JPH0412161B2 - - Google Patents

Info

Publication number
JPH0412161B2
JPH0412161B2 JP62033748A JP3374887A JPH0412161B2 JP H0412161 B2 JPH0412161 B2 JP H0412161B2 JP 62033748 A JP62033748 A JP 62033748A JP 3374887 A JP3374887 A JP 3374887A JP H0412161 B2 JPH0412161 B2 JP H0412161B2
Authority
JP
Japan
Prior art keywords
pressure
mother liquor
pressure chamber
nozzle
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62033748A
Other languages
Japanese (ja)
Other versions
JPS63200801A (en
Inventor
Ichiji Hatakeyama
Kazuo Kitagawa
Masato Moritoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3374887A priority Critical patent/JPS63200801A/en
Publication of JPS63200801A publication Critical patent/JPS63200801A/en
Publication of JPH0412161B2 publication Critical patent/JPH0412161B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、母液排出用の高圧配管内における結
晶の析出を防止して、圧力晶析分離操業を円滑に
遂行し得る様に改善された圧力晶析分離法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has been improved to prevent the precipitation of crystals in high-pressure piping for discharging mother liquor, and to smoothly carry out pressure crystallization separation operations. This relates to pressure crystallization separation method.

[従来の技術] 圧力晶析法とは、複数成分を含む液相またはス
ラリーからなる原料を高圧容器内へ導入し、母液
排出管路を閉鎖した状態で高圧力(たとえば1000
気圧を超える様な高圧力)を加えて特定成分の晶
析を促進させる方法であり、この操作によつて特
定成分の結晶と残留液(母液)からなる固液混合
状態が得られる。その時点で母液排出管路の閉鎖
を解除して前記固液共存状態にピストン圧力を加
え、母液をフイルタ経由で系外へ排出し、残つた
固相を圧搾しながら更に固液を分離し母液を排出
すると、高純度の特定成分を回収することができ
る。
[Prior art] The pressure crystallization method is a method in which a raw material consisting of a liquid phase or slurry containing multiple components is introduced into a high-pressure container, and the mother liquor discharge pipe is closed and the raw material is heated to a high pressure (for example, 1000
This is a method of accelerating crystallization of a specific component by applying high pressure (exceeding atmospheric pressure), and by this operation, a solid-liquid mixed state consisting of crystals of the specific component and residual liquid (mother liquor) is obtained. At that point, the mother liquor discharge pipe is unblocked, piston pressure is applied to the above-mentioned solid-liquid coexistence state, the mother liquor is discharged out of the system via the filter, and the remaining solid phase is squeezed to further separate the solid and liquid. By discharging the gas, high-purity specific components can be recovered.

たとえば第4図は圧力晶析装置を示す概略フロ
ー図であり、原料混合物Aは予備冷却槽1で適当
な温度まで冷却された後、スラリーポンプ2から
原料供給管路L1を通して圧力晶析装置3の高圧
室4内へ送り込まれる。そしてピストン5を駆動
して高圧室4内の原料を加圧し原料中の特定成分
結晶を増加もしくは生成させた後、液相成分(母
液)はスクリーンから母液排出管路L2,L3を通
して圧搾・排出し、しかる後高圧室4内に残つた
特定成分の結晶を回収するものである。図中V1
V2,V3,V4,V5は開閉弁、Nは排出ノズル、6
は排液タンク、7は加圧ユニツトを示す。
For example, FIG. 4 is a schematic flow diagram showing a pressure crystallizer, in which the raw material mixture A is cooled to an appropriate temperature in a preliminary cooling tank 1, and then passed from a slurry pump 2 to a raw material supply pipe L1 to the pressure crystallizer. 3 into the high pressure chamber 4. After driving the piston 5 to pressurize the raw material in the high pressure chamber 4 and increase or generate crystals of specific components in the raw material, the liquid phase component (mother liquor) is squeezed from the screen through the mother liquor discharge pipes L 2 and L 3 .・The crystals of the specific component remaining in the high pressure chamber 4 are recovered after the discharge. In the figure, V 1 ,
V 2 , V 3 , V 4 , V 5 are on-off valves, N is a discharge nozzle, 6
7 indicates a drain tank, and 7 indicates a pressurizing unit.

上記圧力晶析法を工程順に示すと下記の通りと
なる。
The steps of the pressure crystallization method described above are as follows.

:開閉弁V2を閉じ、開閉弁V1を開いて圧力晶
析装置3の高圧室4内へ原料混合物を供給する
工程、 :開閉弁V1,V3を閉じ、ピストン5を作動し
て原料混合物に高圧を付与して特定成分の結晶
を増加もしくは発生増加させる工程、 :開閉弁V2,V3を開き、高圧室4内の母液を
スクリーン及び母液排出管路L2,L3経由で排
出させる工程、 :ピストン5を作動して高圧室内に残つた母液
を圧搾除去する工程、 :高圧室を開放して特定成分の結晶を取出す工
程。
: Close the on-off valve V 2 and open the on-off valve V 1 to supply the raw material mixture into the high pressure chamber 4 of the pressure crystallizer 3. : Close the on-off valves V 1 and V 3 and operate the piston 5. A process of applying high pressure to the raw material mixture to increase or increase the generation of crystals of a specific component: Opening the on-off valves V 2 and V 3 and draining the mother liquor in the high pressure chamber 4 via the screen and the mother liquor discharge pipes L 2 and L 3 : A process of operating the piston 5 to squeeze out the mother liquor remaining in the high pressure chamber; : A process of opening the high pressure chamber to take out crystals of a specific component.

上記の工程を終えた後は再びの工程に戻
り、この操作を繰り返すことによつて特定成分の
分離・回収が連続的に行なわれる。第5図は上記
一連の工程を実施する際の経時的な圧力変化を概
念的に示したものである。
After completing the above steps, the process returns to the next step, and by repeating this operation, the specific components are continuously separated and recovered. FIG. 5 conceptually shows the pressure change over time during the above series of steps.

[発明が解決しようとする問題点] 本発明者らは前述の方法に準拠して圧力晶析分
離法の実用化研究を進めているが、その研究過程
で次の様な問題点に遭遇した。即ちその問題点と
は、母液排出管路L2,L3に管詰りを生じ、連続
操業が時折り中断されることであつた。本発明は
この様な問題点に鑑みてなされたものであつて、
その目的は、上記管詰りの問題を生ずることな
く、前記一連の繰り返し操業を円滑に遂行するこ
とのできる圧力晶析分離法を提供しようとするも
のである。
[Problems to be solved by the invention] The present inventors have been conducting research on the practical application of pressure crystallization separation method in accordance with the above-mentioned method, but have encountered the following problems during the research process. . That is, the problem was that the mother liquor discharge pipes L 2 and L 3 were clogged, and continuous operation was occasionally interrupted. The present invention has been made in view of these problems, and includes:
The purpose is to provide a pressure crystallization separation method that can smoothly carry out the series of repeated operations without causing the problem of pipe clogging.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明方法
の構成は、圧力を変数として特定成分の濃縮・精
製を行なう圧力晶析分離法において、高圧室内の
昇圧工程の最初からもしくは昇圧工程途中の任意
の時点から母液排出管路のノズルを開き、母液を
流出せしめながら高圧室内を所定圧力まで昇圧し
て該高圧室内に特定成分の結晶を形成し、当該圧
力もしくはその近傍の圧力で更に母液を分離した
後圧搾を行なうところに要旨を有するものであ
る。
[Means for Solving the Problems] The structure of the method of the present invention that has achieved the above object is that in a pressure crystallization separation method that concentrates and purifies a specific component using pressure as a variable, a pressure increasing step in a high pressure chamber is used. Open the nozzle of the mother liquor discharge pipe from the beginning or at any point during the pressurization process, raise the pressure in the high pressure chamber to a predetermined pressure while letting the mother liquor flow out, form crystals of a specific component in the high pressure chamber, and increase the pressure or The gist of this method is that the mother liquor is further separated at a pressure close to that level and then squeezed.

[作用及び実施例] 本発明者らは、従来技術に見られる前記問題点
を解決すべく、まずその発生原因についての究明
を行なつた。その結果次の様な事実が明らかとな
つてきた。即ち従来法で採用されている前記〜
の工程のうち特にの工程では、高圧容器内を
放圧しつつ液相成分の圧搾除去が行なわれるが、
この時点で高圧容器内に残つている液相成分の量
は少なく、また固相分の表面を減圧融解して固相
分の表面を自己洗浄する操作を付加する場合には
特定成分の一部が溶融して母液中に混合するの
で、母液排出の最終工程で排出されてくる液相成
分は特定成分濃度のかなり高いものとなつてい
る。そして特定成分結晶の取出し(工程)は、
該高濃度液相成分が第4図の高圧室4から開閉弁
V2,V3までの母液排出管路(以下単に排液管路
という)L2,L3に充満したままの状態で行なわ
れた後、引続いて原料混合物の供給(工程)、
圧力晶析(工程)及び母液の分離排出(工
程)が行なわれるが、高圧室4から開閉弁V2
V3までの前記排液管路L2,L3は高圧室4と連通
しているので、高圧室4にかかる高圧は実質的に
そのまま該排液管路L2,L3にも及んでくる。一
方該排液管路L2,L3には、前述の如く圧搾工程
の末期の高圧室4から絞り出された特定成分濃度
の高い液相成分が充満しているので、これらが前
記の工程で同時に加圧されると特定成分が該排
液管路L2,L3内で晶析し、管詰りを生ずるもの
と考えられる。この現象が生ずると母液の分離排
出(工程)が不可能になるので、たとえば作業
を中断し該管路L2,L3を加熱して管路内の析出
結晶を溶融させる等の手段を講じなければなら
ず、生産性は著しく低下してくる。
[Operations and Examples] In order to solve the above-mentioned problems found in the prior art, the present inventors first investigated the cause of their occurrence. As a result, the following facts have become clear. That is, the above-mentioned method adopted in the conventional method
In a particular step of the above steps, the pressure inside the high-pressure container is released and the liquid phase component is squeezed out.
At this point, the amount of liquid phase components remaining in the high-pressure container is small, and when adding an operation to self-clean the surface of the solid phase by melting the surface of the solid phase under reduced pressure, some of the specific components may be removed. is melted and mixed into the mother liquor, so the liquid phase component discharged in the final process of mother liquor discharge has a considerably high concentration of specific components. The extraction (process) of specific component crystals is
The high concentration liquid phase component flows from the high pressure chamber 4 in Fig. 4 to the on-off valve.
After the mother liquor discharge pipes (hereinafter simply referred to as drain pipes) up to V 2 and V 3 are carried out while L 2 and L 3 remain full, the raw material mixture is subsequently supplied ( process),
Pressure crystallization (process) and separation and discharge of the mother liquor (process) are performed, but an on-off valve V 2 ,
Since the drain pipes L 2 and L 3 up to V 3 communicate with the high pressure chamber 4, the high pressure applied to the high pressure chamber 4 is substantially directly applied to the drain pipes L 2 and L 3 . come. On the other hand, the drain pipes L 2 and L 3 are filled with the liquid phase component having a high specific component concentration squeezed out from the high pressure chamber 4 at the end of the compression process as described above, so that these liquid phase components are extracted from the high pressure chamber 4 at the end of the compression process. It is thought that when pressure is applied at the same time, specific components crystallize in the drainage pipes L 2 and L 3 and cause pipe clogging. If this phenomenon occurs, it becomes impossible to separate and discharge the mother liquor (process), so take measures such as stopping the operation and heating the pipes L 2 and L 3 to melt the precipitated crystals in the pipes. As a result, productivity will drop significantly.

そこでこの様な問題点を解消すべく色々検討を
進めるうち、前述の如く高圧室内の昇圧工程の最
初から、もしくは昇圧工程の途中の任意の時点か
ら排液管路のノズルを開き、母液を流出せしめな
がら高圧室内を所定圧力まで昇圧して該高圧室内
で特定成分の結晶を析出・増加せしめ、当該圧力
もしくはその近傍の圧力で母液を分離した後圧搾
を行なう方法を採用すれば、上記の問題点が見事
に解決されることを知つた。
Therefore, as we proceeded with various studies to solve these problems, we decided to open the drain pipe nozzle from the beginning of the pressure increase process in the high pressure chamber or at any point during the pressure increase process and drain the mother liquor. If a method is adopted in which the pressure in the high-pressure chamber is increased to a predetermined pressure to precipitate and increase the crystals of a specific component in the high-pressure chamber, and the mother liquor is separated at or near that pressure and then squeezed, the above problem can be solved. I found that the points were resolved perfectly.

即ち第1図は本発明に係る圧力晶析分離法を例
示する概略工程説明図であり、使用する装置の基
本的な構成は前記第4図の例と同様であるので、
同一部分については同一の符号を付すことにより
重複説明は割愛する。また第2,3図は本発明を
実施する際の圧力変化を概念的に示したものであ
る。本発明が従来法と異なり、且つ最大の特徴と
なつているのは、高圧室内の昇圧工程の最初から
もしくは昇圧工程途中の任意の時点から排液管路
のノズルNを開き、母液を流出せしめながら高圧
室内を所定圧力まで昇圧させるところにある。第
2図は昇圧途中のP点でノズルNを開いた例、第
3図は昇圧工程の最初からノズルNを開いた例で
あり、その後の各工程は従来例と同様である。こ
の様に排液管路に設けたノズルNを昇圧工程の最
初からあるいは昇圧工程途中から開いた場合、ノ
ズルNを開くと同時に母液の排出が始まり、前回
操作の圧搾末期に高圧室4からノズルNまでの間
の排液管路L2,L3内に充満したままで残された
高濃度液相成分は、該排液管路L2,L3内が高圧
になるまでに、高圧室4から分離排出されてくる
母液によつて排出され、該管路L2,L3内は該母
液によつて置換されることとなる。従つてその後
該管路L2,L3内が高圧になつたとしても該管路
内で特定成分が晶出する様な恐れはなくなり、管
詰りの問題は解消される。
That is, FIG. 1 is a schematic process diagram illustrating the pressure crystallization separation method according to the present invention, and the basic configuration of the apparatus used is the same as the example shown in FIG.
Identical parts will be given the same reference numerals and redundant explanation will be omitted. Moreover, FIGS. 2 and 3 conceptually show pressure changes when implementing the present invention. The present invention is different from conventional methods, and its most important feature is that the nozzle N of the drainage pipe is opened from the beginning of the pressure increase process in the high pressure chamber or at any point during the pressure increase process, and the mother liquor is allowed to flow out. However, the pressure inside the high-pressure chamber is raised to a predetermined pressure. FIG. 2 shows an example in which the nozzle N is opened at point P during the pressure increase, and FIG. 3 shows an example in which the nozzle N is opened from the beginning of the pressure increase step, and each subsequent step is the same as in the conventional example. In this way, if the nozzle N installed in the drain pipe is opened from the beginning of the pressure increasing process or in the middle of the pressure increasing process, the mother liquor will begin to be discharged as soon as the nozzle N is opened, and the mother liquor will be discharged from the high pressure chamber 4 at the end of the previous operation. The high-concentration liquid phase components remaining filled in the drain pipes L 2 and L 3 up to N The inside of the pipes L 2 and L 3 is replaced by the mother liquor separated and discharged from the pipes L 2 and L 3 . Therefore, even if the pressure inside the pipes L 2 and L 3 becomes high thereafter, there is no fear that a specific component will crystallize in the pipes, and the problem of pipe clogging is eliminated.

上記説明からも容易に理解することができる様
に、昇圧途中でノズルNを開く時期(第2図の
P)は、排液管路L2,L3内に残された高濃度液
相成分中の特定成分の晶出が開始するまでの時期
に設定すればよく、その時期は操作温度や該液相
成分の特定成分濃度等によつてコントロールすれ
ばよいが、第3図に示す如く昇圧工程の最初から
ノズルNを開く方法を採用すれば、上記の様な作
業は一切不要となる。この場合、昇圧開始期のノ
ズル開度を大きくし過ぎると高圧室内の昇圧速度
が遅くなり、原料混合物中の特定成分の一部が未
晶析のままで母液と共に排出されて回収率が低下
する恐れがあるので、当所はノズルNの開度を小
さめに設定しておき、排液管路L2,L3内の高濃
度液相成分が母液と置換された時期を見計らつて
開度を大きくする等の操作を行なえば、回収率の
低下を最小限に抑えることができる。しかし実際
には初期流出時は低圧であるので流出量は極めて
少なく、かう油圧能力が大きければ最高圧力に達
するまでは短時間であるので、ノズル開度を調節
するまでもない場合が多い。
As can be easily understood from the above explanation, the timing when the nozzle N is opened during the pressure increase (P in Figure 2) is when the high concentration liquid phase components remaining in the drain pipes L 2 and L 3 are removed. It is sufficient to set the timing before the crystallization of a specific component in the liquid phase component starts, and the timing can be controlled by the operating temperature, the concentration of the specific component in the liquid phase component, etc. If the method of opening the nozzle N from the beginning of the process is adopted, the above-mentioned work will be completely unnecessary. In this case, if the nozzle opening is too large at the start of pressure increase, the rate of pressure increase in the high pressure chamber will slow down, and some of the specific components in the raw material mixture will remain uncrystallized and be discharged together with the mother liquor, reducing the recovery rate. To avoid this risk, we set the opening of nozzle N to a small value, and adjust the opening while checking the time when the high concentration liquid phase component in drain pipes L 2 and L 3 has been replaced with mother liquor. By performing operations such as increasing the size, the decrease in recovery rate can be minimized. However, in reality, since the initial outflow pressure is low, the outflow amount is extremely small, and if the hydraulic capacity is large, it will take a short time to reach the maximum pressure, so there is often no need to adjust the nozzle opening.

何れにしても本発明では、加圧によつて特定成
分の結晶が増加する前から母液の排出を開始する
ものであり、特定成分の回収ロスが生じることは
否めない。しかしながら加圧装置の性能に応じて
ノズル口径を適切に設定しておけば数秒間で所定
圧力にまで高めることができ、上記回収ロスは殆
んど無視し得る程度に抑えることができる。
In any case, in the present invention, the discharge of the mother liquor is started before the crystals of the specific component increase due to pressurization, and it cannot be denied that recovery loss of the specific component occurs. However, if the nozzle diameter is appropriately set according to the performance of the pressurizing device, the pressure can be increased to a predetermined level in a few seconds, and the recovery loss can be suppressed to an almost negligible level.

[発明の効果] 本発明は以上の様に構成されており、その効果
を要約すれば下記の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

(1) 排液管路内で特定成分が晶出して管詰りを生
ずる恐れがなく、一連の繰り返し晶析分離操業
を円滑に遂行することができる。
(1) There is no risk of specific components crystallizing in the drain pipe and clogging the pipe, and a series of repeated crystallization separation operations can be carried out smoothly.

(2) 排液管路の開閉弁を省略し排液ノズルのみに
よつて実施することができるので、排液管路の
構成が簡素化されるばかりでなく操作性も向上
する。
(2) Since the on-off valve of the drain pipe can be omitted and the drain nozzle alone can be used, the structure of the drain pipe is not only simplified, but also the operability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略フロー図、
第2,3図は本発明を実施する際における操作圧
力の経時変化を示す概念図、第4図は従来法を示
す概略フロー図、第5図は従来法を実施する際に
おける操作圧力の経時変化を示す概念図である。 1:予備冷却槽、2:送給ポンプ、3:圧力晶
析装置、4:高圧室、5:ピストン、6:排出タ
ンク、7:加圧ユニツト、V1〜V5:開閉弁、
L1:原液供給管路、L2,L3:母液排出管路(排
液管路)、N:排出ノズル。
FIG. 1 is a schematic flow diagram showing an embodiment of the present invention;
Figures 2 and 3 are conceptual diagrams showing how the operating pressure changes over time when implementing the present invention, Figure 4 is a schematic flow diagram showing the conventional method, and Figure 5 shows how the operating pressure changes over time when implementing the conventional method. It is a conceptual diagram showing a change. 1: Pre-cooling tank, 2: Feed pump, 3: Pressure crystallizer, 4: High pressure chamber, 5: Piston, 6: Discharge tank, 7: Pressurizing unit, V1 to V5 : Opening/closing valve,
L 1 : Raw solution supply pipe, L 2 , L 3 : Mother liquor discharge pipe (drainage pipe), N: Discharge nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力を変数として特定成分の濃縮・精製を行
なう圧力晶析分離法において、高圧室内の昇圧工
程の最初からもしくは昇圧工程途中の任意の時点
から母液排出管路のノズルを開き、母液を流出せ
しめながら高圧室内を所定圧力まで昇圧して該高
圧室内に特定成分の結晶を形成し、当該圧力もし
くはその近傍の圧力で更に母液を分離した後圧搾
を行なうことを特徴とする圧力晶析分離法。
1. In the pressure crystallization separation method that uses pressure as a variable to concentrate and purify specific components, the nozzle of the mother liquor discharge pipe is opened from the beginning of the pressure increase process in the high pressure chamber or at any point during the pressure increase process, and the mother liquor is allowed to flow out. A pressure crystallization separation method characterized by increasing the pressure in a high-pressure chamber to a predetermined pressure to form crystals of a specific component in the high-pressure chamber, and further separating the mother liquor at or near the pressure, followed by compression.
JP3374887A 1987-02-17 1987-02-17 Pressure crystalization and separation method Granted JPS63200801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3374887A JPS63200801A (en) 1987-02-17 1987-02-17 Pressure crystalization and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3374887A JPS63200801A (en) 1987-02-17 1987-02-17 Pressure crystalization and separation method

Publications (2)

Publication Number Publication Date
JPS63200801A JPS63200801A (en) 1988-08-19
JPH0412161B2 true JPH0412161B2 (en) 1992-03-03

Family

ID=12395039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3374887A Granted JPS63200801A (en) 1987-02-17 1987-02-17 Pressure crystalization and separation method

Country Status (1)

Country Link
JP (1) JPS63200801A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641282A (en) * 1979-09-11 1981-04-17 Sekisui Chem Co Ltd Synthetic resin sheet for bonding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641282A (en) * 1979-09-11 1981-04-17 Sekisui Chem Co Ltd Synthetic resin sheet for bonding

Also Published As

Publication number Publication date
JPS63200801A (en) 1988-08-19

Similar Documents

Publication Publication Date Title
JPH0412161B2 (en)
JP2766059B2 (en) Method for separating 2,7-dimethylnaphthalene
JPH0640923B2 (en) Pressure cooling crystallization method and equipment
JPS5810121B2 (en) Substance separation and purification equipment
JPH02126903A (en) Pressure crystallization method
JPH01266804A (en) Pressure crystallization process
JP2849149B2 (en) Pressure crystallization equipment
JPS6161841B2 (en)
JPS60222107A (en) Separation of liquid phase in high pressure crystallization
JPS63182002A (en) Pressure crystallization method and its system
JPH02198601A (en) Method for pressure crystallization
JPH02157003A (en) Method for purifying substances by pressure crystallization process
JPH0221902A (en) Method for crystallization under pressure
JP2839728B2 (en) Pressure crystallization apparatus and pressure crystallization method
JPS61149203A (en) Method and apparatus for pressure crystallization
JPH04145902A (en) Pressure crystallizer
JPH02126901A (en) Method and device for pressure crystallization
JP2849142B2 (en) Pressure crystallization equipment
JPH0659363B2 (en) Pressure crystallization method
JPH02214503A (en) Separation by cooled crystallization
JPS58201727A (en) Method for purifying substance in high purity
JPH057042B2 (en)
JPS63182003A (en) Pressure crystallization system for raw material of high concentration and pressure crystallization method
JPH03258301A (en) Pressure crystallizer
JPH0417682B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees