JPS63182003A - Pressure crystallization system for raw material of high concentration and pressure crystallization method - Google Patents

Pressure crystallization system for raw material of high concentration and pressure crystallization method

Info

Publication number
JPS63182003A
JPS63182003A JP1316487A JP1316487A JPS63182003A JP S63182003 A JPS63182003 A JP S63182003A JP 1316487 A JP1316487 A JP 1316487A JP 1316487 A JP1316487 A JP 1316487A JP S63182003 A JPS63182003 A JP S63182003A
Authority
JP
Japan
Prior art keywords
pressure
raw material
pressure container
piston
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1316487A
Other languages
Japanese (ja)
Other versions
JPH046401B2 (en
Inventor
Masato Moritoki
正人 守時
Kazuo Kitagawa
北川 一男
Nobuhiko Nishiguchi
西口 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1316487A priority Critical patent/JPS63182003A/en
Publication of JPS63182003A publication Critical patent/JPS63182003A/en
Publication of JPH046401B2 publication Critical patent/JPH046401B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover specific components from raw material of a mixture efficiently in a single operation using a pressure crystallization by constituting at least the top of a high pressure container in such a way that it operates freely. CONSTITUTION:An upright high pressure container, a piston and an end cover are components of the subject system and at least the top of said container is constituted in such a way that it opens/closes freely. For instance, in a constitution in which a piston 2 shuttles back and forth from the bottom of the upright high-pressure container 1, the end cover 3 which opens/closes freely is arranged at the top. Then when a slurry raw material or solid raw material G is charged into the high pressure container 1, the piston 2 is left retreated, and the above-mentioned raw material G is introduced from the top. After this, the end cover 3 is fitted and hot liquid or slurry raw material L is injected through a flow path 4 formed in the end cover 3. Further, the piston 2 is allowed to advance to press the raw material and steps of operation after crystallization are performed. In the extraction of the aimed material S, the end cover 3 is separated and the material S is pushed up by advancing of the piston 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は特定成分と不純物の混合物原料から1回の操作
で収率良く特定成分を回収することのできる圧力晶析方
法及び圧力晶析装置に関し、殊に常温で固体である特定
成分を含む原料や高濃度原料から特定成分を回収するの
に適した圧力晶析方法及びその装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a pressure crystallization method and a pressure crystallization apparatus that can recover a specific component in a high yield in a single operation from a raw material mixture of a specific component and impurities. In particular, the present invention relates to a pressure crystallization method and apparatus suitable for recovering a specific component from a raw material containing a specific component that is solid at room temperature or from a high concentration raw material.

[従来の技術] 圧力晶析法とは、高圧容器内に複数成分からなる液相又
は固・液混合物からなる原料(流動相混金物)を導入し
、排液管路を閉鎖した状態で該原料に高圧力を加えて特
定成分の晶析を促進させる方法であり、この操作によっ
て特定成分の結晶(固相)と特定成分以外の液相が混在
した状態が得られる。そこで 排液管路の閉鎖を解除し
て固液共存状態に圧力を加えなから液相成分をフィルタ
経由で系外に排出し、残った固相を圧搾しなから固液を
分離すると高純度の特定成分を得ることができる。
[Prior art] Pressure crystallization is a method in which a raw material (fluid phase mixture) consisting of a liquid phase or a solid/liquid mixture consisting of multiple components is introduced into a high-pressure container, and the liquid phase is closed while the drain pipe is closed. This is a method in which high pressure is applied to the raw material to promote crystallization of a specific component, and this operation results in a state in which crystals (solid phase) of the specific component and liquid phase other than the specific component coexist. Therefore, by unblocking the drain pipe, draining the liquid phase component out of the system via a filter without applying pressure to the solid-liquid coexistence state, and separating the solid-liquid without squeezing the remaining solid phase, high purity can be obtained. specific components can be obtained.

[発明が解決しようとする問題点] 本発明者等は圧力晶析法の開発及び工業化研究に携わっ
てきたが更に特定成分の回収率を向上させるべく種々研
究を進めている。
[Problems to be Solved by the Invention] The present inventors have been involved in the development and industrialization of pressure crystallization methods, and are also conducting various studies to further improve the recovery rate of specific components.

もっとも基本的には晶析圧力を高めれば回収率を高める
ことができる。しかし操作圧力には限界があり、300
0にgf/crs2を超える圧力を得ることは装置コス
ト面から考えて有利とはいえない。
Most basically, the recovery rate can be increased by increasing the crystallization pressure. However, there is a limit to the operating pressure;
Obtaining a pressure exceeding gf/crs2 at 0 is not advantageous in terms of equipment cost.

又圧力晶析操作を複数回繰返せば当然に原料に対する回
収率を高めることができるが、容器容積当りの処理量を
犠牲にしなければならないので生産性の低下を余儀なく
される。
Furthermore, if the pressure crystallization operation is repeated several times, the recovery rate of the raw material can naturally be increased, but the throughput per container volume must be sacrificed, which inevitably leads to a decrease in productivity.

この様に経済性を満足させつつ回収率を向上させること
は難しく、殊に高濃度原料を取扱う場合や回収目標であ
る特定物質が常温において固体である原料の圧力晶析に
おいては回収率の向上が一層難しい。
In this way, it is difficult to improve the recovery rate while satisfying economic efficiency, especially when handling highly concentrated raw materials or in pressure crystallization of raw materials where the specific substance targeted for recovery is solid at room temperature. is even more difficult.

本発明者等はこうした事情を憂慮し、回収率の向上をめ
ざしてさらに研究を重ねたものである。
The inventors of the present invention were concerned about these circumstances and conducted further research with the aim of improving the recovery rate.

即ち第1図は純物質、ある組成比の混合原料及び共晶組
成比の混合原料の夫々の固液平衡関係を圧力と温度の関
数として表わしたグラフである。
That is, FIG. 1 is a graph showing the solid-liquid equilibrium relationship of a pure substance, a mixed raw material with a certain composition ratio, and a mixed raw material with a eutectic composition ratio as a function of pressure and temperature.

aは純物質(特定成分ioo%)の固液平衡ライン、b
はある組成比の混合原料(特定成分:X%)の固液平衡
ライン、Cは共晶組成混合原料の固液平衡ラインを夫々
示し、各組成成分は各ラインの右下側において液相状態
を呈し、左上側において固相状態であることを示す。尚
b1点は上記原料の大気圧下における固液平衡点、T1
は大気圧下における特定成分の融点を意味する。ここで
特定成分がX%含まれる上記原料を圧力晶析装置に没入
して圧力晶析を行なうに当たり、圧力晶析装置に装入す
る際の原料温度(即ち大気圧下における原料温度)が’
r、、T3.T4であるとすると、図のT2はb1点よ
り右側にあるので当該温度にある原料は液状を呈し、T
、はb1点よりやや左側にあるので当該温度にある原料
は固体分が少量混ざったスラリー状を呈し、更に温度T
4にある原料はかなりの量の固体分が含まれるスラリー
状を呈している。この様に温度、従って性状の異なる原
料を夫々装置内に密閉し、加圧していくと、加圧による
発熱を伴ないながら各原料の圧力及び温度はα、β、γ
の各ラインに添って上昇し、A、B、Cの各点に到達す
る。尚A、B、Cの各点は、縦軸(晶析圧力)値が同じ
値(ここでは最大圧力)Plどなる様に設定している。
a is the solid-liquid equilibrium line of the pure substance (specific component ioo%), b
C indicates the solid-liquid equilibrium line of a mixed raw material with a certain composition ratio (specific component: , indicating that it is in a solid state on the upper left side. Note that b1 point is the solid-liquid equilibrium point of the above raw material under atmospheric pressure, T1
means the melting point of a specific component under atmospheric pressure. When the above-mentioned raw material containing X% of a specific component is immersed in a pressure crystallizer and subjected to pressure crystallization, the temperature of the raw material at the time of charging into the pressure crystallizer (i.e., the temperature of the raw material under atmospheric pressure) is '
r,,T3. If it is T4, T2 in the figure is on the right side of point b1, so the raw material at that temperature will be in a liquid state, and T2 will be on the right side of point b1.
, is slightly to the left of point b1, so the raw material at that temperature takes the form of a slurry with a small amount of solids mixed in, and furthermore, at temperature T
The raw material in No. 4 is in the form of a slurry containing a considerable amount of solids. In this way, when raw materials with different temperatures and therefore properties are sealed in a device and pressurized, the pressure and temperature of each raw material will change to α, β, γ while generating heat due to pressurization.
It rises along each line and reaches points A, B, and C. Note that the points A, B, and C are set so that the vertical axis (crystallization pressure) value is the same value (maximum pressure in this case) Pl.

そして該圧力を維持しながら晶出結晶(固相)を液相か
ら分離し、高圧容器内に残った固相分を圧搾すると、高
純度の特定成分を得ることができる。このときの特定成
分は、A、B、Cの各点と上記晶析圧力における前記原
料の固液平衡点b2との平衡濃度の差に相当する量だけ
回収することができる。即ちb2点から左側(固相側)
へ離れていくほど特定成分の回収量は増大し、0点では
最も多くの特定成分を得ることができる。従って回収量
即ち回収率を高めるには圧力晶析装置へ投入する際の原
料温度をできるだけ低くすることが有効であることが分
かる。但し加圧後の到達点が共晶の固液平衡ラインCを
超えると、固相中に共晶が混入して純粋な特定成分を得
ることができなくなる。よって加圧後の到達点が共晶の
固液平衡ラインCにできるだけ近くなる範囲で原料装入
温度を低下させる必要があり、これによって特定成分の
回収率が高められるのである。
Then, by separating the crystallized crystals (solid phase) from the liquid phase while maintaining the pressure and squeezing the solid phase remaining in the high-pressure container, a highly pure specific component can be obtained. At this time, the specific component can be recovered in an amount corresponding to the difference in equilibrium concentration between each point A, B, and C and the solid-liquid equilibrium point b2 of the raw material at the crystallization pressure. That is, to the left of point b2 (solid phase side)
The recovery amount of the specific component increases as the distance increases, and at point 0, the largest amount of the specific component can be obtained. Therefore, it can be seen that in order to increase the recovery amount, that is, the recovery rate, it is effective to lower the temperature of the raw material as much as possible when feeding it into the pressure crystallizer. However, if the reached point after pressurization exceeds the solid-liquid equilibrium line C of the eutectic, the eutectic will be mixed into the solid phase, making it impossible to obtain a pure specific component. Therefore, it is necessary to lower the raw material charging temperature in such a range that the point reached after pressurization is as close as possible to the eutectic solid-liquid equilibrium line C, thereby increasing the recovery rate of the specific component.

しかるに圧力晶析容器への装入温度をT、からT4の方
向へ低下させると、原料中の固相分が増加し、スラリー
濃度が高くなる。スラリー濃度が25〜30%以上の原
料は一般に配管輸送が困難であり、上記の如く回収率を
高める為に原料装入温度を低下させる方法は従来の圧力
晶析装置における原料輸送形態(配管輸送)を採る限り
限界に行き当たらざるを得ない。又固相分の多いスラリ
ー状原料中の固相分は元々不純物を含む固体であり、か
かるスラリー状原料に圧力晶析操作を加えても不純物を
含む固体を核にして特定成分の晶析が進行する訳である
から純度の高い特定成分固体を得ることができない。
However, when the charging temperature to the pressure crystallization vessel is lowered from T to T4, the solid phase content in the raw material increases and the slurry concentration increases. It is generally difficult to transport raw materials with a slurry concentration of 25 to 30% or more through pipes, and the method of lowering the raw material charging temperature in order to increase the recovery rate as described above is the method of transporting raw materials in conventional pressure crystallizers (piping transport). ), we are bound to reach a limit. In addition, the solid phase content in a slurry-like raw material with a large solid phase content is originally a solid containing impurities, and even if a pressure crystallization operation is applied to such a slurry-like raw material, specific components cannot be crystallized using solids containing impurities as nuclei. Since the process progresses, it is not possible to obtain a highly pure specific component solid.

本発明はこうした研究成果を踏まえた上で、特定成分の
回収率向上を経済的に達成し得る様な方法及び装置を提
供すべくさらに研究を重ねた結果完成したものである。
The present invention was completed based on these research results, and was the result of further research aimed at providing a method and apparatus that can economically improve the recovery rate of specific components.

[問題点を解決する為の手段] 即ち本発明方法は、固形分濃度が25%以上である特定
成分と不純物成分からなる固体状又はスラリー状原料を
大口径を有する高圧容器の上端開口部より高圧容器内に
装入し、高圧容器上端開口部を密閉した後、特定成分と
不純物成分からなる高温の液状又は固形分濃度が25%
未満のスラリー状原料を注入し、以下加圧晶析工程に移
行する点に要旨があり、又本発明装置は、竪型高圧容器
と、上記高圧容器の一方側から他方側にむけて高圧容器
内を進退可能なピストンと、上記ピストンと反対側から
高圧容器の開口端を閉鎖する端蓋からなる圧力晶析装置
であって、少なくとも上記高圧容器の上部側を開閉自在
に構成した点に要旨前述した様に、回収率を高める為に
は高圧容器に低温の原料を装入する必要があるが、原料
装入温度を低くすると原料の性状は固形分の多いスラリ
ー状となり、さらには流動性を失なって遂には全量固体
状となる。このような原料はスラリーポンプを用いても
輸送することができない。
[Means for Solving the Problems] That is, the method of the present invention involves supplying a solid or slurry raw material consisting of a specific component and impurity components with a solid content concentration of 25% or more through the upper opening of a high-pressure container having a large diameter. After charging into a high-pressure container and sealing the top opening of the high-pressure container, the high-temperature liquid or solid content consisting of specific components and impurity components will be 25%.
The gist of the present invention is that a slurry-like raw material of less than The present invention relates to a pressure crystallizer comprising a piston that is movable inwardly and retractably, and an end cover that closes the open end of a high-pressure container from the side opposite to the piston, the gist of which is that at least the upper side of the high-pressure container is configured to be openable and closable. As mentioned above, in order to increase the recovery rate, it is necessary to charge low-temperature raw materials into a high-pressure container, but when the raw material charging temperature is lowered, the raw material becomes slurry-like with a high solid content, and furthermore, the fluidity of the raw material decreases. Eventually, the entire amount becomes solid. Such raw materials cannot be transported even using slurry pumps.

本発明方法においてはこの様に装入温度を低下させるこ
とによって固形分濃度が25%以上上昇したスラリー状
原料あるいは固体状原料(特定成分と不純物成分の混合
物)をまず始めに高圧容器内に挿入する。その方法は容
器上部の蓋を大径に開口し、ピストン方式、パケットコ
ンベア等々。
In the method of the present invention, the slurry raw material or solid raw material (mixture of specific components and impurity components) whose solid content concentration has increased by 25% or more by lowering the charging temperature is first inserted into a high-pressure container. do. The method is to open the lid at the top of the container to a large diameter, use a piston method, use a packet conveyor, etc.

スラリー濃度に応じて妥当なスラリー供給システムによ
る。ところでこの状態においては、装入原料中の固形分
は微細な単結晶が集合して塊状を呈しており、隣り合っ
た単結晶同士の隙間には液状不純物あるいはこれらの結
晶化物が存在する。またスラリー濃度が非常に高い場合
には塊状固体の間隙には、空気等気体が介在することも
ある。また単結晶自体も中心部は高純度であるが外表面
へ近づくにつれて純度が低下し最外面は低純度結晶によ
って覆われていることもある。従ってこのまま圧力晶析
操作を行なうとこれら不純物が閉じ込められて除去され
ないままで晶析が進行し、溝足し得る純度の特定成分を
得ることができない、又固相量が多い時には気体、介在
空間率も高く容器内容積の使用効率が低下する。そこで
これら装入時点における固形分の純度を高め、又は容器
の使用効率を高める目的で高圧容器を密閉した後、特定
成分と不純物成分からなる高温液状原料又は固形分濃度
が25%未満の高温スラリー状原料を高圧容器内に注入
する。尚該高温注入原料としては特に制限はないが、例
えば特定成分及び不純物成分が前述の原料と同じ割合、
あるいは異なる割合で含まれる原料を加温することによ
って容器上部から注入した原料温度よりも高くして固形
分の一部又は全部を溶解したもの、あるいは前チャージ
の圧力晶析操作により得られた分離排液等を使用するこ
とができる。この液状若しくはスラリー状高温原料の注
入により最初に装入した原料中の固形分の表面あるいは
固形分同士の隙間にある空隙に高温液が侵入し低純度結
晶あるいは不純物結晶が溶融して液相へ移行する。また
装入原料系の温度も上昇する。さらに加圧により固形分
間隙は完全に消失する。液状又はスラリー状原料の追加
供給は液相ポンプ又はスラリーポンプ等で行なわれ、必
要に応じ、加圧供給されて、内部のガス空間は実質的に
無くなってしまう。尚上記の結果スラリー状原料中に残
存する固形分は純度の高いものとなり、これが核となっ
て後述する良好な圧力晶析が進行する。即ち以下従来の
圧力晶析方法と同様に高圧容器内の圧力を高めていくと
原料装入温度入した気泡も液中に溶解し、液が固形分の
間に十分に侵入する。それと同時に液相中の特定成分は
残存する固体分を核としてその周りに晶析する。こうし
て所定の圧力まで加圧されると、従来の圧力晶析方法の
標準的分離方法に従い、液相分の分離排出、必要により
発汗、圧搾、特定成分結晶ケーキ状の取出し等の操作が
行なわれ、これらによって高純度の目的物質を収率良く
得ることができる。
With a reasonable slurry feeding system depending on the slurry concentration. By the way, in this state, the solid content in the charged raw material is aggregation of fine single crystals to form a lump, and liquid impurities or crystallized products of these exist in the gaps between adjacent single crystals. Furthermore, when the slurry concentration is very high, gas such as air may be present in the gaps between the lumpy solids. Furthermore, although the single crystal itself has high purity in the center, the purity decreases as it approaches the outer surface, and the outermost surface may be covered with low-purity crystals. Therefore, if the pressure crystallization operation is continued as it is, these impurities will be trapped and crystallization will proceed without being removed, making it impossible to obtain specific components of sufficient purity. is also high, reducing the efficiency of using the volume inside the container. Therefore, after sealing the high-pressure container for the purpose of increasing the purity of solid content at the time of charging or increasing the usage efficiency of the container, a high-temperature liquid raw material consisting of specific components and impurity components or a high-temperature slurry with a solid content concentration of less than 25% is prepared. The raw material is injected into a high-pressure container. There are no particular restrictions on the raw material for high-temperature injection, but for example, if the specific components and impurity components are in the same proportion as the aforementioned raw materials,
Alternatively, some or all of the solids are dissolved by heating raw materials containing different proportions to a temperature higher than that of the raw materials injected from the top of the container, or separation obtained by pre-charging pressure crystallization operation. Drainage liquid etc. can be used. By injecting this liquid or slurry high-temperature raw material, the high-temperature liquid invades the surface of the solid content in the initially charged raw material or the voids between the solid content, melts low-purity crystals or impurity crystals, and turns into a liquid phase. Transition. The temperature of the charging material system also increases. Further, by applying pressure, the solid space completely disappears. Additional supply of liquid or slurry raw material is performed by a liquid phase pump, slurry pump, etc., and is supplied under pressure as necessary, so that the internal gas space is substantially eliminated. Incidentally, as a result of the above, the solid content remaining in the slurry-like raw material becomes highly pure, and this serves as a nucleus to proceed with favorable pressure crystallization as described below. That is, as in the conventional pressure crystallization method, as the pressure inside the high-pressure container is increased, the air bubbles introduced at the raw material charging temperature are also dissolved in the liquid, and the liquid sufficiently penetrates between the solid components. At the same time, specific components in the liquid phase crystallize around the remaining solid components as nuclei. Once pressurized to a predetermined pressure, operations such as separating and discharging the liquid phase, sweating, squeezing, and taking out the specific component crystal cake in the form of a cake are performed according to the standard separation method of conventional pressure crystallization methods. By these methods, a highly purified target substance can be obtained in good yield.

尚純度をさらに上げる為には上記高温原料の注入を2回
以上行なってもよい。即ち1回目の圧力晶析操作が完了
すると目的物質を取り出さずに再び高温原料を注入した
後加圧晶析工程に移行し、以下これを繰返すことによっ
て特定成分の純度を高めることができる。尚この場合に
は1サイクル毎の圧搾は行なわず最終サイクルにおいて
のみ圧搾することが望ましい。
In order to further increase the purity, the above-mentioned high-temperature raw material may be injected two or more times. That is, when the first pressure crystallization operation is completed, the high-temperature raw material is injected again without taking out the target substance, and then the pressure crystallization step is started. By repeating this process, the purity of the specific component can be increased. In this case, it is preferable not to perform compression for each cycle, but to perform compression only in the final cycle.

本発明方法の基本構成は上記に示す通りであるが、上記
説明から明らかな様に本発明方法を実施しようとすると
低温のスラリー状又は固体状原料装入に当たって配管輸
送を採用することができず、高圧容器の上部側を開放し
て例えば進退可能な供給口H(第5図参照)から高圧容
器1内に上記原料Gを装入しなければならない。本発明
圧力晶析装置はこうした要請に答えるものであって、竪
型高圧容器と、上記容器の一方側から他方側にむけて容
器内を進退可能に構成したピストンと、上記ピストンと
反対側から竪型高圧容器の開口端を閉鎖する端蓋を備え
、少なくとも上記竪型高圧容器の上部側を開閉自在に構
成したものである。
The basic structure of the method of the present invention is as shown above, but as is clear from the above explanation, when attempting to implement the method of the present invention, pipe transportation cannot be used for charging low-temperature slurry or solid materials. The raw material G must be charged into the high-pressure container 1 through the retractable supply port H (see FIG. 5) by opening the upper side of the high-pressure container. The pressure crystallizer of the present invention is intended to meet these demands, and includes a vertical high-pressure container, a piston configured to be able to advance and retreat within the container from one side of the container to the other, and a The vertical high-pressure container is provided with an end cover that closes the open end of the vertical high-pressure container, and at least the upper side of the vertical high-pressure container is configured to be openable and closable.

例えば第2図に示す様に竪型高圧容器1の下部側からピ
ストン2を進退させる構成にあっては上部側に開閉自在
な端蓋3を配設する。スラリー状原料又は固体状原料G
を装入するに当たってはピストン2を後退させておき、
上部側から上記原料Gを挿入する。原料Gの装入にあた
っては、スラリー濃度が高い場合には空隙が増えるなど
のため装入量の評価が困難である。そこであらかじめ高
圧容器の容量にほぼ見合った妥当な量を重量又は容量測
定して注入する。注入はスクリューフィダ方式(第7.
8図参照)、パケット方式又はピストン方式、シュータ
方式他取扱う系のスラリー濃度に適した方法が選択され
る。
For example, as shown in FIG. 2, in a configuration in which a piston 2 is advanced and retracted from the lower side of a vertical high-pressure vessel 1, an end cover 3 that can be opened and closed is provided on the upper side. Slurry raw material or solid raw material G
When charging, move piston 2 backward,
Insert the raw material G from the upper side. When charging raw material G, when the slurry concentration is high, it is difficult to evaluate the charging amount because the number of voids increases. Therefore, an appropriate amount roughly corresponding to the capacity of the high-pressure container is measured in advance by weight or volume and injected. Injection is by screw feeder method (No. 7.
8), packet method, piston method, shooter method, and other methods suitable for the slurry concentration of the system to be handled are selected.

このようにして原料を装入した後第2図において端M3
を嵌着し、端蓋3内に形成した流路4から高温の液状又
はスラリー状原料りを注入する。
After charging the raw materials in this way, the end M3 in FIG.
is fitted, and high-temperature liquid or slurry raw material is injected from the flow path 4 formed in the end cover 3.

その後ピストン2を進出させて原料を加圧し、晶析以降
の操作を行なえばよい、尚目的物質Sの取り出しに当た
っては、端蓋を離脱し、ピストン2の進出によって目的
物質Sを押し上げればよい。
Thereafter, the piston 2 is advanced to pressurize the raw material, and operations after crystallization can be performed.In order to take out the target substance S, the end cap is removed and the target substance S is pushed up by the advancement of the piston 2. .

又第3図に示す様に竪型高圧容器の上部側からピストン
2を進退させる構成にあっては下端に着脱自在な端蓋3
を配設する。そしてスラリー状原料又は固体状原料Gの
装入に当たっては、ピストン2を抜き出しておき、上部
側から上記原料Gを装入した後ピストン2を嵌挿して高
圧容器内を密閉し、端蓋3内に形成した流路4aから液
状又はスラリー状高温原料りを注入し、以下通常の圧力
晶析操作を行なえばよい。尚目的物質Sの取出しに当た
っては高圧容器1をピストン2と共に上昇させればよい
In addition, as shown in Fig. 3, if the piston 2 is moved forward and backward from the upper side of the vertical high-pressure container, a removable end cover 3 is provided at the lower end.
Place. When charging the slurry raw material or the solid raw material G, the piston 2 is pulled out, and after charging the raw material G from the upper side, the piston 2 is inserted and the inside of the high pressure container is sealed, and the inside of the end cap 3 is closed. A liquid or slurry high-temperature raw material is injected through the channel 4a formed in the flow path 4a, and a normal pressure crystallization operation is then performed. In order to take out the target substance S, the high pressure container 1 may be raised together with the piston 2.

第4図は第3図の変形態様であり、高圧容器の下端側に
配置した端M3に突き上げ機構Kを付設し、晶析が完了
すると、ピストン2を抜き出した後突き上げ機構にのロ
ッドRを進出させて目的物質Sを押し上げ、これによっ
て目的物質Sの取出を行なう。
Fig. 4 shows a modification of Fig. 3, in which a push-up mechanism K is attached to the end M3 placed on the lower end side of the high-pressure container, and when the crystallization is completed, the rod R is connected to the push-up mechanism after the piston 2 is extracted. The target substance S is advanced and pushed up, and thereby the target substance S is taken out.

これらの説明において、製品をケーキ状で上方に取出す
構造が述べられている。圧力晶析装置においては容器内
に組み込まれたフィルター等(図示せず)の背部に分離
した母液が溜っており、下蓋を開放して取出す場合には
、これらが下方に滴下流出する。そこでこれら滴下液を
回収する装置機構が必要となるが、上蓋より製品ケーキ
を取出す場合はこのような問題もなく、残留していた母
液は次のサイクルで排液とともに流出することになる。
In these descriptions, a structure is mentioned in which the product is removed upwardly in the form of a cake. In a pressure crystallizer, separated mother liquor is collected behind a filter or the like (not shown) built into the container, and when the lower lid is opened to take out the mother liquor, this liquid drips out downward. Therefore, a device mechanism is required to collect these dripping liquids, but when the product cake is removed from the upper lid, there is no such problem, and the remaining mother liquor flows out together with the draining liquid in the next cycle.

その他第6図に示す様にピストン2を進退させる加圧駆
動機構Jに対し2組の高圧容器1等からなる圧力晶析装
置M、Maを用意し、一方の圧力晶析装置Mによる晶析
が進行している間に他方の圧力晶析装置Maへのスラリ
ー状又は固体状原料の装入を完了しておき、晶析が完了
すると加圧駆動機構Jを横移動させて準備しておいた圧
力晶析装置Maによる加圧晶析を行なう。これにより圧
力晶析装置の運転を効率良く行なうことができる。内因
ではピストン2を2本使用したが、1本のピストンを兼
用することも可能である。
In addition, as shown in FIG. 6, pressure crystallizers M and Ma consisting of two sets of high-pressure containers 1, etc. are prepared for the pressurizing drive mechanism J that advances and retreats the piston 2, and one pressure crystallizer M performs crystallization. While the crystallization is in progress, the charging of the slurry or solid raw material to the other pressure crystallizer Ma is completed, and when the crystallization is completed, the pressure drive mechanism J is moved laterally to prepare it. Pressure crystallization is performed using a pressure crystallizer Ma. Thereby, the pressure crystallizer can be operated efficiently. Although two pistons 2 are used in the internal case, it is also possible to use one piston.

[発明の効果] 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)本発明方法においてはまず始めに固形分濃度25
%以上であるスラリー状原料又は固体状原料を高圧容器
の上部開放部から高圧容器に装入し、高圧容器を密閉し
た後、必要に応じて上記原料を加温して固形分の一部又
は全部を溶融させた高温原料を高圧容器内に注入するの
でこれにより高圧容器への原料装入温度を低下させるこ
とができ、特定成分結晶を高収率で得ることができる。
(1) In the method of the present invention, first of all, the solid content concentration is 25
% or more of the slurry-like raw material or solid raw material is charged into the high-pressure container from the upper open part of the high-pressure container, and after the high-pressure container is sealed, the raw material is heated as necessary to remove part of the solid content or Since the high-temperature raw material, which is completely molten, is injected into the high-pressure vessel, the temperature at which the raw material is charged into the high-pressure vessel can be lowered, and specific component crystals can be obtained at a high yield.

又固形分の多い原料の場合原料中に含まれる固形分は表
層若しくは固形分同士の間に不純物を含んでおり、又多
くの空隙が存在するが、本発明方法においては上記の如
く高圧容器密閉後固形分の少ない高温原料を注入するの
でこれに、より上記不純物は溶融して液相へ移り、その
後圧力晶析により特定成分が晶析する。従って収率の向
上と共に満足し得る純度の特定成分結晶を得ることがで
きる。
In addition, in the case of a raw material with a high solid content, the solid content contained in the raw material contains impurities in the surface layer or between solid contents, and there are many voids, but in the method of the present invention, the high pressure container is sealed as described above. Since a high-temperature raw material with a low solid content is then injected, the above-mentioned impurities are melted and transferred to the liquid phase, and then specific components are crystallized by pressure crystallization. Therefore, it is possible to obtain specific component crystals of satisfactory purity with improved yield.

(2)本発明圧力晶析装置を使用することによって上記
圧力晶析方法の実施が可能となり、高純度の特定成分結
晶を収率良く得ることができる。
(2) By using the pressure crystallizer of the present invention, the above-described pressure crystallization method can be carried out, and high purity specific component crystals can be obtained in good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断熱的圧力晶析における固液変衡点を圧力と温
度の関数として表わしたグラフ、第2〜4図は本発明に
係る圧力晶析装置及び圧力晶析方法を示すフロー説明図
、第5〜8図は本発明の変形態様を示す模式図ある。 1・・・高圧容器    2・・・ピストン3・・・端
蓋      4・・・流路G・・・固形分が25%以
上のスラリー状原料又は固体状原料
Fig. 1 is a graph showing the solid-liquid equilibrium point in adiabatic pressure crystallization as a function of pressure and temperature, and Figs. 2 to 4 are flow explanatory diagrams showing the pressure crystallizer and pressure crystallization method according to the present invention. , and FIGS. 5 to 8 are schematic diagrams showing modified embodiments of the present invention. 1... High pressure container 2... Piston 3... End cap 4... Channel G... Slurry raw material or solid raw material with solid content of 25% or more

Claims (4)

【特許請求の範囲】[Claims] (1)堅型高圧容器と、上記高圧容器の一方側から他方
側にむけて高圧容器内を進退可能なピストンと、上記ピ
ストンと反対側から高圧容器の開口端を閉鎖する端蓋か
らなる圧力晶析装置であって、少なくとも上記高圧容器
の上部側を開閉自在に構成したことを特徴とする圧力晶
析装置。
(1) Pressure consisting of a rigid high-pressure container, a piston that can advance and retreat within the high-pressure container from one side of the high-pressure container to the other, and an end cover that closes the open end of the high-pressure container from the opposite side of the piston. 1. A pressure crystallizer, characterized in that at least the upper side of the high-pressure container is configured to be openable and closable.
(2)固形分濃度が25%以上である特定成分と不純物
成分からなるスラリー状原料を所定量分割する装置と、
分割された該原料を高圧容器の上部側開口部より注入す
る高濃度スラリー供給装置とを併設し、少なくとも後者
を高圧容器上端開口部に対して相対的に移動しうるよう
になしたる特許請求の範囲第1項記載の圧力晶析装置。
(2) a device for dividing a slurry-like raw material into a predetermined amount consisting of a specific component and an impurity component with a solid content concentration of 25% or more;
A patent claim that includes a high-concentration slurry supply device that injects the divided raw material from the upper opening of the high-pressure container, and at least the latter is movable relative to the upper opening of the high-pressure container. The pressure crystallizer according to item 1.
(3)製品ケーキを高圧容器上端開口部より取出す、取
出し機構を設けた特許請求の範囲第1又は2項記載の圧
力晶析装置。
(3) The pressure crystallizer according to claim 1 or 2, further comprising a take-out mechanism for taking out the product cake from the upper end opening of the high-pressure container.
(4)圧力を変数とする晶析法を実施するに当たり、固
形分濃度が25%以上である特定成分と不純物成分から
なる固体状又はスラリー状原料を高圧容器上部側開口部
より高圧容器内に装入し、高圧容器上部側開口部を密閉
した後、特定成分と不純物成分からなる高温の液状又は
固形分濃度が25%未満のスラリー状原料を配管を通し
て注入し、以下加圧晶出工程に移行することを特徴とす
る高濃度原料の圧力晶析方法。
(4) When performing a crystallization method that uses pressure as a variable, a solid or slurry raw material consisting of a specific component and impurity components with a solid content concentration of 25% or more is introduced into a high-pressure container from the upper opening of the high-pressure container. After charging and sealing the upper opening of the high-pressure vessel, a high-temperature liquid or slurry raw material with a solid content concentration of less than 25% consisting of specific components and impurity components is injected through piping, and then subjected to the pressure crystallization process. A pressure crystallization method for highly concentrated raw materials characterized by migration.
JP1316487A 1987-01-21 1987-01-21 Pressure crystallization system for raw material of high concentration and pressure crystallization method Granted JPS63182003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316487A JPS63182003A (en) 1987-01-21 1987-01-21 Pressure crystallization system for raw material of high concentration and pressure crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316487A JPS63182003A (en) 1987-01-21 1987-01-21 Pressure crystallization system for raw material of high concentration and pressure crystallization method

Publications (2)

Publication Number Publication Date
JPS63182003A true JPS63182003A (en) 1988-07-27
JPH046401B2 JPH046401B2 (en) 1992-02-05

Family

ID=11825532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316487A Granted JPS63182003A (en) 1987-01-21 1987-01-21 Pressure crystallization system for raw material of high concentration and pressure crystallization method

Country Status (1)

Country Link
JP (1) JPS63182003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082635A (en) * 1989-02-28 1992-01-21 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallographic observation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112726A (en) * 1984-06-28 1986-01-21 Teijin Ltd Preparation of polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112726A (en) * 1984-06-28 1986-01-21 Teijin Ltd Preparation of polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082635A (en) * 1989-02-28 1992-01-21 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallographic observation apparatus

Also Published As

Publication number Publication date
JPH046401B2 (en) 1992-02-05

Similar Documents

Publication Publication Date Title
US4221590A (en) Fractional crystallization process
CN104878224B (en) Device and method for preparing high-purity gallium
JP4013294B2 (en) Fat separation method
JPS63182003A (en) Pressure crystallization system for raw material of high concentration and pressure crystallization method
US3102805A (en) Aluminum production from alloy
JP6076621B2 (en) Oil extraction equipment
US5220098A (en) Process for separating 2, 7-dimethylnaphthalene under pressure
US3290891A (en) Batch crystal purification
US3541804A (en) Fractional crystallization with an immiscible refrigerant
JPH0699346B2 (en) Method and apparatus for crystallizing a manifold
US2536993A (en) Continuous fermentation process
JPS56124402A (en) Separating and purifying device for substance
JPH0779925B2 (en) Pressure crystallizer and method
JP2515872B2 (en) Pressure crystallizer
CN106823451A (en) Improve CO2The charging process of supercritical extract yield
JPH0463103A (en) Pressure crystallizer
JP2798902B2 (en) Batch continuous extraction device
JPH0244561B2 (en)
JPH0418882B2 (en)
JPS63218205A (en) Pressure crystallization method
GB801102A (en) Improvements in or relating to process of separating components of oleaginous mixtures by fractional crystallization
US3326643A (en) Methods of preparing thiotrithiazyl chloride
JPH0356761B2 (en)
JPH0587065B2 (en)
JPH0286803A (en) Apparatus and method for pressure crystallization