JPH0659363B2 - Pressure crystallization method - Google Patents

Pressure crystallization method

Info

Publication number
JPH0659363B2
JPH0659363B2 JP5229887A JP5229887A JPH0659363B2 JP H0659363 B2 JPH0659363 B2 JP H0659363B2 JP 5229887 A JP5229887 A JP 5229887A JP 5229887 A JP5229887 A JP 5229887A JP H0659363 B2 JPH0659363 B2 JP H0659363B2
Authority
JP
Japan
Prior art keywords
pressure
specific component
container
solid
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5229887A
Other languages
Japanese (ja)
Other versions
JPS63218205A (en
Inventor
正人 守時
一男 北川
克文 卜部
敏充 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5229887A priority Critical patent/JPH0659363B2/en
Publication of JPS63218205A publication Critical patent/JPS63218205A/en
Publication of JPH0659363B2 publication Critical patent/JPH0659363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、圧力晶析操作により晶出させた高純度成分を
速やかに且つ装置を損耗させることなく取出す圧力晶析
方法に関するものである。
TECHNICAL FIELD The present invention relates to a pressure crystallization method for rapidly extracting a high-purity component crystallized by a pressure crystallization operation and without causing wear of an apparatus.

[従来の技術] 圧力晶析法とは、第2図に示す様に高圧容器内に複数成
分からなる液晶又は固・液混合物からなる原料(流動相
状混合物)を導入し(注入工程)、液相排出管路を閉鎖
した状態で該原料に高圧力を加えて特定成分の晶析を促
進させる(加圧工程)方法であり、この操作によって特
定成分の結晶と残留液が混在した状態が得られる。次に
排液管路の閉鎖を解除して固液共存状態に圧力を加えな
がら液状成分をフィルタ経由で系外に排出し(分離工
程)、残った固相を必要により表層部を融解した後圧搾
しながら固液を分離すると(圧搾・発汗工程)、高純度
の特定成分を得ることができる。こうして得られた特定
成分固化物は、高圧容器を開放しプッシャやシュートを
作動させて取出され、高圧容器を再び閉鎖して次の操業
に入る(取出し工程)。
[Prior Art] In the pressure crystallization method, as shown in FIG. 2, a raw material (fluid phase mixture) composed of a liquid crystal or a solid-liquid mixture composed of a plurality of components is introduced into a high-pressure container (injection step), This is a method of accelerating crystallization of a specific component by applying a high pressure to the raw material in a state where the liquid phase discharge pipe is closed (pressurizing step). can get. Next, after closing the drainage pipe and applying pressure to the solid-liquid coexistence state, the liquid component is discharged out of the system through the filter (separation step), and the remaining solid phase is melted at the surface layer if necessary. When the solid-liquid is separated while pressing (pressing / perspiration process), a high-purity specific component can be obtained. The solidified product of the specific component thus obtained is taken out by opening the high-pressure container and operating the pusher or chute, and then closing the high-pressure container again to start the next operation (extracting step).

[発明が解決しようとする問題点] この様な圧力晶析方法における特定成分の取出しに当た
ってはその都度容器の開閉並びにプッシャ等の作動を行
なわなければならず、この操作の為に多大な時間を費す
(数分のサイクルの中で1分以上を要することがあ
る)。又長期間の操業においては容器の開閉が何万回も
繰返されることになり、開閉に伴なうパッキンの損耗も
下蓋と容器の軸心のずれが発生し、これらの装置故障の
為に安定した操業を行なうことができない。さらにフィ
ルタ背面に付着する不純物の多い液体が容器の開放に伴
って特定成分固形物上に滴下し特定成分を汚染するとい
う問題があり、又容器を開放すると特定成分固形物は空
気と接触することになり、空気との反応や吸湿といった
問題を生じる。その他特定成分固形物が揮発性を持つ場
合には周囲の作業環境を悪くすることも問題の一つとし
て挙げられる。
[Problems to be Solved by the Invention] When taking out a specific component in such a pressure crystallization method, it is necessary to open and close the container and operate a pusher and the like each time, and it takes a lot of time for this operation. Expenditure (may take more than 1 minute in a few minute cycle). Also, in long-term operation, opening and closing of the container is repeated tens of thousands of times, wear of the packing accompanying opening and closing causes misalignment of the axial center of the lower lid and the container, and due to failure of these devices Unable to operate stably. Furthermore, there is a problem that the liquid with a lot of impurities adhering to the back surface of the filter drops on the solid substance of the specific component and contaminates the specific component when the container is opened.When the container is opened, the solid substance of the specific component comes into contact with air. And causes problems such as reaction with air and moisture absorption. Another problem is that if the solid of the specific component is volatile, the surrounding work environment is deteriorated.

本発明はこうした事情に着目してなされたものであっ
て、上記諸問題を一挙に解決し得る様な圧力晶析方法を
提供しようとするものである。
The present invention has been made in view of these circumstances, and an object of the present invention is to provide a pressure crystallization method capable of solving all of the above problems at once.

[問題点を解決するための手段] しかして上記目的を達成した本発明方法は、2成分以上
からなる流動相状混合物を加圧下に置くことによって特
定成分の結晶を生成・増加せしめる圧力晶析法におい
て、生成した特定成分結晶から分離・排出されてくる母
液圧力が所定圧力に到達した時点で母液の分離を停止
し、高圧容器内に残留する特定成分結晶に加えられた圧
力を低下させ、結晶の一部を融解せしめ、特定成分をス
ラリー状にして高圧容器外へ回収する点に要旨を有する
ものである。
[Means for Solving the Problems] In the method of the present invention which has achieved the above object, however, pressure crystallization is performed in which a liquid phase mixture composed of two or more components is placed under pressure to generate and increase crystals of a specific component. In the method, when the mother liquor pressure that is separated and discharged from the generated specific component crystals reaches a predetermined pressure, the separation of the mother liquor is stopped, and the pressure applied to the specific component crystals remaining in the high-pressure container is reduced, It has a gist in that a part of the crystal is melted and a specific component is made into a slurry and collected outside the high-pressure container.

[作用並びに実施例] 前記諸問題の根本的原因は特定成分を固形物の形で取出
すことの必要上容器の開閉を頻繁に行なうことにあり、
容器を開放せずに取出すことができればこれらの問題は
一挙に解決する。即ち圧力晶析操作によって得られた特
定成分固形物を不純物の多い液相と分離した後、例えば
該固形物を加熱・融解してた液状にすれば容器を開放す
ることなく排出管等から液状特定成分を回収することが
できる。しかるに特定成分固形物を容器内で全量融解し
て回収する場合は、加熱・融解にかなりの時間を要する
と共に、容器内殊にフィルタ周辺に残存する不純物の多
い液相との分離が困難であり、特定成分融解物中に不純
物が混入し純度を低下させることになる。また融解の為
に装置を加熱すると次サイクル開始までに再冷却を行な
う必要があり、時間的にもエネルギー的にもロスが多
い。
[Operation and Examples] The root cause of the above problems is that the container is frequently opened and closed because it is necessary to take out the specific component in the form of a solid.
These problems can be solved all at once if the container can be taken out without opening. That is, after separating the solid of the specific component obtained by the pressure crystallization operation from the liquid phase containing a large amount of impurities, for example, if the solid is heated and melted into a liquid state, the liquid is discharged from the discharge pipe without opening the container. The specific component can be recovered. However, when recovering the entire solid content of a specific component in a container, it takes a considerable amount of time for heating and melting, and it is difficult to separate it from the liquid phase containing a large amount of impurities inside the container, especially around the filter. However, impurities are mixed in the melt of the specific component, and the purity is lowered. Further, if the device is heated for melting, it is necessary to recool before the start of the next cycle, and there are many losses in terms of time and energy.

そこで本発明者等は容器を開放することなく且つ迅速に
高純度特定成分を容器から取り出すことができる様な圧
力晶析方法について更に研究を重ね、前記構成で示され
る圧力晶析方法を完成するに至った。
Therefore, the present inventors further conducted research on a pressure crystallization method capable of rapidly extracting a high-purity specific component from the container without opening the container, and completed the pressure crystallization method shown in the above configuration. Came to.

即ち断熱的圧力晶析操作における圧力の経時変化並びに
温度−圧力変化をグラフ化すると第3図及び第4図に示
す通りとなる。図中Aは注入工程完了点であり、A−B
間が加圧工程、B−C間が分離工程、C−D間が圧搾・
発汗工程にほぼ対応する。又第4図中のaは特定成分
(純物質)の固液平衡線、bは原料組成の固液平衡線、
Mは特定成分(純物質)の大気圧下における融点を示
す。ここで第4図において製品の純度は純物質の固液平
衡線aに近づく程高くなり、D点をできる限りM点に近
づける様に操業条件が設定されている。
That is, graphs of changes in pressure with time and changes in temperature-pressure in the adiabatic pressure crystallization operation are shown in FIGS. 3 and 4. In the figure, A is the completion point of the injection process, and AB
Between the pressurizing process, B-C separating process, C-D pressing
Almost compatible with the sweating process. In FIG. 4, a is a solid-liquid equilibrium line of a specific component (pure substance), b is a solid-liquid equilibrium line of raw material composition,
M represents the melting point of the specific component (pure substance) under atmospheric pressure. Here, in FIG. 4, the purity of the product increases as it approaches the solid-liquid equilibrium line a of the pure substance, and the operating conditions are set so that the point D is as close to the point M as possible.

しかるに第4図の温度−圧力変化カーブからも理解され
る様にD点に至らずともC点においてカーブは既に十分
に純物質の固液平衡線aに近接しており、このときの固
形物をとり出せば十分に純度の高い特定成分を得ること
ができる。即ちC−D間の減圧は高純度の特定成分固形
物の表面を発汗させ、比較的純度の低い表面層を除去し
て純度をより高める作用が発揮されるが、この間の純度
向上はC点でかなり高純度となっていることもあって僅
かである。
However, as can be understood from the temperature-pressure change curve of FIG. 4, the curve is already sufficiently close to the solid-liquid equilibrium line a of the pure substance at the point C even if it does not reach the point D. Is taken out, a specific component having sufficiently high purity can be obtained. That is, the reduced pressure between C and D has the effect of causing the surface of the solid substance of the high-purity specific component to sweat and removing the surface layer of relatively low purity to further enhance the purity. It is a little high because it has a very high purity.

そこで本発明ではC点における特定成分結晶を回収すべ
くC点で不純物含有液相の分離・排出を停止することと
した。停止の方法としては排液ラインの圧力がC点の圧
力に達した時点で例えば第1図に示す様に排液ライン6
のバルブV6 を閉鎖する方法も可能であるが、より好ま
しくはC点の圧力を相当する背圧を背液ラインに与えて
排液ラインの圧力をしばらくこの圧力に保持しておく方
法が推奨される。この結果大型高圧容器内でも容器内に
残存する母液圧力が同じ圧力になり、均一な圧力状態を
得ることができる。
Therefore, in the present invention, in order to recover the crystal of the specific component at the point C, the separation / discharge of the liquid phase containing impurities is stopped at the point C. As a stopping method, when the pressure of the drainage line reaches the pressure at point C, for example, as shown in FIG.
Although it is possible to close the valve V 6 of the above , it is more preferable to apply a back pressure corresponding to the pressure at the point C to the back fluid line and keep the pressure of the drainage line at this pressure for a while. To be done. As a result, the pressure of the mother liquor remaining in the large-sized high-pressure container becomes the same, and a uniform pressure state can be obtained.

次いで第1図に示す様に容器内の特定成分結晶(固相)
と連通する管路(固相流出管)7を開口して、固相部の
圧力を大気圧まで一気に放圧する。但しこのとき大気圧
下に曝されるのは固相流出管7入口部の特定成分結晶で
あり、該入口部周辺の特定成分結晶は第4図におけるC
−D間の温度降下に相当する分の融解を生じ、融解液と
固相の混じったスラリーが生成する。
Then, as shown in Fig. 1, crystals of the specific component (solid phase) in the container
A pipe line (solid-phase outflow pipe) 7 communicating with is opened to release the pressure of the solid-phase portion to atmospheric pressure all at once. However, at this time, the specific component crystal at the inlet of the solid phase outflow pipe 7 is exposed to atmospheric pressure, and the specific component crystal around the inlet is C in FIG.
Melting corresponding to the temperature drop between −D occurs, and a slurry in which the melt and the solid phase are mixed is generated.

生成したスラリーは固相流出管7に流入して高圧容器1
外部へ流出するのでこれを回収すると目的物質である高
純度特定成分を得ることができる。尚固相流出管7を開
口している間も特定成分結晶にはピストン4により十分
な面圧を加え、容器内圧力が低下しない様にしておく。
この結果特定成分結晶は固相流出管7に近い側から順次
融解し、ピストン4の降下につれて徐々に降下し、スラ
リー状となって固相流出管7から流出する。かくして特
定成分結晶を容器の開放なしに速やかに取出すことがで
きる。
The generated slurry flows into the solid-phase outflow pipe 7 and the high-pressure container 1
Since it flows out to the outside, a high-purity specific component that is the target substance can be obtained by collecting this. While the solid phase outflow pipe 7 is open, a sufficient surface pressure is applied to the crystal of the specific component by the piston 4 so that the pressure inside the container does not decrease.
As a result, the crystals of the specific component are sequentially melted from the side close to the solid-phase outflow pipe 7, gradually descend as the piston 4 descends, and form a slurry and flow out from the solid-phase outflow pipe 7. Thus, the crystals of the specific component can be promptly taken out without opening the container.

上記圧力晶析方法において、C点の圧力即ち液相分離を
停止する所定の圧力は、特定成分の種類、目標とする製
品純度,原料温度,B点即ち最大加圧点の圧力・温度等
を考慮して決定される。
In the above pressure crystallization method, the pressure at the point C, that is, the predetermined pressure at which the liquid phase separation is stopped, includes the type of the specific component, the target product purity, the raw material temperature, the pressure at the point B, that is, the maximum pressurizing point, the temperature, and the like. It is decided in consideration.

しかしながら少なくともC点からD点まで減圧したとき
の液相の分率が0.05以上であることが望ましく、該液相
分率が高い程初期排出がスムースとなり、特定成分結晶
押出しに要するピストン圧力は少なくして済む。
However, it is desirable that the liquid phase fraction is at least 0.05 or more when the pressure is reduced from point C to point D. The higher the liquid phase fraction, the smoother the initial discharge, and the smaller the piston pressure required for the specific component crystal extrusion. I'm done.

又特定成分結晶をスラリー化して押出す間、容器内のフ
ィルタ外周部間隙にはC点までの圧力で分離された不純
物濃度の高い液相が存在するが、押出しの過程で該液相
がフィルタを逆に通過して特定スラリー中へ混入してく
ることはない。何故ならば特定成分押出し中、特定成分
結晶にはピストンによってC点圧力以上の面圧が加えら
れており、フィルタ内側の固相の高圧に保持されている
からである。
Further, while the crystals of the specific component are slurried and extruded, a liquid phase having a high impurity concentration separated by the pressure up to the point C exists in the filter outer peripheral gap in the container. However, it will not be mixed into the specific slurry. This is because, during the extrusion of the specific component, the surface pressure of the point C or higher is applied to the crystal of the specific component by the piston, and the crystal is maintained at the high pressure of the solid phase inside the filter.

その他特定成分結晶に加わる圧力を低下させる手段でも
ある固相流出管の管径については特に制限はないが、必
ずしもそれ程大径とする必要はなく、内径数mm程度でも
処理できることもある。これは液相(融解物)の存在に
よって結晶粒界が滑り易くなる為であり、一旦滑り出す
と結晶相互の摩擦で昇温し液相が増加して益々滑り易く
なるからであり、こうした作用の結果固相流出管径が小
さくても特性成分押出しが可能となる訳である。尚固相
流出口近傍を僅かに加熱し押出しのきっかけを与えるこ
とも有効な手段である。
The diameter of the solid-phase outflow pipe, which is also a means for reducing the pressure applied to the crystals of the specific component, is not particularly limited, but it does not necessarily have to be so large, and an inner diameter of several mm can be treated. This is because the presence of the liquid phase (melt) makes the crystal grain boundaries slippery, and once they start to slide, the temperature rises due to the friction between the crystals and the liquid phase increases, making it more slippery. As a result, the characteristic component can be extruded even if the diameter of the solid-phase outflow pipe is small. It is also an effective means to slightly heat the vicinity of the solid phase outlet to give a trigger for extrusion.

[発明の効果] 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and the effects summarized below can be obtained.

(1) 高圧力下で固相と分離した不純物含有液相を流入さ
せることなく特定成分結晶をスラリー化し、高圧容器か
ら回収することができる。即ち高圧容器を開閉すること
なく高純度特定成分を取り出すことができ、開閉に伴な
う装置の損耗、故障を防止することができる。
(1) Crystals of a specific component can be slurried and collected from a high-pressure container under a high pressure without flowing in an impurity-containing liquid phase separated from a solid phase. That is, the high-purity specific component can be taken out without opening and closing the high-pressure container, and the wear and failure of the device due to opening and closing can be prevented.

(2) 容器の開閉操作が不要であり、短時間に特定成分を
回収を完了することができる。
(2) It is not necessary to open and close the container, and the recovery of the specific component can be completed in a short time.

(3) 圧力晶析サイクルも圧搾・発汗工程を短縮すること
ができ、装置の生産性が向上する。
(3) The pressure crystallization cycle can also shorten the squeezing and sweating steps, improving the productivity of the device.

(4) 容器を開放しないのでフィルタ背面の液垂れも発生
することがなく、スラリー状特定成分を直接容器に導入
すれば空気との接触や揮発物の放散といった不都合も解
消することができる。
(4) Since the container is not opened, dripping of the back surface of the filter does not occur, and if the slurry-like specific component is directly introduced into the container, inconveniences such as contact with air and emission of volatiles can be eliminated.

(5) 容器の開閉に必要とされていた容器移動機構が不要
となり、装置全体の高さが著しく低くてすむ。
(5) The container moving mechanism that was required for opening and closing the container is no longer required, and the height of the entire device can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を示す概略説明図、第2図は
圧力晶析工程を示すフロー説明図、第3図は圧力晶析操
作における圧力の経時変化を示すグラフ、第4図は圧力
晶析操作における温度−圧力変化を示すグラフである。 1……高圧容器、3……フィルタ 4……ピストン、5……下蓋 6……排液ライン、7……固相流出管 V6,V……バルブ
FIG. 1 is a schematic explanatory view showing an embodiment of the present invention, FIG. 2 is a flow explanatory view showing a pressure crystallization step, FIG. 3 is a graph showing a change in pressure with time in a pressure crystallization operation, and FIG. It is a graph which shows temperature-pressure change in pressure crystallization operation. 1 ...... pressure vessel, 3 ...... filter 4 ...... piston, 5 ...... lower cover 6 ...... drain line, 7 ...... solid phase outlet pipe V 6, V 7 ...... valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2成分以上からなる流動相状混合物を加圧
下に置くことによって特定成分の結晶を生成・増加せし
める圧力晶析法において、生成した特定成分結晶から分
離・排出されてくる母液圧力が所定圧力に到達した時点
で母液の分離を停止し、高圧容器内に残留する特定成分
結晶に加えられた圧力を低下させて、結晶の一部を融解
せしめ、特定成分をスラリー状にして高圧容器外へ回収
することを特徴とする圧力晶析方法。
1. A mother liquor pressure which is separated and discharged from the generated crystals of a specific component in a pressure crystallization method in which crystals of the specific component are generated and increased by placing a fluid phase mixture composed of two or more components under pressure. Stops the separation of the mother liquor when reaches a predetermined pressure, lowers the pressure applied to the specific component crystals remaining in the high-pressure container, melts a part of the crystals, and makes the specific component into a slurry to a high pressure. A pressure crystallization method characterized by recovering to the outside of a container.
JP5229887A 1987-03-06 1987-03-06 Pressure crystallization method Expired - Fee Related JPH0659363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229887A JPH0659363B2 (en) 1987-03-06 1987-03-06 Pressure crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229887A JPH0659363B2 (en) 1987-03-06 1987-03-06 Pressure crystallization method

Publications (2)

Publication Number Publication Date
JPS63218205A JPS63218205A (en) 1988-09-12
JPH0659363B2 true JPH0659363B2 (en) 1994-08-10

Family

ID=12910887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229887A Expired - Fee Related JPH0659363B2 (en) 1987-03-06 1987-03-06 Pressure crystallization method

Country Status (1)

Country Link
JP (1) JPH0659363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150289A (en) * 2017-03-15 2018-09-27 株式会社日立製作所 Protein purification methods and protein purification apparatus

Also Published As

Publication number Publication date
JPS63218205A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
JP5603884B2 (en) Method and apparatus for producing natural l-menthol
US3285025A (en) Multi-stage crystallization process
JPH0659363B2 (en) Pressure crystallization method
US2552523A (en) Method of extracting liquids from a solution to effect concentration
US2835598A (en) Separation by crystallization
EP1281749B1 (en) Process and installation for dry fractionation
JP2766059B2 (en) Method for separating 2,7-dimethylnaphthalene
US5149445A (en) Process and apparatus for the purification of substances
JPS5810121B2 (en) Substance separation and purification equipment
JPH0779925B2 (en) Pressure crystallizer and method
JPS63182003A (en) Pressure crystallization system for raw material of high concentration and pressure crystallization method
JPH02198601A (en) Method for pressure crystallization
JPH0640923B2 (en) Pressure cooling crystallization method and equipment
JPS6125403B2 (en)
JPH02126903A (en) Pressure crystallization method
JPH0317921Y2 (en)
CN117619040A (en) Extraction, crystallization and filtration three-in-one operation equipment and method
JP2515872B2 (en) Pressure crystallizer
JPS6112726B2 (en)
JPH0244561B2 (en)
JPH07705A (en) Method for separation and purification of substance by crystallization from molten solution under pressure
JPH0210682B2 (en)
JPH06102123B2 (en) Pressure crystallization method and device
JPH0418882B2 (en)
JPH02214505A (en) Pressure crystallizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees