass. At a temperature close to or below the point, the glass is brought into contact with a substance capable of reacting with the elements in the lower valence state in the surface layer, and the elements in the lower valence state are converted into compounds of the elements in the higher valence state. Thus, a method for producing glass with enhanced breaking strength is described which forms a compressed layer on the surface of the glass, which is introduced onto the lower surface of the glass band in a float process which produces a band of glass on the surface of a molten tin bath. Since tin generally does not exhibit its highest valence and is thought to exist in the form of stannous oxide on the lower surface of the glass band, tin oxide vapor or the like is used to coat the upper surface of the glass band. The glass surface is treated by introducing the same concentration into both the upper and lower surfaces of the glass strip, and converting the stannous compound into a stannic compound using an oxidizing atmosphere or an oxidizing agent. It is disclosed that a compressed layer can be formed in the glass, resulting in a glass with enhanced fracture strength with less flattening.

また特開昭58−11500号公報には、ガラスを該ガ
ラスの徐冷点から歪点までの間を少なくとも2時間かけ
て精密徐冷をし、前記ガラスの厚さ中央の残留歪を5μ
b ラスをイオン交換処理する板ガラスのイオン交換方法が
記載され、その実施例において、フロートガラスを本発
明の精密徐冷して、上・下面砂掛は研磨して平坦度を出
し、次にこのガラスを低温イオン交換法による化学強化
処理を行い、平坦度変化の少ないガラス基板が得られる
ことが開示されている。
Furthermore, in Japanese Patent Application Laid-Open No. 58-11500, the glass is precisely annealed for at least 2 hours from the annealing point to the strain point, and the residual strain at the center of the thickness of the glass is reduced to 5 μm.
b. An ion exchange method for plate glass is described in which the glass is subjected to ion exchange treatment, and in the example, float glass is precisely annealed according to the present invention, the upper and lower surfaces are polished to achieve flatness, and then this process is performed. It is disclosed that a glass substrate with little change in flatness can be obtained by chemically strengthening glass using a low-temperature ion exchange method.

さらに、特公昭54−+7765号公報には、ガラス物
品をその歪点よシ低い温度でガラス物品中の主アルカリ
金属イオンAよりイオン半径の大きいアルカリ金属イオ
ンBによ多置換してガラス物品の強度を増大せしめる方
法において、まず前段処理としてガラス物品をその歪点
以下の温度で一定時間アルカリ金属イオンB及びアルカ
リ金属イオンAを所望の比率Pを含む塩に接触せしめ、
次いで後段処理として前記温度よりは更に低い温度もし
くは前記処理時間よシは短い時間の少くとも一方を満足
する条件で前記比率Pよシは高い比率Qでアルカリ金属
イオンBを多く含む塩と接触せしめるガラス物品の処理
方法が開示されている。
Furthermore, Japanese Patent Publication No. 54-7765 discloses that the main alkali metal ions A in the glass article are replaced with alkali metal ions B having a larger ionic radius at a temperature lower than the strain point of the glass article. In the method for increasing the strength, first, as a preliminary treatment, the glass article is brought into contact with a salt containing alkali metal ions B and alkali metal ions A in a desired ratio P for a certain period of time at a temperature below its strain point,
Then, as a subsequent treatment, the salt is brought into contact with a salt containing a large amount of alkali metal ion B at a higher ratio Q than the ratio P under conditions that satisfy at least one of the following conditions: a temperature lower than the above temperature or a shorter treatment time. A method of treating glass articles is disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したように、フロートガラスを化学強化する際、前
記特公昭43−11106号公報に開示されているよう
にフロートガラス帯の上・下部両表面における酸化第一
錫を同一濃度にし、この酸化第一錫を酸化第二錫に転化
した程度では、平らさは得られたとしてもかな9小さな
表面圧縮応力値しか得られず、しかも破壊強度も必ずし
も充分なものとはいえないものであり、むしろ表面圧縮
応力は極めて小さいので化学強化ガラスとは言い難いも
のであり、前記特開昭58−115043号公報に開示
されているようにフロートガラスの表面、少くともその
溶融錫接触面を研削、研磨し、北拡散層を除去しないか
ぎり、該ガラスの反シ等の発生を阻止して本来の化学強
化製品とすることはできないものであり、この方法では
フロートガラスの火造り面を活かした未研磨のフロート
ガラスでは光デイスク用基板、フォトマスク用ガラス基
板、各種ディスプレイ・ディバイス部材等に適用し得な
いか適用できたとしても不充分なものでアシ、前記特公
昭54−17765号公報に開示されている方法で、フ
ロートガラスを化学強化した場合、反りの発生に対する
解消効果は得られないものである。すなわち前段と後段
の処理を行ってもその反りを制御することはできないも
のである。
As mentioned above, when chemically strengthening float glass, the stannous oxide on both the upper and lower surfaces of the float glass band is made to have the same concentration as disclosed in the above-mentioned Japanese Patent Publication No. 11106/1983, and this stannous oxide is By converting tin to stannic oxide, even though flatness can be obtained, only a small surface compressive stress value can be obtained, and the fracture strength cannot necessarily be said to be sufficient. Since the surface compressive stress is extremely small, it can hardly be called chemically strengthened glass.As disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-115043, the surface of float glass, at least the surface in contact with molten tin, is ground and polished. However, unless the north diffusion layer is removed, it is not possible to prevent the occurrence of cracking in the glass and make it into the original chemically strengthened product. This float glass cannot be applied to substrates for optical disks, glass substrates for photomasks, various display device members, etc., or even if it can be applied, it is insufficient. If float glass is chemically strengthened using the method described above, the effect of eliminating warpage cannot be obtained. In other words, the warpage cannot be controlled even if the preceding and subsequent processes are performed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来のかかる欠点に鑑みてなしたものであ夛
、機械的研磨をせずに、フロートガラス独特の火造り表
面を活かそうとすると平担度および強化度がきびしくて
採用されなかった分野においても充分使用されるような
化学強化したフロートガラスを提供するものである。
The present invention was developed in view of the above-mentioned drawbacks of the conventional glass.However, if an attempt was made to take advantage of the unique fire-shaped surface of float glass without mechanical polishing, the degree of flatness and reinforcement would be severe, and it was not adopted. The present invention provides a chemically strengthened float glass that can be used satisfactorily in various fields.

すなわち、本発明は、フロート方式で製造され、加工し
た板状体を表面研磨せずに化学強化したフロートガラス
について、該ガラスの表面圧縮応力値が25〜I 2 
okfttJ 、反り量が±0.4μm1an以内であ
る火造り面を有することを特徴とする化学強化フロート
ガラスである。
That is, the present invention relates to float glass manufactured by a float method and chemically strengthened without surface polishing of a processed plate-like body, and the surface compressive stress value of the glass is 25 to I2.
okfttJ is a chemically strengthened float glass characterized by having a fire-shaped surface with a warping amount within ±0.4 μm1an.

ここで、表面圧縮応力値は東芝硝子製の表面応力計で測
定した数値であり、表面圧縮応力値を25〜J 20k
v/1R1jに限定したのは、25ky/−未溝では、
強化板ガラスとして満足されず、例えばボールテスト、
曲げ破壊強度等も小さくなシ、化学強化ガラスとして評
価を受けがたいものであシ、120 kg/rlIiを
超えると反シ量を修正するための前処理時間が長くなシ
コスト高となるだけでなく、フロートガラスの火造り表
面の良さが薄らぐ、あるいは例えばヘイズ(くもシ)が
出る等の可能性があシ、反シ量に対しても本発明による
制御がし難いものとなシ、その限定範囲をも超えるもの
となりやすくなシ、またそのガラスの複屈折量が増える
ため電子材料用基板等の分野で一部使用できなくなるよ
うになυ、さらにまたフロートガラスとしての組成成分
のうち、例えばNano、Ll、0あるいはZrO2等
の表面圧縮応力値に影響を与える成分を大幅に増量する
必要が生じ、フロートガラス方式での製造上極めて困難
なものとなる等実用上も問題を生じ、種々の障害が発生
するためである。なお、表面圧縮応力値として好ましい
範囲は35〜”kg/yxaである。一方反り量はDK
KTAK[(5LOAN社製)等で測定した数値であり
、反り量を±0.4μm1an以内に限定したのは、フ
ロートガラスの火造り表面を保持し活かして充分な強度
を得る処理のなかで±0.4μm1cm以内を超えると
電子材料用基板等として使用できないものとなるためで
ある。
Here, the surface compressive stress value is a value measured with a surface stress meter manufactured by Toshiba Glass.
The limit to v/1R1j is 25ky/-Mimizo,
If the tempered plate glass is not satisfied, for example, ball test,
The bending fracture strength is also low, making it difficult to be evaluated as chemically strengthened glass, and if it exceeds 120 kg/rlIi, the pretreatment time to correct the amount of shear will be long, which will increase the glass cost. However, there is a possibility that the quality of the flame-forming surface of the float glass may deteriorate, or for example, haze may appear, and it is difficult to control the amount of anti-silt using the present invention. Moreover, due to the increase in the amount of birefringence of the glass, it can no longer be used in some fields such as substrates for electronic materials.Furthermore, among the composition components of float glass, For example, it becomes necessary to significantly increase the amount of components that affect the surface compressive stress value, such as Nano, Ll, 0, or ZrO2, which causes practical problems such as extremely difficult manufacturing using the float glass method, and various problems arise. This is because failures occur. In addition, the preferable range for the surface compressive stress value is 35~''kg/yxa.On the other hand, the amount of warpage is DK
These are the values measured with KTAK (manufactured by 5LOAN), etc., and the reason why the amount of warpage was limited to within ±0.4 μm 1 an is that ± This is because if the thickness exceeds 0.4 μm or less, it cannot be used as a substrate for electronic materials, etc.

なお反り量として好ましい範囲は±0.2μm1crn
以内である。さらにフロートガラス表面は一種の大造シ
研磨となっていて表面状態が最もすぐれているので、こ
れを活かした化学強化物品とすることができるものであ
る。
The preferred range for the amount of warpage is ±0.2μm1crn
Within Furthermore, the surface of the float glass is a type of large-scale polishing and has the best surface condition, so it can be made into a chemically strengthened article by taking advantage of this.

本発明のフロートガラスの組成成分についてはソーダ石
灰系、ホウケイ酸系、アルミナケイ酸系ガラス等である
が、フロート方式によって製造できるものであればとく
に限定する必要ないものであり、好ましくはンーダ石灰
系フロート板ガラス組成、すなわち、重量%で5in2
6B−75%A15o@ 0〜5% C!a05〜15
% MgO0〜5% Nano I o〜2o%に、O
0〜5%等の成分から成シ、これにFe2O3、As2
O3、Tie、 、OeO@その他の微量成分が加わる
組成である。加工した板状体とは平板でも曲げ板でもよ
く種々の形状を包含することはいうまでもない。
The compositional components of the float glass of the present invention include soda-lime-based, borosilicate-based, alumina-silicate-based glasses, etc., but there is no need to limit them as long as they can be manufactured by the float method, and soda lime is preferred. System float plate glass composition, i.e. 5in2 by weight%
6B-75%A15o@0~5%C! a05-15
% MgO0~5% Nano I o~2o%, O
Composed of 0 to 5% of components such as Fe2O3 and As2.
The composition includes O3, Tie, OeO@, and other trace components. It goes without saying that the processed plate-like body may be a flat plate or a bent plate, and includes various shapes.

また板厚については、とくに限定する必要はなないが、
3?a以下ことに2咽以下のものが好ましく顕著な効果
をもたらすものである。
There is no need to limit the thickness of the plate, but
3? Those with a diameter of less than a, especially those with a diameter of 2 or less are preferable and bring about remarkable effects.

本発明の化学強化フロートガラスを得るための方法とし
てはとくにこだわらないが、例えば、本出願人が先に提
案した特願昭60−44926に記載の保持温度350
〜650℃のNaイオンを含む溶融塩中に0.5〜10
0時間浸漬処理後、化学強化するフロートガラスの化学
強化方法、特願昭60−47368に記載のNaイオン
を含む無機塩をフロートガラスの溶融金属接触面に塗着
し、380〜650℃の温度で0.1〜70時間加熱処
理後、化学強化するフロートガラスの化学強化方法、特
願昭60−240430に記載の保持温度350〜65
0℃のLl イオンを含む溶融塩中またはLl  イオ
ンとNaイオンを含む混合溶融塩中に0,01〜50 
時間浸漬処理後、化学強化するフロートガラスの化学強
化方法、および特願昭60−240431に記載のL1
イオン含有無機塩またはL1イオンとNaイオン含有混
合無機塩をフロートガラスの溶融金属接触面に塗着し、
380〜650℃で0.01〜3−間処理後、化学強化
するフロートガラスの化学強化方法等があり、なかでも
前述の機械的研磨をしない通常のフロートガラスの表面
に対して、該ガラス組成中のアルカリ成分と同種のアル
カリイオン、例えばNaイオンあるいはL1イオンを含
む溶融塩または混合溶融塩を用いて、該ガラスの表裏両
表面ないし該ガラスの板成形時の溶融錫接触面のみのど
ちらかに、気相法、塗布、浸漬あるいは塗着等の手段で
、約350〜650℃の温度範囲で0.01〜100時
間処理後、低温型または高温型イオン変換法による化学
強化を行う方法が好ましい。とくに低温型イオン交換法
を行うのが好ましいが、場合によっては高温型でもさし
つかえがないことは言うまでもない。
Although the method for obtaining the chemically strengthened float glass of the present invention is not particularly limited, for example, the holding temperature of 350
0.5-10 in molten salt containing Na ions at ~650°C
After the immersion treatment for 0 hours, an inorganic salt containing Na ions, which is described in Japanese Patent Application No. 60-47368, is applied to the molten metal contact surface of the float glass at a temperature of 380 to 650°C. A method for chemically strengthening float glass, which is chemically strengthened after heat treatment for 0.1 to 70 hours at a holding temperature of 350 to 65, as described in Japanese Patent Application No. 60-240430.
0.01 to 50 in a molten salt containing Ll ions or a mixed molten salt containing Ll ions and Na ions at 0°C.
Method for chemically strengthening float glass after time immersion treatment, and L1 described in Japanese Patent Application No. 60-240431
Applying an ion-containing inorganic salt or a mixed inorganic salt containing L1 ions and Na ions to the molten metal contact surface of the float glass,
There is a method of chemically strengthening float glass, which is chemically strengthened after being treated at 380 to 650°C for 0.01 to 3 hours, and in particular, the glass composition is Using a molten salt or mixed molten salt containing the same type of alkali ion as the alkali component in the glass, for example, Na ion or L1 ion, either the front and back surfaces of the glass or only the surface in contact with molten tin during plate forming of the glass Another method is to chemically strengthen the material using a low-temperature or high-temperature ion conversion method after treatment at a temperature range of approximately 350 to 650°C for 0.01 to 100 hours by means such as vapor phase method, coating, dipping, or coating. preferable. It is particularly preferable to use a low-temperature ion exchange method, but it goes without saying that a high-temperature method may also be used depending on the case.

なお曲げ板ガラスについての反シ量は例えばフロートガ
ラスの曲げ加工後を基準形状とし、化学強化処理後の変
形を測定し、その変形量をいうものである。
Note that the amount of deformation for bent plate glass is the amount of deformation obtained by measuring the deformation after chemical strengthening treatment using, for example, the standard shape of float glass after bending.

また、反シ量とは前記板状体の任意の長さ1譚当シの反
り量の測定値あるいは前記板状体の径または長さを2乗
した数値を比例係数として計算した換算値(μm/cm
単位で少数点第2位を四捨五入した数値)をいうもので
ちり、例えば30cm径の円盤状基板であれば、30c
mfipの反υ量を測定して、その測定値が0.2#I
であったとすると、0.2X(1/900):0.00
022−/iキ0.2 p m/c17!を反り量とし
て採用するものである。
In addition, the amount of warpage is the measured value of the amount of warpage per arbitrary length of the plate-like body, or the converted value calculated by using the square of the diameter or length of the plate-like body as a proportional coefficient ( μm/cm
For example, if it is a disk-shaped board with a diameter of 30 cm, it is 30 cm.
Measure the amount of reaction υ of mfip, and the measured value is 0.2#I
If so, 0.2X (1/900): 0.00
022-/iki0.2 p m/c17! is adopted as the amount of warpage.

〔作 用〕[For production]

前述したとおり、本発明の化学強化フロート板ガラスに
よって、とくに3咽程度の板厚よシ薄くなるにしたがっ
て風冷強化法では安価な強化ガラスが得られにくいとい
う問題を含め、化学強化することによって生じるフロー
トガラスでの反シの問題について、フロートガラスの成
形時に生じる上下両面での錫拡散層の深さおよび錫分布
量の差等によって化学強化時例えばカリウムイオンを用
いての置換の際、このカリウムイオンの置換量に差が生
じることに着目して本発明のようにカリウムイオンの拡
散を結果的にガラスの上下両面で制御することで、充分
なる強化度をもたらすなかで反シ量を表面加工なしでほ
ぼ生板に近い数値内に制御して所要の化学強化フロート
ガラス製品を得ることができるものとなるとともに、研
磨等せずに表面あらさ、面平行性および平滑性等のフロ
ートガラスの本来の特性を活かせるものとなシ、さらに
より薄く比較的大面積でしかも高強度であって反りがな
い等高精密形状でしかも高平滑性である板状強化ガラス
が要求されつつあるなかで、これに答える化学強化フロ
ートガラスを提供し得るものであって、ディスプレイ等
はもちろん反シ量が1m厚さで0.2rMV/300−
以下というようがディスク基板の仕様をも満足するもの
となり、さらに種々の分野に広く採用できるものとな石
ものであシ、その製造歩留等も大きく向上するという特
徴を有するものである。
As mentioned above, the chemically strengthened float glass of the present invention has a problem that arises due to chemical strengthening, including the problem that it is difficult to obtain an inexpensive tempered glass using the air-cooling strengthening method, especially as the plate thickness becomes thinner than about 3 mm. Regarding the problem of anti-oxidation in float glass, due to the difference in the depth of the tin diffusion layer and the amount of tin distribution on both the upper and lower surfaces that occur when forming the float glass, the potassium By focusing on the fact that there is a difference in the amount of ion substitution, as in the present invention, by controlling the diffusion of potassium ions on both the top and bottom surfaces of the glass, the surface treatment can reduce the amount of ions while providing a sufficient degree of reinforcement. It is possible to obtain the required chemically strengthened float glass product by controlling the values to be close to those of raw glass without polishing, and also to improve the original characteristics of float glass such as surface roughness, plane parallelism, and smoothness without polishing. With the growing demand for flat tempered glass that is thinner, has a relatively large area, has high strength, has a contoured precision shape that does not warp, and is highly smooth. We can provide a chemically strengthened float glass that meets this need, and can be used not only for displays, etc., but also for displays, etc., and has a tensile strength of 0.2rMV/300-
The following features satisfy the specifications of the disk substrate, can be widely adopted in various fields, and greatly improve the manufacturing yield.

〔実施例〕〔Example〕

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

】1上ユ 重量%でSin、 72.30%、Al、0.1.70
%、Fe2O30,I 0%、Ca07.7o%、Mg
O175%、Na、OI 3. O0%、K2O1,O
0%その他の組成の板厚約1.】rrr!nの大きさが
直径約300を悄のフロートガラスの円盤状基板を用い
、先ず該ガラス基板の表面を洗浄してホルダーにセット
し、徐々に前記基板を約550℃の温度に保持されてい
る硝酸すl−IJウム溶融塩浴中に約1時間ホルダーご
と浸漬処理した後、該浴槽から取出し前記基板の表面を
洗浄乾燥する。該ホルダーに再び前記基板をセットし、
約490℃の温度に保持されている硝酸カリウム溶融塩
浴中に前記ホルダーごと約2.5時間浸漬し、前記ガラ
ス基板表面層中のナトリウムイオンとカリウムイオンを
イオン交換し、該ガラス基板懺面層に圧縮応力層を形成
せしめ、前浴槽から取出し洗浄乾燥して化学強化フロー
トガラス基板を得た。
] 1% by weight Sin, 72.30%, Al, 0.1.70
%, Fe2O30, I 0%, Ca07.7o%, Mg
O175%, Na, OI 3. O0%, K2O1, O
0%Other composition plate thickness approx. 1. ]rrr! A disk-shaped float glass substrate with n of about 300 in diameter was used. First, the surface of the glass substrate was cleaned and set in a holder, and the substrate was gradually maintained at a temperature of about 550°C. After immersing the holder in a molten sodium nitrate bath for about 1 hour, the substrate was taken out from the bath and the surface of the substrate was washed and dried. Set the substrate on the holder again,
The holder is immersed in a potassium nitrate molten salt bath maintained at a temperature of about 490° C. for about 2.5 hours to exchange sodium ions and potassium ions in the glass substrate surface layer, and the glass substrate surface layer A compressive stress layer was formed on the glass, which was taken out from the front bath, washed and dried to obtain a chemically strengthened float glass substrate.

このようにして得られた多数のガラス基板を種々の特性
について調べた。その結果、化学強化度として、表面応
力針(東芝硝子製)を用いて測定したところ表面圧縮応
力値は70〜80 kLyll(であシ、反り量として
はDIKTAK[(SLOAN社製の形状測定器)等を
用いて測定したところ、その最大値は一〇−1〜+02
11m/Cm(−0,1〜KJ:2gay’300 m
径)でおり、曲げ破壊強度としては同心円負荷曲げ法を
用いて測定したところ50〜80kiII/m7で、1
、さらに表面状態については光学顕微鏡(x+OO)で
観察した結果処理前とほとんど変わらない状態であった
。得られた化学強化フロートガラス円盤状基板はソリ、
うねシが殆んど観察されない平面性のよい高強度で高密
度・高精度用光デイスクガラス基板として採用し得た。
A large number of glass substrates thus obtained were examined for various properties. As a result, the degree of chemical strengthening was measured using a surface stress needle (manufactured by Toshiba Glass), and the surface compressive stress value was 70 to 80 kLyll. ) etc., the maximum value was 10-1 to +02
11m/Cm (-0,1~KJ:2gay'300m
diameter), and the bending fracture strength was 50 to 80 kII/m7 when measured using the concentric circle load bending method, and 1
Furthermore, the surface condition was observed under an optical microscope (x+OO) and was found to be almost the same as before treatment. The obtained chemically strengthened float glass disc-shaped substrate is warped,
It has good flatness and high strength with almost no ridges observed, and could be used as a high-density, high-precision optical disk glass substrate.

実施例2 重量%で5iO172,40%、Alto、o、 15
96%Fe203o、o 9%、CaO3,65%、M
g04.20%、Nano l 3.’ 80%、K2
O0,05%、その他の組成の板厚的1.3m  の大
きさが直径約30−のフロートガラスの円盤状基板を用
い、先ず該ガラス基板の表面を洗浄してホルダーに該フ
ロートガラスの板成形時の溶融錫接触面を下側にしてセ
ットし、徐々に前記基板を約500℃の温度に保持され
ている硝酸ナトリウム溶融塩浴の表層部に前記基板の溶
融錫接触面を接触浸漬して約5時間処理した後、該浴槽
からホルダーごと取出し、前記基板の表面を洗浄乾燥す
る。化学強化についての処理は実施例】と同様に実施し
化学強化フロートガラス基板を得た。
Example 2 5iO172,40% by weight, Alto, o, 15
96% Fe203o, o 9%, CaO3, 65%, M
g04.20%, Nano l 3. '80%, K2
Using a disk-shaped float glass substrate with a thickness of 1.3 m and a diameter of approximately 30 mm, the surface of the glass substrate is first cleaned, and the float glass plate is placed in a holder. The substrate is set with the molten tin contact surface facing downward, and the molten tin contact surface of the substrate is gradually immersed in the surface layer of a sodium nitrate molten salt bath maintained at a temperature of about 500°C. After processing for about 5 hours, the holder was taken out from the bath, and the surface of the substrate was washed and dried. The process for chemical strengthening was carried out in the same manner as in Example] to obtain a chemically strengthened float glass substrate.

実施例1と同様に得られた多数のガラス基板を種々の特
性について調べた結果、表面圧縮応力値は70〜90に
?/rtL反シ量の最大値は−0,1〜+0.2fi−
7cm(−0,1〜+ 0.2Wm/300rrrm径
)、曲げ破壊強度は55〜80に97mtcあった。さ
らに表面状態についても基板の表裏両表面とも処理前と
ほぼ同一で不変であった。
As a result of examining various properties of a large number of glass substrates obtained in the same manner as in Example 1, the surface compressive stress value was found to be between 70 and 90? The maximum value of /rtL anti-shi amount is -0.1 to +0.2fi-
7cm (-0.1~+0.2Wm/300rrrm diameter), the bending fracture strength was 97mtc in the range of 55-80. Furthermore, the surface condition of both the front and back surfaces of the substrate remained unchanged, being almost the same as before treatment.

実施例1と同様に光デイスクガラス基板として採用し、
平面性が非常によく高強度で高密度・高精度用に適する
ものとなった。
Adopted as an optical disk glass substrate as in Example 1,
It has excellent flatness and high strength, making it suitable for high-density and high-precision applications.

なお、さらに表面圧縮応力値をI 2 oky/rtt
aに近ずけるには、例えばガラス組成中のNano成分
を約15.00重量%に増量する等で達成できるもので
ある。なお反シ量のマイナス表示は、溶融金属面に接触
する側が凸であることを示す。
Furthermore, the surface compressive stress value is I 2 oky/rtt
In order to approach the value a, it can be achieved, for example, by increasing the amount of Nano component in the glass composition to about 15.00% by weight. Note that a negative value for the amount of reciprocity indicates that the side that contacts the molten metal surface is convex.

1沫九 実施例】と同一のフロートガラスを用いて、硝酸ナトリ
ウムによる浸漬処理をせずにそのまま、他の条件につい
ては実施例と同一として化学強化処理をし、従来の化学
強化ガラス基板を得た。
A conventional chemically strengthened glass substrate was obtained by using the same float glass as in Example 1 and chemically strengthening it without dipping it in sodium nitrate, with the other conditions being the same as in Example. Ta.

実施例と同一の測定機器を用いて測定した結果、表面圧
縮応力値は40〜” kg//la、反り量の最大値は
0.65〜1.2 fi−/c1n(0,65〜1.2
rrrrB/ 300蝿)、曲げ破壊強度は30〜5 
oky/、4  であシ、さらに表面状態については実
施例とほぼ同一であった。
As a result of measurement using the same measuring equipment as in the example, the surface compressive stress value was 40~'' kg//la, and the maximum amount of warpage was 0.65~1.2 fi/c1n (0.65~1 .2
rrrrB/300 flies), bending fracture strength is 30-5
oky/, 4, and the surface condition was almost the same as in the example.

この従来の化学強化ガラス基板は、特に反り量が大きく
光デイスク基板に採用できなかった。
This conventional chemically strengthened glass substrate had a particularly large amount of warpage and could not be used as an optical disk substrate.

〔発明の効果〕〔Effect of the invention〕

前述した本発明の実施例と従来例からも明らかなように
、本発明によってフロートガラスの火造り研磨で平面性
の良さを活かし、反り量を未化学強化物品とほぼ同一形
状といえる程度に減少して化学強化した物品であり、表
面圧縮応力値および曲げ破壊強度についても充分なもの
と々る化学強化フロートガラス物品であるので、従来採
用されなかった分野でも採用できる物品である。なお本
発明の化学強化フロートガラスにおける表面からの圧縮
応力層の深さについてはKPMA による測定で20μ
m以上が得られているもので、1)、貴簡硬度等につい
ても向上するものである。
As is clear from the above-mentioned embodiments of the present invention and conventional examples, the present invention takes advantage of the good flatness of float glass by fire polishing, and reduces the amount of warpage to the extent that it can be said to have almost the same shape as a non-chemically strengthened article. It is a chemically strengthened float glass article with sufficient surface compressive stress value and bending fracture strength, so it can be used in fields where it has not been used conventionally. The depth of the compressive stress layer from the surface of the chemically strengthened float glass of the present invention is 20 μm as measured by KPMA.
m or higher, and 1), Kikan hardness, etc. are also improved.

なおフロート方式以外の板成形法で製造された板ガラス
はいずれも狭面状態がフロートガラスよシ悪く、高品位
の物品については光面研磨をよぎなくされることがある
ものであシ、本発明のものはこれよりすぐれたものであ
る。
It should be noted that plate glass manufactured by a plate forming method other than the float method has a narrow surface that is worse than that of float glass, and high-quality products may not be able to undergo optical surface polishing. The one is better than this.

以上のように、本発明の化学強化フロートガラスは、従
来のフロートガラスの化学強化物品では解決し得なかっ
た反りを解決しているもので、高強度で、平坦度および
平滑度が極めてよい製品を安定して安価な高品位のもの
として供給できるので、電子材料分野、とくに光デイス
ク基板等あるいは車輌用から建築用等まで広い分野に薄
板を含め採用できるようKなるという卓劾を奏するもの
である。
As described above, the chemically strengthened float glass of the present invention solves the warpage that could not be solved with conventional chemically strengthened float glass products, and is a product with high strength and extremely good flatness and smoothness. Since it can be stably supplied as a low-cost, high-quality product, it has the potential to be used in the electronic materials field, especially in a wide range of fields from optical disk substrates, to vehicles to architecture, etc., including thin sheets. be.

Claims (1)

【特許請求の範囲】[Claims] フロート方式で製造され、加工した板状体を表面研磨せ
ずに化学強化したフロートガラスについて、該ガラスの
表面圧縮応力値が25〜120kg/mm^2、反り量
が±0.4μm/cm以内である火造り面を有すること
を特徴とする化学強化フロートガラス。
Regarding float glass manufactured by the float method and chemically strengthened without surface polishing, the surface compressive stress value of the glass is 25 to 120 kg/mm^2, and the amount of warpage is within ±0.4 μm/cm. A chemically strengthened float glass characterized by having a fire-molded surface.
JP61032864A 1986-02-19 1986-02-19 Chemically strengthened float glass Expired - Fee Related JPH0772093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032864A JPH0772093B2 (en) 1986-02-19 1986-02-19 Chemically strengthened float glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032864A JPH0772093B2 (en) 1986-02-19 1986-02-19 Chemically strengthened float glass

Publications (2)

Publication Number Publication Date
JPS62191449A true JPS62191449A (en) 1987-08-21
JPH0772093B2 JPH0772093B2 (en) 1995-08-02

Family

ID=12370717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032864A Expired - Fee Related JPH0772093B2 (en) 1986-02-19 1986-02-19 Chemically strengthened float glass

Country Status (1)

Country Link
JP (1) JPH0772093B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
CN104015118A (en) * 2014-05-09 2014-09-03 苏州市智诚光学科技有限公司 Technology for machining float glass protection cover plates with low warping degree
JP2014218427A (en) * 2013-05-06 2014-11-20 ショット アクチエンゲゼルシャフトSchott AG Method for controlling warp of chemically strengthened glass sheet, and glass sheet producible by the same
US9663396B2 (en) 2012-03-26 2017-05-30 Asahi Glass Company, Limited Glass sheet capable of being inhibited from warping through chemical strengthening
US9944555B2 (en) 2013-09-25 2018-04-17 Asahi Glass Company, Limited Method for producing glass sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115072A (en) * 2006-10-10 2008-05-22 Nippon Electric Glass Co Ltd Reinforced glass substrate
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
JPWO2013099620A1 (en) * 2011-12-26 2015-04-30 旭硝子株式会社 Method for reducing warpage of glass substrate due to chemical strengthening treatment, and method for producing chemically strengthened glass substrate
US9090501B2 (en) 2011-12-26 2015-07-28 Asahi Glass Company, Limited Method for reducing warpage of glass substrate caused by chemical strengthening process, and method for producing chemically strengthened glass substrate
US9663396B2 (en) 2012-03-26 2017-05-30 Asahi Glass Company, Limited Glass sheet capable of being inhibited from warping through chemical strengthening
JP2014218427A (en) * 2013-05-06 2014-11-20 ショット アクチエンゲゼルシャフトSchott AG Method for controlling warp of chemically strengthened glass sheet, and glass sheet producible by the same
US9944555B2 (en) 2013-09-25 2018-04-17 Asahi Glass Company, Limited Method for producing glass sheet
CN104015118A (en) * 2014-05-09 2014-09-03 苏州市智诚光学科技有限公司 Technology for machining float glass protection cover plates with low warping degree

Also Published As

Publication number Publication date
JPH0772093B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
EP3808711B1 (en) Chemically tempered glass-ceramic article for electronic equipment cover plate
JP7336440B2 (en) Ion-exchangeable transparent garnite-spinel glass-ceramics with high hardness and modulus
JP7258555B2 (en) High-strength ultra-thin glass and manufacturing method thereof
JP2023078213A (en) Asymmetric stress profile for low deflection and high damage resistant glass article
CN111615501A (en) Black lithium silicate glass ceramic
TWI756171B (en) Glass sheet capable of having controlled warping through chemical strengthening
CN110655304B (en) Glass capable of effectively improving chemical strengthening warping property
US20180079684A1 (en) Chemically strengthened glass
JPH0151458B2 (en)
JPS62191449A (en) Chemically strengthened float glass
WO2022081457A1 (en) Glass-based articles and properties thereof
JPS62241845A (en) Method for holding glass plate
JPH0768051B2 (en) Method of chemically strengthening float glass
JPS62100458A (en) Method for chemically strengthening float glass
TW202028139A (en) Glass product which has three-dimensional shape and method for manufacturing same, and chemically strengthened glass product and method for manufacturing same
JPS61209930A (en) Chemical tempering process for float glass
CN111615502B (en) Black beta-spodumene glass ceramic with optimized color packing
RU2778750C1 (en) Product made of glass-crystal material and glass-crystal material for the closing plate of an electronic device
JPS62288141A (en) Production of crystallized glass article
JPS61209929A (en) Chemical tempering process for float glass
JPH0660039B2 (en) Glass chemical strengthening method
TW202028144A (en) Black beta-spodumene lithium silicate glass ceramics
JPS62275045A (en) Method for chemically reinforcing polished glass
JPS62100460A (en) Method of chemically strengthening float glass
TW202313506A (en) Glass compositions having improved mechanical durability and low characteristic temperatures

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees