JPS63205102A - Specific component separation device - Google Patents

Specific component separation device

Info

Publication number
JPS63205102A
JPS63205102A JP62036593A JP3659387A JPS63205102A JP S63205102 A JPS63205102 A JP S63205102A JP 62036593 A JP62036593 A JP 62036593A JP 3659387 A JP3659387 A JP 3659387A JP S63205102 A JPS63205102 A JP S63205102A
Authority
JP
Japan
Prior art keywords
pressure
temperature
section
solvent
specific component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62036593A
Other languages
Japanese (ja)
Other versions
JPH0620488B2 (en
Inventor
Masato Moritoki
正人 守時
Kazuo Kitagawa
北川 一男
Takeshi Kanda
剛 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62036593A priority Critical patent/JPH0620488B2/en
Publication of JPS63205102A publication Critical patent/JPS63205102A/en
Publication of JPH0620488B2 publication Critical patent/JPH0620488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To separate and refine specific components, especially inorganic materials with reduced energy consumption for separation by utilizing the supercritical state of a medium which is normally in a liquid phase. CONSTITUTION:A raw material mixture M is charged into a high-temperature high-pressure vessel 2 by opening a lid 5, and the vessel 2 is sealed hermitically. Then water pumped up from a storage tank T1 as a solvent is pressurized to a pressure level beyond a critical pressure by a pressure increasing device 1 while it is passed through a line l1, and is introduced into the vessel 2. After this, the water is heated up by heaters A, B to a fluid in a super critical state, and the raw material M and the fluid in the supercritical state are allowed to contact each other in the vessel 2 to promote extraction of objective components with the help of the fluid in supercritical state. Next, the fluid in supercritical state after extraction of the objective component is discharged from a discharge outlet 10, and sequentially guided into recovery containers 3a, 3b controlled to a predetermined temperature and pressure via a line l2. Finally the objective components are separated and deposited in the recovery containers 3a, 3b respectively.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超臨界状態を利用して特定成分の分離・精製を
行なう装置であって、例えばシリカ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is an apparatus for separating and purifying specific components using a supercritical state, such as silica.

フェライト、希土類酸化物、アパタイト、チタン酸塩等
の精製や放射性廃棄物からの放射性物質の回収等或は必
要により薄膜化や粉末化等に利用される特定成分分離装
置に関するものである。
The present invention relates to a specific component separation device used for refining ferrite, rare earth oxides, apatite, titanate, etc., recovering radioactive substances from radioactive waste, or forming thin films or powders as necessary.

[従来の技術] 超臨界状態を利用して物質の精製を行なう技術としでは
、例えば水晶の水熱合成が知られている。即ち水晶の水
熱合成とは、超臨界状態の水に対するシリカ(Si02
)の溶解度が、温度及び圧力の上昇に伴なって著しく上
昇する現象を利用したものであり、その原理は第2図(
S i 02−H,O系における溶解度曲線を示すグラ
フ)によって説明される。即ち第2図はシリカの水に対
する溶解度を示すグラフであり、水の臨界点(374,
9℃、 218.5気圧)を超えた領域殊に圧力100
0気圧以上の場合では、温度および圧力の変化に対して
極めて大きく溶解度が変化することが示されている。と
ころでこのような溶解度は溶媒の種類や、水の場合には
その酸性度に大きく変化するものであるが、同一の溶媒
に対しては、抽出しようとする対象の溶質の種類により
溶解度が異るのは当然である。この溶解度の差によって
原料物質の組成比とは異る組成比の溶質が超臨界状態の
流体に溶解する(例えばA点)。この超臨界流体をB点
又は0点の状態にすると溶解度は低下し、固体が析出す
る。A、B、Cの点の溶質相互の組成比は当然具るから
、A−B、A−C,B→Cの過程で析出する固体の組成
比も異なり、例えばA−8間では特定の物質を、B→C
では他の特定の物質をより大きな比率で含んだ析出物を
析出させるように条件を設定することができる。第3図
は上記原理に従って水晶の水熱合成を実施する為の装置
の具体例を示す模式図で、高圧容器内を孔あぎバッフル
を介して上部室と下部室に区画すると共に水を高圧容器
内に封入し、下部側に母材となる石英のくず結晶(母材
)を配置し、上部側に種子結晶を配置する。次いで容器
を封入した後加熱して超臨界状態とし、母材配置部(下
部側)を臨界温度を超えるより高い温度に加熱すると共
に種子結晶配置部(上部側)はこれより低い温度に保持
すると、母材配置部において多量のシリカを溶解した流
体が対流によって上昇しバッフルを通過して種子結晶配
置部へ入り、ここで次第に冷却される。冷却によって過
飽和となったシリカは種子結晶上に析出し、ここに水晶
(単結晶)が成長する。
[Prior Art] Hydrothermal synthesis of quartz crystal, for example, is known as a technique for purifying substances using a supercritical state. In other words, hydrothermal synthesis of quartz refers to the synthesis of silica (Si02
) takes advantage of the phenomenon that the solubility of
Graph showing the solubility curve in the S i 02-H,O system). That is, FIG. 2 is a graph showing the solubility of silica in water, and the critical point of water (374,
9℃, 218.5 atmospheres), especially in areas where the pressure exceeds 100 degrees
It has been shown that in the case of 0 atm or higher, the solubility changes extremely with changes in temperature and pressure. By the way, such solubility varies greatly depending on the type of solvent and, in the case of water, its acidity, but the solubility in the same solvent varies depending on the type of solute to be extracted. Of course. Due to this difference in solubility, a solute having a composition ratio different from that of the raw material dissolves in the supercritical fluid (for example, at point A). When this supercritical fluid is brought to point B or point 0, the solubility decreases and solids precipitate. Since the solutes at points A, B, and C naturally have different compositional ratios, the compositional ratios of the solids precipitated in the process of A-B, A-C, and B→C are also different. For example, between A-8, there is a certain Substance, B→C
In this case, conditions can be set to precipitate a precipitate containing a larger proportion of other specific substances. Figure 3 is a schematic diagram showing a specific example of an apparatus for carrying out hydrothermal synthesis of quartz crystals according to the above principle. It is sealed in a container, and quartz scrap crystals (base material) are placed on the bottom side, and seed crystals are placed on the top side. Then, after sealing the container, it is heated to a supercritical state, and the base material placement area (lower side) is heated to a temperature higher than the critical temperature, while the seed crystal placement area (upper side) is maintained at a lower temperature. The fluid in which a large amount of silica has been dissolved in the base material placement section rises by convection, passes through the baffle, enters the seed crystal placement section, and is gradually cooled there. Silica that becomes supersaturated by cooling precipitates on the seed crystal, and quartz crystal (single crystal) grows there.

この様な水熱合成装置を利用すれば不純物を多量に含む
母材からシリカ単結晶を育成することができる。上記装
置では同一容器の上と下とを用い、温度差を利用して下
部で抽出、上部で析出させているので、実質的にシリカ
の精製が行なわれているが時間的な効率が低く、時には
数週間をかけて極めて徐々に行なわなければならない、
その為水晶発振子の様な工業的付加価値の高い素材の合
成にのみ利用されてきた。又容器の容積に対する水の初
期注入比率によって温度と圧力の関係が大きく変化する
為溶解度が不安定となり安定した合成が難しいという問
題もあった。尚このような水の超臨界状態を用いた単結
晶育成は水熱合成と呼ばれ、特定の分野では広く利用さ
れている。
By using such a hydrothermal synthesis apparatus, silica single crystals can be grown from a base material containing a large amount of impurities. In the above device, the upper and lower parts of the same container are used, and the temperature difference is used to extract in the lower part and precipitate in the upper part, so silica is essentially purified, but the time efficiency is low, and sometimes several must be done very gradually over a period of weeks,
For this reason, it has been used only for the synthesis of materials with high industrial added value, such as crystal oscillators. There is also the problem that the relationship between temperature and pressure changes greatly depending on the initial injection ratio of water to the volume of the container, making solubility unstable and making stable synthesis difficult. Such single crystal growth using the supercritical state of water is called hydrothermal synthesis, and is widely used in specific fields.

一方超臨界状態を利用した精製技術として超臨界ガス抽
出プロセスを挙げることができる。即ち超臨界ガス抽出
プロセスは主として有機物混合系を対象とし、臨界点が
比較的低い二酸化炭素等を利用して行なわれるもので、
基本的には抽出段階と分離段階から成っている。即ち基
本フローを表わす第4図から理解される様に、超臨界ガ
ス溶剤及び原料混合物を抽出部へ投入し、溶剤によって
原料混合物中から特定成分を抽出した後該抽出溶剤を分
離部へ送給し、ここで減圧膨張させて抽出溶剤から特定
成分を分離するものであり、特定成分と分別されたガス
化溶剤はそのまま系外へ放出するかあるいは圧縮した後
抽出部へ循環させている。
On the other hand, a supercritical gas extraction process can be cited as a purification technology that utilizes a supercritical state. In other words, the supercritical gas extraction process mainly targets organic mixed systems and is carried out using carbon dioxide, etc., which has a relatively low critical point.
It basically consists of an extraction stage and a separation stage. That is, as can be understood from Fig. 4 showing the basic flow, a supercritical gas solvent and a raw material mixture are introduced into an extraction section, a specific component is extracted from the raw material mixture by the solvent, and then the extraction solvent is sent to a separation section. Here, the specific component is separated from the extraction solvent by expanding it under reduced pressure, and the gasified solvent separated from the specific component is either discharged out of the system as it is or is circulated to the extraction section after being compressed.

ところで超臨界ガス抽出プロセスは、臨界点が低い為比
較的低圧で操作することができ、且つ抽出能力の大きい
二酸化炭素等が溶剤として使用されている。しかるに二
酸化炭素(殊に超臨界状態の二酸化炭素)は有機物質の
抽出に有効であるにもかかわらず、無機物質に対する抽
出能力が十分ではなく、またガス体の圧縮工程を含んで
いる為、操作性及び装置経済において有利なものとは言
えない。
By the way, the supercritical gas extraction process can be operated at relatively low pressure because the critical point is low, and carbon dioxide or the like, which has a large extraction capacity, is used as a solvent. However, although carbon dioxide (especially carbon dioxide in a supercritical state) is effective for extracting organic substances, it does not have sufficient extraction ability for inorganic substances, and it involves a process of compressing the gas, making it difficult to operate. It cannot be said that it is advantageous in terms of performance and equipment economy.

[発明が解決しようとする問題点] 上述の様に、水熱合成プロセスはシリカ等の無機物質に
対する適応性を備えているが、これまで分m精製に利用
された例は工業的になく、一方超臨界ガス抽出プロセス
は分離効率は優れているがシリカ等の無機物質に対する
適応性に欠け、且つこの装置は水の超臨界状態における
無機物質処理に適用しがたいという問題がある。
[Problems to be solved by the invention] As mentioned above, the hydrothermal synthesis process is adaptable to inorganic substances such as silica, but there has been no example of it being used industrially for minute purification. On the other hand, although the supercritical gas extraction process has excellent separation efficiency, it lacks applicability to inorganic substances such as silica, and this apparatus is difficult to apply to the treatment of inorganic substances in the supercritical state of water.

本発明はこうした事情に着目してなされたものであって
通常液体である媒体の超臨界状態を利用して主として無
機物質を効率良く分離・精製することができ、しかも分
離に要するエネルギー消費量も少なくて済み且つ効率良
く速やかに超臨界分離を行なうことができる様な特定成
分分離装置を提供しようとするものである。
The present invention has been developed in view of these circumstances, and makes it possible to efficiently separate and purify mainly inorganic substances by utilizing the supercritical state of a normally liquid medium, while reducing the energy consumption required for separation. It is an object of the present invention to provide a specific component separation device that can perform supercritical separation efficiently and quickly with a small amount of equipment.

[問題点を解決する為の手段] しかして本発明は、液体溶媒を臨界圧力以上に加圧して
供給することのできる加圧供給部;該加圧供給部の液体
溶媒出口と連結され、内部を臨界温度及び臨界圧力以上
に保持することのできる高温高圧部;高温高圧部から超
臨界流体が流出した時に圧力の低下を防ぐように前記加
圧供給部を作動せしめる圧力調整機構;並びに該高温高
圧部の出口と連結され、該高温高圧部より低い温度及び
/又は圧力に制御された回収部からなる点に要旨を有す
るものである。
[Means for Solving the Problems] The present invention provides a pressurized supply section that can supply a liquid solvent under pressure above a critical pressure; a high-temperature, high-pressure section capable of maintaining the supercritical fluid at or above its critical temperature and critical pressure; a pressure adjustment mechanism that operates the pressurized supply section to prevent a drop in pressure when the supercritical fluid flows out from the high-temperature, high-pressure section; The main feature is that the recovery part is connected to the outlet of the high-pressure part and is controlled to a lower temperature and/or pressure than the high-temperature and high-pressure part.

[作用] 以下シリカ等の無機物質の精製分離に適用する場合を取
りあげて本発明装置の作用を説明していくが、これによ
って本発明の適用対象が制限される訳ではない。
[Function] The function of the apparatus of the present invention will be explained below by taking up the case where it is applied to the purification and separation of inorganic substances such as silica, but this does not limit the scope of application of the present invention.

シリカ等の無機物質に対する抽出溶媒としては水又はア
ルカリ性水溶液等の液体溶媒(以下水系溶媒という)が
採用され、対象とする物質によってpHは任意に調節で
きる。超臨界状態におかれた水系溶媒は前述の如く無機
物質に対して優れた抽出性を示す。そこで超臨界状態に
加温・加圧した水系溶媒を目的物質である上記無機物質
を含有した原料混合物と共存せしめ、原料混合物中の目
的物質を十分溶解・抽出し、この抽出溶媒を分離部へ送
給して減圧及び/又は冷却すると溶媒(ガス又は液体)
から溶質たる無機物質が固化析出するので目的物質を分
離することができる。ところで二酸化炭素等を抽出溶媒
とする場合には二酸化炭素の臨界点(臨界温度: 33
.1℃、臨界圧カニ73気圧)が比較的低い為溶媒を超
臨界状態まで加熱・加圧するのにそれ程大きなエネルギ
ーが必要とされず、殊に臨界温度が常温に近く臨界圧力
も低い為抽出部への溶媒供給に際して市販の高圧ガスボ
ンベ(150気圧)を使用しても十分な超臨界状態が得
られ、所期の目的を達成することは比較的容易であった
。しかるに水系溶媒を抽出溶媒とする超臨界抽出におい
ては、水の臨界点が前述の如くかなり高い為超臨界溶媒
を抽出部へ供給し、かつ所定の圧力でこの溶媒を抜きだ
すにはある程度の能力を有する圧縮機が必要となる。こ
こで圧縮対象の溶媒が二酸化炭素の様なガス体であると
大きな圧縮仕事を行なう必要があって消費エネルギーは
相当に大きなものとなる。これに対して圧縮対象が液体
である場合にはわずかな動力でも大きな圧縮仕事を行な
うことができる。この点本発明で扱う水系溶媒は常温常
圧で液体であるから圧縮機による液体圧縮を行なえば良
いこととなり、圧縮の為の消費エネルギーは極めて少な
いという利点がある。尚回収部で目的物質から分離され
た溶媒はそのまま排出してもよいが、未回収の目的物質
を若干含有しているので再び加圧して抽出部へ循環して
もよい。この場合回収溶媒は常温常圧近くに戻せば液体
となるので新規溶媒と同様に圧縮機では液体圧縮を行な
えばよく圧縮エネルギーの低減という利点を得ることが
できる。
A liquid solvent such as water or an alkaline aqueous solution (hereinafter referred to as an aqueous solvent) is used as an extraction solvent for an inorganic substance such as silica, and the pH can be adjusted as desired depending on the target substance. As mentioned above, an aqueous solvent placed in a supercritical state exhibits excellent extractability for inorganic substances. Therefore, an aqueous solvent that has been heated and pressurized to a supercritical state is made to coexist with the raw material mixture containing the above-mentioned inorganic substance, which is the target substance, to sufficiently dissolve and extract the target substance in the raw material mixture, and this extraction solvent is sent to the separation section. When pumped, depressurized and/or cooled, the solvent (gas or liquid)
Since the inorganic substance serving as the solute solidifies and precipitates, the target substance can be separated. By the way, when using carbon dioxide etc. as an extraction solvent, the critical point of carbon dioxide (critical temperature: 33
.. 1℃, critical pressure (73 atm) is relatively low, so it does not require much energy to heat and pressurize the solvent to a supercritical state.In particular, since the critical temperature is close to room temperature and the critical pressure is low, the extraction section Even if a commercially available high-pressure gas cylinder (150 atm) was used to supply the solvent, a sufficient supercritical state could be obtained, and it was relatively easy to achieve the intended purpose. However, in supercritical extraction using an aqueous solvent as the extraction solvent, the critical point of water is quite high as mentioned above, so it takes a certain amount of ability to supply the supercritical solvent to the extraction section and extract this solvent at a predetermined pressure. A compressor with If the solvent to be compressed is a gaseous substance such as carbon dioxide, it is necessary to perform a large compression work, resulting in a considerable amount of energy consumption. On the other hand, when the object to be compressed is a liquid, a large compression work can be performed even with a small amount of power. In this respect, since the aqueous solvent used in the present invention is a liquid at normal temperature and normal pressure, it is sufficient to compress the liquid using a compressor, which has the advantage that the energy consumption for compression is extremely small. The solvent separated from the target substance in the recovery section may be discharged as is, but since it contains some unrecovered target substance, it may be pressurized again and circulated to the extraction section. In this case, since the recovered solvent becomes a liquid when returned to near normal temperature and pressure, it is sufficient to perform liquid compression in a compressor in the same way as with new solvents, and the advantage of reducing compression energy can be obtained.

本発明装置は上記の様な水系溶媒を抽出溶媒とする超臨
界抽出を実施する為に構成された特定成分分離装置であ
り、前記構成に示される様に加圧供給部、高温高圧部及
び回収部を主たる要素として成り立っている。
The apparatus of the present invention is a specific component separation apparatus configured to perform supercritical extraction using an aqueous solvent as an extraction solvent, as shown in the above configuration. It is made up of the main elements.

加圧供給部は圧縮前には液体である水系溶媒を臨界圧力
以上に加圧し、高温高圧部へ供給する為の増圧部であり
、上記加圧は高温高圧部における操作温度(臨界温度以
上)において超臨界状態を保持できる所定の圧力までの
加圧を意味する。加圧手段については特に制限はないが
好ましくは増圧機又は水圧ポンプを挙げることができる
。高温高圧部は上記加圧供給部からの加圧溶媒を受は入
れて保持する部分であり、抽出用溶媒は高温高圧部の高
圧室内において超臨界状態に保持される。
The pressurizing supply section is a pressure increasing section that pressurizes the aqueous solvent, which is a liquid before compression, above the critical pressure and supplies it to the high temperature and high pressure section. ) means pressurization to a predetermined pressure that can maintain a supercritical state. There are no particular restrictions on the pressurizing means, but preferably a pressure booster or a water pressure pump can be used. The high temperature and high pressure section is a section that receives and holds the pressurized solvent from the pressurized supply section, and the extraction solvent is maintained in a supercritical state within the high pressure chamber of the high temperature and high pressure section.

加圧供給部で臨界圧力を超える圧力に加圧された溶媒を
超臨界状態に到達させる為には臨界温度を超える迄溶媒
を加熱しなければならないが、こうした加熱は高温高圧
容器で行なってもよく、又加圧供給部から高温高圧容器
へ至るまでの過程で行なってもよく、さらに両者を併用
してもよい。高温高圧容器における加熱には外熱式と内
熱式が考えられるが、エネルギーの無駄なくかつ所定の
超臨界状態を正しく維持する為には適確な温度調整が必
要とされることから容器壁を介して加熱する外熱式より
も容器内の溶媒を直接加熱する内熱式が好ましく、高温
高圧容器の高圧室内に加熱手段を内蔵することが望まれ
る。そして高温高圧容器には加圧供給部から受入れた高
圧溶媒を超臨界状態に保持しつつ連続的に排出する為の
出口が設けられている。本発明装置はこの様な高温高圧
容器内で原料混合物から目的物質を抽出するものであり
、その為高温高圧容器には原料混合物を回分式で投入す
る為の投入口あるいはスラリー状の原料混合物を連続的
に高温高圧容器内へ注入する為の注入ラインが設けられ
る。次に設けられる回収部は、高温高圧容器内で目的物
質を抽出した超臨界溶媒を受は入れて超臨界溶媒から目
的物質を分離・回収する部分であり、分離に際しては回
収部内を前記高温高圧部より低い温度及び/又は低い圧
力に調整する必要があるので回収部にはこの様な温度制
御あるいは圧力制御を行なう為の機構が付設される。但
し高温高圧部と同等の圧力を維持しつつ温度のみを低下
させる方式は、回収部に高温高圧部と同等の耐圧性を要
求する4とになると共に、熱を放散させる必要があり回
収部の設備的負担が大きくなる。但し、熱放散について
は実質的には高温高圧部から回収部に至る配管を用いて
行なうことができる。
In order for the solvent that has been pressurized to exceed the critical pressure in the pressurized supply section to reach a supercritical state, the solvent must be heated until it exceeds the critical temperature. Alternatively, it may be carried out during the process from the pressurized supply section to the high-temperature and high-pressure container, or both may be used in combination. External heating and internal heating methods can be considered for heating in high-temperature, high-pressure vessels, but in order to maintain the specified supercritical state without wasting energy, appropriate temperature control is required, so An internal heating method that directly heats the solvent in the container is preferable to an external heating method that heats the solvent via a heating device, and it is desirable to incorporate a heating means within the high pressure chamber of the high temperature and high pressure container. The high-temperature, high-pressure vessel is provided with an outlet for continuously discharging the high-pressure solvent received from the pressurized supply section while maintaining it in a supercritical state. The apparatus of the present invention extracts a target substance from a raw material mixture in such a high-temperature, high-pressure container.Therefore, the high-temperature, high-pressure container is equipped with an inlet for batchwise input of the raw material mixture or a slurry-like raw material mixture. An injection line is provided for continuous injection into the high temperature and high pressure vessel. The next recovery section is a part that receives the supercritical solvent from which the target substance has been extracted in a high-temperature, high-pressure container, and separates and recovers the target substance from the supercritical solvent. Since it is necessary to adjust the temperature and/or pressure to a lower temperature and/or pressure than the recovery section, a mechanism for performing such temperature control or pressure control is attached to the recovery section. However, the method of reducing only the temperature while maintaining the same pressure as the high temperature and high pressure section requires the recovery section to have the same pressure resistance as the high temperature and high pressure section, and it is also necessary to dissipate heat. The equipment burden increases. However, heat dissipation can be substantially achieved using piping from the high-temperature and high-pressure section to the recovery section.

また圧力の方を積極的にかつ所定の圧力まで低下させて
超臨界溶媒から目的物質を分離・回収する方式を採用す
ることもできる。この様な圧力制御型回収部としては背
圧付与装置を連結した回収部を例示することができ、又
背圧付与装置自体を可変容量形の高圧容器とし、この容
器を上記回収部としたものでもよい。回収部は単一の容
器で形成してもよいが、2以上の容器を並列に配設した
ものであってもよい。この場合には一方作動していると
きに、他方から回収物を取出すなど切換えて使用するこ
とができる。又上記説明では抽出する目的物質が1種で
あることを前提に述べてきたが、原料混合物から2種以
上の目的物質を抽出することも可能であり、この場合に
は高温高圧容器から取り出された超臨界溶媒を、分離温
度・圧力条件が段階的に低下する回収部に順次導入して
目的物質毎の溶媒に対する溶解度の差により目的物質を
相互に分別回収することができ、この為には圧力・温度
条件の異なる2以上の回収容器を直列に配設して回収部
を形成することが有効である。
It is also possible to adopt a method in which the target substance is separated and recovered from the supercritical solvent by actively lowering the pressure to a predetermined pressure. An example of such a pressure-controlled recovery section is a recovery section connected to a back pressure applying device, and a device in which the back pressure applying device itself is a variable capacity high pressure container, and this container is used as the recovery section. But that's fine. The recovery section may be formed of a single container, but may also be formed of two or more containers arranged in parallel. In this case, it is possible to switch between uses, such as taking out collected materials from the other while one is operating. Furthermore, although the above explanation has been based on the assumption that only one type of target substance is to be extracted, it is also possible to extract two or more types of target substances from a raw material mixture. By sequentially introducing the supercritical solvent into the recovery section where the separation temperature and pressure conditions are gradually lowered, the target substances can be separated and recovered from each other due to the difference in solubility of each target substance in the solvent. It is effective to form a recovery section by arranging two or more recovery containers with different pressure and temperature conditions in series.

尚背圧付与装置は、可変容量形高圧容器に限らず、オリ
フィスや絞り弁等とし、流量制御により行なうこともで
きる。たとえば回収部の人口および出口にオリフィスを
設ければ、回収部は高温高圧部より低い温度および圧力
に保持され、かつ大気圧より高い圧力に保たれる。
Note that the back pressure applying device is not limited to a variable capacity high pressure container, but may also be an orifice, a throttle valve, etc., and may be used to control the flow rate. For example, if an orifice is provided at the outlet and outlet of the recovery section, the recovery section is maintained at a lower temperature and pressure than the high temperature and high pressure section, and at a pressure higher than atmospheric pressure.

こうした回収部で目的物質を分離・回収した後の残留溶
媒は廃棄してもよいが、再度加圧供給部へ送給して臨界
圧力以上に加圧し高温高圧部へ供給してもよい。この場
合前にも述べた様に本発明で扱う抽出溶媒は水系溶媒で
あり、供給する溶媒は液体状態であるので、超臨界点以
下の妥当な温度、圧力とすれば、液体として再び加圧給
液部に供給することができる。
The residual solvent after separating and recovering the target substance in such a recovery section may be discarded, but it may also be fed to the pressurized supply section again, pressurized to a critical pressure or higher, and then supplied to the high temperature and high pressure section. In this case, as mentioned earlier, the extraction solvent used in the present invention is an aqueous solvent, and the solvent to be supplied is in a liquid state, so if the temperature and pressure are appropriate below the supercritical point, it can be re-pressurized as a liquid. It can be supplied to the liquid supply section.

[実施例] 第1図は本発明に係る特定成分分離装置を示す模式図で
、1は増圧機、2は高温高圧容器、3a、3bは回収容
器、4は背圧付与装置を夫々示す。
[Example] Fig. 1 is a schematic diagram showing a specific component separation apparatus according to the present invention, in which 1 shows a pressure intensifier, 2 shows a high temperature and high pressure container, 3a and 3b show a recovery container, and 4 shows a back pressure applying device.

高温高圧容器2は水の臨界点以上の高温・高圧に耐え得
る蓋5付の耐圧容器6で形成され、容器内にフィルター
Fを配設すると共に容器2の底部にはヒータBを内蔵し
、更に容器2の外周にもヒータAを配設している。そし
て耐圧容器6の底部に高圧溶媒導入口9が、また蓋5に
超臨界溶媒排出口10が夫々穿設されている。一方図収
容器3a、3bは夫々上部に溶媒導入口11,12、下
部に溶媒排出口13.14を有し、回収容器3aと3b
は直列に連結され、下流側の回収容器3bと背圧付与装
置4のシリンダ一部7がラインfL3で連絡されている
。モして増圧機1のシリンダ一部8と高温高圧容器2の
高圧溶媒導入口9はラインf、で連絡されると共に、高
温高圧容器2の超臨界溶媒排出口10と回収容器3aの
溶媒導入口11.はライン12で連絡され、ラインf1
1゜12には夫々ヒータC及びヒータDがラインに沿っ
て設けられている。又排出ラインにはオリフィスR1、
R2、R3が設けられており、溶媒の流れに対して抵抗
となり順次圧力が下降する。
The high-temperature and high-pressure container 2 is formed of a pressure-resistant container 6 with a lid 5 that can withstand high temperatures and high pressures higher than the critical point of water, a filter F is disposed inside the container, and a heater B is built in the bottom of the container 2. Furthermore, a heater A is also arranged around the outer periphery of the container 2. A high-pressure solvent inlet 9 is provided at the bottom of the pressure vessel 6, and a supercritical solvent outlet 10 is provided at the lid 5. On the other hand, the containers 3a and 3b have solvent inlets 11 and 12 at the top and solvent outlets 13 and 14 at the bottom, respectively, and the collection containers 3a and 3b
are connected in series, and the downstream recovery container 3b and the cylinder part 7 of the back pressure applying device 4 are connected by a line fL3. The cylinder part 8 of the pressure intensifier 1 and the high-pressure solvent inlet 9 of the high-temperature and high-pressure vessel 2 are connected by a line f, and the supercritical solvent outlet 10 of the high-temperature and high-pressure vessel 2 and the solvent inlet of the recovery vessel 3a are connected. Mouth 11. is communicated on line 12, and line f1
A heater C and a heater D are provided along the lines at 1° 12, respectively. Also, the discharge line has orifice R1,
R2 and R3 are provided and act as resistance to the flow of the solvent, causing the pressure to sequentially decrease.

この様な特定成分分離装置において、蓋5を開放して高
温高圧容器2内へ原料混合物Mを投入し、且つ容器を気
密に封鎖した後、貯留タンクT、からポンプアップした
水をライン11を経由して高温高圧容器2へ導入する。
In such a specific component separation device, after opening the lid 5 and introducing the raw material mixture M into the high-temperature and high-pressure container 2 and sealing the container airtight, water pumped up from the storage tank T is passed through the line 11. It is introduced into the high-temperature and high-pressure container 2 via the air.

尚ライン11を通過する間に水は増圧機1によって臨界
圧力を超える圧力に加圧され、且つヒータCによってか
なりの高温に加熱される。高温高圧容器2へ導入された
高温高圧水は高温高圧容器2に設置された外熱ヒータA
及び内熱ヒータBによってさらに加熱されて水の臨界点
を超え、超臨界状態の流体となる。こうした高温高圧容
器2内では原料と超臨界流体が接触して、超臨界流体に
よる目的成分の抽出が進行する。目的成分を抽出した超
臨界流体はフィルターFを通過して排出口10から排出
されラインβ2を通って回収容器3aへ導入される。
While passing through the line 11, the water is pressurized by the pressure booster 1 to a pressure exceeding the critical pressure, and is heated by the heater C to a considerably high temperature. The high-temperature, high-pressure water introduced into the high-temperature, high-pressure container 2 is supplied to an external heater A installed in the high-temperature, high-pressure container 2.
The water is further heated by the internal heater B, exceeding the critical point of water, and becomes a supercritical fluid. In the high-temperature, high-pressure container 2, the raw material and the supercritical fluid come into contact with each other, and the extraction of the target component by the supercritical fluid proceeds. The supercritical fluid from which the target component has been extracted passes through the filter F, is discharged from the discharge port 10, and is introduced into the recovery container 3a through the line β2.

ここで回収容器3a、3bは前述した様に背圧付与装置
4のシリンダ一部と連絡されており、背圧付与装置4の
ピストンの進退によって内圧が調整されている。尚オリ
フィス又は絞り弁R3等によって背圧を付与し、最終的
に溶媒を容器T2に回収してもよい。又回収容器3a、
3bには外熱式ヒータEl、E2が夫々配設され温度調
整がなされている。しかしてこのヒーターは、目的物質
の性質および回収容器の容器の圧力によっては省略する
ことができるし、場合によっては冷却することも必要と
される。ライン12を経た高温高圧水け、この様に所定
の温度・圧力に制御された回収容器3a、3bへ順次導
入され、目的物質が夫々回収容器3a、3b内に分離・
析出する。尚このときの温度、圧力は、高温高圧容器2
と回収容器3aの間ではT r > T 2及び/又は
p、>R2とし、回収容器3aと回収容器3bの間では
T 2 > T s及び/又はR2>R3とすればよく
、これによってガス又は液体となった水系溶媒から目的
物質が分離・析出する。そして回収容器3bからは目的
物質含有量の極めて少ない状態の水又は水蒸気が排出さ
れ、ライン13を経てタンクT2に貯留される。タンク
T2の水又は水蒸気は冷却又は加圧して蒸気を含まない
水とした後、増圧機1へ環流させて循環使用することが
できる。
Here, the recovery containers 3a and 3b are connected to a part of the cylinder of the back pressure applying device 4 as described above, and the internal pressure is adjusted by moving the piston of the back pressure applying device 4 back and forth. Incidentally, a back pressure may be applied by an orifice or a throttle valve R3, etc., and the solvent may finally be collected into the container T2. Also, a collection container 3a,
External heaters El and E2 are provided in 3b to adjust the temperature. However, the lever heater can be omitted depending on the nature of the target substance and the pressure of the container of the recovery container, or cooling may be required. The high-temperature, high-pressure water that passes through the line 12 is sequentially introduced into the collection containers 3a and 3b, which are controlled at a predetermined temperature and pressure in this way, and the target substances are separated and separated into the collection containers 3a and 3b, respectively.
Precipitate. In addition, the temperature and pressure at this time are as follows:
It is sufficient to set T r > T 2 and/or p, > R2 between the collection container 3a and the collection container 3a, and set T 2 > T s and/or R2 > R3 between the collection container 3a and the collection container 3b. Or, the target substance is separated and precipitated from the liquid aqueous solvent. Then, water or steam with an extremely low target substance content is discharged from the recovery container 3b, and is stored in the tank T2 via the line 13. After the water or steam in the tank T2 is cooled or pressurized to become steam-free water, it can be recycled to the pressure booster 1 and used for circulation.

尚第1図において、圧力調整装置p、c、が設けである
。これは高圧高温部の内部圧を所定の値に保持するもの
で、超臨界流体の流出にと゛もなう圧力の下降を防ぎ、
あるいは過剰な圧力の上昇を防ぐもので、増圧機を加圧
供給装置として使用する場合は増圧機に供給する油圧調
節装置、ポンプを使用する場合はリリーフ弁等が使われ
るが、圧力を検出し、電気的に加圧供給装置を制御する
ものであってもよい。
In FIG. 1, pressure regulators p and c are provided. This maintains the internal pressure of the high-pressure, high-temperature section at a predetermined value, preventing the pressure from dropping due to the outflow of supercritical fluid.
Alternatively, it prevents excessive pressure from rising.When the pressure intensifier is used as a pressure supply device, a hydraulic pressure adjustment device is used to supply the pressure to the pressure intensifier, and when a pump is used, a relief valve is used. , the pressure supply device may be electrically controlled.

又本発明装置においてはPL>R2及びR2〉P、の圧
力条件を達成する為に移送ライン中に減圧器RI + 
R2を介設しており、圧力制御は背圧付与装置と減圧器
の組合せによって行なうこととしているが、勿論いずれ
か一方で圧力制御することも可能である。
In addition, in the apparatus of the present invention, in order to achieve the pressure conditions of PL>R2 and R2>P, a pressure reducer RI + is installed in the transfer line.
R2 is provided, and the pressure control is performed by a combination of the back pressure applying device and the pressure reducer, but it is of course possible to control the pressure using either one.

又上記装置では高温高圧容器2内に内熱式ヒータBを配
設しているが、該ヒータBは高温高圧雰囲気に曝される
ので容器内の水、蒸気等との接触漏電を回避する為に十
分なシール構造を有するものでなければならず、例えば
シース形ヒータを例示することができる。さらに内容物
が酸性又はアルカリ性である場合にはシース管自体が溶
解、腐蝕する恐れがあるので内容物に合わせて妥当な耐
食性を有するシース管を使用する必要がある。さらに内
熱式ヒータを軸方向に上段、中段、下段という様に分割
配置して上下方向の温度分布を任意に定めることも可能
である。
In addition, in the above device, an internal heating type heater B is disposed inside the high temperature and high pressure container 2, but since the heater B is exposed to a high temperature and high pressure atmosphere, it is necessary to avoid electrical leakage due to contact with water, steam, etc. inside the container. The heater must have a sealing structure sufficient for this purpose, such as a sheath type heater. Furthermore, if the contents are acidic or alkaline, the sheath tube itself may dissolve or corrode, so it is necessary to use a sheath tube that has appropriate corrosion resistance depending on the contents. Furthermore, it is also possible to arbitrarily determine the temperature distribution in the vertical direction by arranging the internal heaters in an axially divided manner into an upper stage, a middle stage, and a lower stage.

その他高温高圧容器2から回収容器3a、3bへ高温高
圧流体を流出せしめる場合、移送ライン内で流体が冷却
されてライン内に目的物質が析出することがある。特に
高速で流出せしめると内部エネルギーが運動エネルギー
に変換されて流体温度が低下するなど析出の恐れが大き
い。その結果8送ラインや減圧器が析出物によフて閉塞
することがある。これを防止する為上記装置では移送ラ
インλ2に外熱式ヒータDを配設し、目的物質の冷却・
析出が起こらない様加熱している。尚該ヒータは内熱式
ヒータであれば一層好ましい。
In addition, when high-temperature and high-pressure fluid is caused to flow out from the high-temperature and high-pressure container 2 to the recovery containers 3a and 3b, the fluid may be cooled in the transfer line and the target substance may be precipitated in the line. In particular, if the fluid is allowed to flow out at high speed, internal energy will be converted to kinetic energy, which will lower the fluid temperature and cause precipitation. As a result, the feed line or pressure reducer may become clogged with deposits. To prevent this, the above device is equipped with an external heater D in the transfer line λ2 to cool and cool the target substance.
Heating is done to prevent precipitation. It is more preferable that the heater is an internal heating type heater.

[発明の効果] 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)原料混合物から無機物質を短時間に効率良く抽出
分離することができる。
(1) Inorganic substances can be efficiently extracted and separated from a raw material mixture in a short time.

(2)抽出溶媒を液状で回収し、循環使用で診るので圧
縮効率が高く、ガス圧縮を必要とするシステムに比べ消
費エネルギーを節減することができる。即ち運転コスト
を低減することができる。
(2) Since the extraction solvent is recovered in liquid form and recycled, compression efficiency is high and energy consumption can be reduced compared to systems that require gas compression. That is, operating costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の特定成分分離装置を示す模式図、第2
図は5i02−H2O系の溶解変化を示すグラフ、第3
図は水晶の水熱合成装置を示す説明図、第4図は超臨界
ガス抽出プロセスの基本的フローを示す説明図である。 1・・・増圧機     2・・・高温高圧容器3a、
3b・・・回収容器  4・・・背圧付与装置ANE・
・・ヒータ
Figure 1 is a schematic diagram showing the specific component separation device of the present invention, Figure 2 is a schematic diagram showing the specific component separation device of the present invention.
The figure is a graph showing the change in solubility of the 5i02-H2O system.
The figure is an explanatory diagram showing a crystal hydrothermal synthesis apparatus, and FIG. 4 is an explanatory diagram showing the basic flow of a supercritical gas extraction process. 1... Pressure booster 2... High temperature and high pressure container 3a,
3b... Recovery container 4... Back pressure applying device ANE・
··heater

Claims (6)

【特許請求の範囲】[Claims] (1)液体溶媒を臨界圧力以上に加圧して供給すること
のできる加圧供給部;該加圧供給部の液体溶媒出口と連
結され、内部を臨界温度及び臨界圧力以上に保持するこ
とのできる高温高圧部;高温高圧部から超臨界流体が流
出した時に圧力の低下を防ぐように前記加圧供給部を作
動せしめる圧力調整機構;並びに該高温高圧部の出口と
連結され、該高温高圧部より低い温度及び/又は圧力に
制御された回収部からなることを特徴とする特定成分分
離装置。
(1) A pressurized supply section that can pressurize and supply a liquid solvent above the critical pressure; it is connected to the liquid solvent outlet of the pressurized supply section, and is capable of maintaining the inside at a temperature above the critical temperature and critical pressure. High-temperature and high-pressure section; a pressure adjustment mechanism that operates the pressurized supply section to prevent a decrease in pressure when the supercritical fluid flows out from the high-temperature and high-pressure section; 1. A specific component separation device comprising a recovery section controlled at low temperature and/or pressure.
(2)回収部が背圧付与装置によって加圧されてなる特
許請求の範囲第1項に記載の特定成分分離装置。
(2) The specific component separation device according to claim 1, wherein the recovery section is pressurized by a back pressure applying device.
(3)回収部を直列又は並列に2個以上設けたものであ
る特許請求の範囲第1または2項に記載の特定成分分離
装置。
(3) The specific component separation device according to claim 1 or 2, wherein two or more recovery sections are provided in series or in parallel.
(4)背圧付与装置が可変容量形高圧室を含んだ高圧容
器であって、該可変容量形高圧部が回収部である特許請
求の範囲第2または3項に記載の特定成分分離装置。
(4) The specific component separation device according to claim 2 or 3, wherein the back pressure applying device is a high-pressure container including a variable-capacity high-pressure chamber, and the variable-capacity high-pressure section is a recovery section.
(5)高温高圧部内の圧力の低下を加圧供給部の作動で
補なう特許請求の範囲第1〜4項のいずれかに記載の特
定成分分離装置。
(5) The specific component separation device according to any one of claims 1 to 4, wherein the pressure drop in the high temperature and high pressure section is compensated for by the operation of the pressurized supply section.
(6)高温高圧部の高圧室内に加熱用ヒータを内蔵した
特許請求の範囲第1〜5のいずれかに記載の特定成分分
離装置。
(6) The specific component separation device according to any one of claims 1 to 5, wherein a heater is built in the high pressure chamber of the high temperature and high pressure section.
JP62036593A 1987-02-19 1987-02-19 Specific component separation device Expired - Fee Related JPH0620488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62036593A JPH0620488B2 (en) 1987-02-19 1987-02-19 Specific component separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036593A JPH0620488B2 (en) 1987-02-19 1987-02-19 Specific component separation device

Publications (2)

Publication Number Publication Date
JPS63205102A true JPS63205102A (en) 1988-08-24
JPH0620488B2 JPH0620488B2 (en) 1994-03-23

Family

ID=12474078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036593A Expired - Fee Related JPH0620488B2 (en) 1987-02-19 1987-02-19 Specific component separation device

Country Status (1)

Country Link
JP (1) JPH0620488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136048A (en) * 2011-11-30 2013-07-11 Rematec Corp High-temperature high-pressure reaction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136048A (en) * 2011-11-30 2013-07-11 Rematec Corp High-temperature high-pressure reaction system

Also Published As

Publication number Publication date
JPH0620488B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR100583581B1 (en) High-pressure delivery system for ultra high purity liquid carbon dioxide
JPH0413626B2 (en)
JPH01143601A (en) Reduction of steam due to condensation from gas stream
TWI650167B (en) Extraction method and device
US7201018B2 (en) Generation and delivery system for high pressure ultra high purity product
US6688115B1 (en) High-pressure delivery system for ultra high purity liquid carbon dioxide
JP4205052B2 (en) Hydrogen gas generator and hydrogen gas generation method
EP1183084A1 (en) Method and apparatus for concentrating slurried solids
KR970069111A (en) Method and apparatus for delivering ultra high purity helium
JPS63205102A (en) Specific component separation device
US3522152A (en) Desalination of saline water by phase separation near critical pressure of pure water
US4652675A (en) Process and device for purifying benzoic acid
JPS61286332A (en) Extraction with supercritical gas
RU2232792C2 (en) Petroleum residue deasphalting process
JP2766059B2 (en) Method for separating 2,7-dimethylnaphthalene
JPH067605A (en) Extractor using supercritical carbon dioxide
JPS63107722A (en) Method and apparatus for separating gas phase film
JPS5810121B2 (en) Substance separation and purification equipment
JPH02214503A (en) Separation by cooled crystallization
Teipel et al. Formation of fine particles with compressed gases
JPS63218204A (en) Method and device for pressure cooling crystallization
SU1006387A1 (en) Process and apparatus for desalinating water
JPH01127002A (en) Extracting method and separation by super critical fluid
JPH0412161B2 (en)
JPH02265601A (en) Method and device for pressure crystallization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees