JPH0286803A - Apparatus and method for pressure crystallization - Google Patents

Apparatus and method for pressure crystallization

Info

Publication number
JPH0286803A
JPH0286803A JP23799288A JP23799288A JPH0286803A JP H0286803 A JPH0286803 A JP H0286803A JP 23799288 A JP23799288 A JP 23799288A JP 23799288 A JP23799288 A JP 23799288A JP H0286803 A JPH0286803 A JP H0286803A
Authority
JP
Japan
Prior art keywords
pressure
filter
container
vessel
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23799288A
Other languages
Japanese (ja)
Inventor
Yuichi Matsuda
雄市 松田
Katsufumi Urabe
克文 卜部
Toshimitsu Ishida
石田 敏充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23799288A priority Critical patent/JPH0286803A/en
Publication of JPH0286803A publication Critical patent/JPH0286803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To improve a yield of product of pressure crystallization and to reduce the time required for the preparation of raw material into a vessel by providing freely attachably and detachably a bottomed cylindrical vessel having at least a filter in the cylindrical part of the vessel, to the inside surface side of a high pressure vessel. CONSTITUTION:The high pressure vessel is constituted of a pressure resistant cylinder 1, a cover 2 disposed freely attachably and detachably to one end of the cylinder 1, and a pressurizing mechanism 5 provided to another end of the cylinder 1. The bottomed cylindrical vessel 18 having a filter in at least its cylindrical part of the vessel is housed freely attachably and detachably to the inside surface side of the high pressure vessel. As the result, the concn. of a solid phase of liquid slurry of the raw material is not limited, so a yield of produced crystal is improved. Moreover, the time required for the prepn. of the raw material in the high pressure vessel is reduced. At the same time, required time necessary for stages from opening the vessel in order to discharge the final product to a reassembling stage of the vessel after opening, is reduced. Thus, the time required for performing one cycle of the operation is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧力晶析装置および圧力晶析方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a pressure crystallizer and a pressure crystallization method.

(従来の技術) 圧力晶析法は、従来の蒸留法や冷却晶析法では分離困難
な原料系への適用に大きな可能性を有している事、高純
度の製品が得易い事、高収率が得られる事及びエネルギ
消費量が少ない事がら、近年の化学工業のファイン化に
伴って大きな注目を集めている分離精製技術である。
(Conventional technology) Pressure crystallization has great potential for application to raw material systems that are difficult to separate using conventional distillation or cooling crystallization, is easy to obtain high-purity products, and has high It is a separation and purification technology that has been attracting a lot of attention as the chemical industry has become increasingly refined in recent years because of its high yield and low energy consumption.

かかる圧力晶析法および圧力晶析装置の概要は、例えば
、化学工業Vo1.50.No、5.P331 335
  ’圧力晶析法と装置の概要」に記載されている。こ
れを以下説明する。
An overview of such pressure crystallization method and pressure crystallizer is given in, for example, Kagaku Kogyo Vol. 1.50. No, 5. P331 335
Described in 'Overview of Pressure Crystallization Method and Apparatus'. This will be explained below.

第8図に圧力晶析法のプロセスフロー概要図を示す。第
9回に圧力晶析装置の側断面図を示す。
FIG. 8 shows a process flow diagram of the pressure crystallization method. Part 9 shows a side sectional view of the pressure crystallizer.

これらの図に示すように、耐圧性筒体(1)には、下方
に蓋体(下mり(2)が設けられ、ピストン(5)が油
圧ユニット(3)の作動により筒体(1)内で上下動す
るように設けられ、これらによって高圧容器が構成され
ている。該容器の内面側に筒形状のフィルタ01が固定
して設けられている(第9図に示される)、そして、そ
の内部に晶析室(4)が形成される。
As shown in these figures, the pressure-resistant cylindrical body (1) is provided with a lid body (lower rim (2)) at the bottom, and the piston (5) is moved into the cylindrical body (1) by the operation of the hydraulic unit (3). ), and these constitute a high-pressure container.A cylindrical filter 01 is fixedly provided on the inner surface of the container (as shown in FIG. 9), and , a crystallization chamber (4) is formed therein.

この晶析室(4)と排液タンク(6)とが、減圧機構θ
■及び弁(It)を介して液排出用配管(9)により連
結されている。又、晶析室(4)と予備晶析缶(7)と
が原料供給ポンプ(8)、弁θのを介して液注入用配管
0りにより連結されている。
The crystallization chamber (4) and the drain tank (6) are connected to a pressure reducing mechanism θ
(1) and is connected by a liquid discharge pipe (9) via a valve (It). Further, the crystallization chamber (4) and the pre-crystallizer (7) are connected to each other by a liquid injection pipe via a raw material supply pump (8) and a valve θ.

原料は原料タンクθ甫より予備晶析缶(7)に送給され
て圧力晶析のだめの種結晶を生成する。これは種結晶を
含まないままの原料を圧力晶析にかけると、圧力晶析で
は過飽和圧が一般的に数百気圧以上と比較的高い場合が
多く、初期結晶生成の為に高圧力が必要となる恐れがあ
るためであり、種結晶を含んだスラリ状態で給液すると
、かかる過飽和圧の心配がないばかりか加圧により核発
生を伴わずに結晶の成長が期待出来る利点がある。
The raw material is fed from the raw material tank θ to the pre-crystallizer (7) to generate seed crystals for pressure crystallization. This is because when raw materials without seed crystals are subjected to pressure crystallization, the supersaturation pressure is generally relatively high, typically several hundred atmospheres or more, and high pressure is required for initial crystal formation. This is because there is a risk that the slurry containing seed crystals will be supplied, which has the advantage that not only is there no need to worry about such supersaturation pressure, but crystal growth can be expected without nucleation due to pressurization.

次に、配管θつから弁02)を介して原料を晶析室(4
)に注入する。晶析室(4)内に原料が充満すると、ピ
ストン先端部に開口を有するオーバーフロー管05)を
通って液流出が始まるので、これを検知して弁021、
 O[9を閉じてピストン(5)による加圧を開始する
、原料液を加圧すると原料中の特定物質の結晶化が進行
して、晶析室(4)内は高圧下の固液平衡状態となる。
Next, the raw material is transferred to the crystallization chamber (4) via the piping θ (valve 02).
). When the crystallization chamber (4) is filled with the raw material, the liquid begins to flow out through the overflow pipe (05) having an opening at the tip of the piston.This is detected and the valve (021)
Close O[9 and start pressurizing with the piston (5). When the raw material liquid is pressurized, crystallization of a specific substance in the raw material progresses, and the inside of the crystallization chamber (4) is in solid-liquid equilibrium under high pressure. state.

このとき生成する固体は一般に極めて高純度の物質であ
る。尚、固化の進行に伴って発生する固化潜熱により、
晶析室(4)内の温度は上昇するが、圧力晶析法では一
般にこの温度上昇防止の為の冷却は行わず、断熱的に加
圧する方法が採用される。昇温後の到達温度即ち固液分
離開始温度は、製品の純度、収率に影響を及ぼすから、
これは原料混合物の比熱、固化潜熱等を考慮して給液温
度により調整する。
The solid produced at this time is generally a substance of extremely high purity. In addition, due to the latent heat of solidification generated as solidification progresses,
Although the temperature inside the crystallization chamber (4) increases, in the pressure crystallization method, generally no cooling is performed to prevent this temperature increase, and a method of adiabatically pressurizing is adopted. The temperature reached after temperature rise, that is, the temperature at which solid-liquid separation starts, affects the purity and yield of the product.
This is adjusted by taking into account the specific heat, latent heat of solidification, etc. of the raw material mixture and adjusting the temperature of the supplied liquid.

次に、所定の圧力まで昇圧し、所定の固液比率に達する
と、弁00を開き、油圧ユニット(3)からピストン(
5)に作用する圧力を保持して晶析室(4)内の圧力を
保持したままピストンの下降を続けると、晶析室(4)
内の結晶粒群は加圧圧搾され、結晶粒間の残留液体は所
謂「絞り出し作用」を受けて排液タンク(6)に排出さ
れる。
Next, the pressure is increased to a predetermined pressure, and when the predetermined solid-liquid ratio is reached, valve 00 is opened and the hydraulic unit (3) is connected to the piston (
If the piston continues to descend while maintaining the pressure in the crystallization chamber (4) by maintaining the pressure acting on the crystallization chamber (4),
The crystal grain groups within are squeezed under pressure, and the remaining liquid between the crystal grains undergoes a so-called "squeezing action" and is discharged to a drain tank (6).

ピストン(5)の下降が更に続くと、結晶粒群は晶析室
(4)の形状に沿って一個の大きな塊状固体製品へと成
形されていく。このようにして液体を固体から略完全に
分離する段階になると、大気圧下の排液タンク(6)に
連通している晶析室(4)内の液相圧・力は次第に低下
していくため、結晶表面は部分的に融解し、所謂「発汗
洗浄」が行われ塊状固体製品の精製がなされる。
As the piston (5) continues to descend further, the crystal grains are formed into one large lumpy solid product along the shape of the crystallization chamber (4). When the liquid is almost completely separated from the solid in this way, the liquid phase pressure and force in the crystallization chamber (4), which is connected to the drain tank (6) under atmospheric pressure, gradually decreases. As a result, the crystal surface is partially melted, so-called "sweat washing" is performed, and the bulk solid product is purified.

晶析室(4)から排出される排液の圧力が所定の圧力ま
で低下すると、ピストン(5)の下降を停止し、同ピス
トンの上昇を開始すると共に筒体(+)も上昇させると
、固体製品は下蓋(2)上に載置された状態で容器(1
)から取り出される。これを製品取り出し装置(図示せ
ず)によって取り出し、筒体(1)を下降させて下蓋(
2)に装着し、以下原料の注入工程に戻り、同様の工程
を繰り返す事になる。尚、原料の注入に先立ち、前述の
オーバーフロー管θω内の残液を、窒素ガス等の製品に
対して不活性なガスでパージし、次工程の注入時の満液
検知の為の準備をしておく。
When the pressure of the drained liquid discharged from the crystallization chamber (4) drops to a predetermined pressure, the piston (5) stops descending, and at the same time the piston begins to rise, the cylinder body (+) also rises. Solid products are placed on the lower lid (2) and placed in the container (1).
). This is taken out by a product take-out device (not shown), the cylindrical body (1) is lowered, and the lower lid (
2), then return to the raw material injection process and repeat the same process. Before injecting the raw material, purge the remaining liquid in the overflow pipe θω with a gas inert to the product, such as nitrogen gas, to prepare for full liquid detection during injection in the next process. I'll keep it.

以上の工程を繰り返すことによって製品を連続的に生産
する。
By repeating the above steps, products are produced continuously.

(発明が解決しようとする課題) 以上に述べたように、従来の圧力晶析装置は、耐圧性筒
体と該筒体の一端に配された着脱自在な蓋体と該筒体の
他端側に配された該筒体内加圧機構(ピストン)とで構
成された高圧容器を有し、該高圧容器の内面側に筒形状
のフィルタが固定して設けられているものである。また
、従来の圧力晶析方法は、上記の如き装置を用いて行わ
れ、それは種結晶を含む原料(スラリ液)を配管から弁
を介して上記高圧容器内に注入し、該高圧容器内にて該
混合物を加圧して特定成分の固体状製品を形成させ、該
高圧容器より製品を取り出すものである。
(Problems to be Solved by the Invention) As described above, the conventional pressure crystallizer includes a pressure-resistant cylinder, a removable lid disposed at one end of the cylinder, and a lid at the other end of the cylinder. It has a high-pressure container configured with an internal pressure mechanism (piston) disposed on the side, and a cylindrical filter is fixedly provided on the inner surface of the high-pressure container. Furthermore, the conventional pressure crystallization method is carried out using the above-mentioned apparatus, in which a raw material (slurry liquid) containing seed crystals is injected from piping through a valve into the high-pressure vessel. The mixture is pressurized to form a solid product of specific components, and the product is removed from the high-pressure container.

ところが、上記原料液は、種結晶を含むので固液共存状
態のスラリ液となっている。このスラリ液の同相濃度は
、高い程収率が高くなるが、ボンブの送給能力により制
限され、その上限は一般的には20乃至25%程度であ
る。従って、製品収率が制限されるという問題点がある
However, since the raw material liquid contains seed crystals, it is a slurry liquid in which solid and liquid coexist. The higher the in-phase concentration of this slurry, the higher the yield, but it is limited by the feeding capacity of the bomb, and its upper limit is generally about 20 to 25%. Therefore, there is a problem that the product yield is limited.

また、スラリ液は液体に比較して粘性が高く、そのよう
なスラリ液を配管から弁を介して注入を行うので、高圧
容器内への注入に長時間を要するという問題点がある。
Further, slurry liquid has a higher viscosity than liquid, and since such slurry liquid is injected from piping through a valve, there is a problem that it takes a long time to inject it into the high-pressure container.

また、種結晶を含むスラリ液とするため、原料液は予冷
却される場合が多い。そのためスラリ液と高圧容器との
温度差が比較的大きく、その差は通常拾数度〜数袷度で
ある。また、高圧容器内への注入に長時間を要する。故
に、高圧容器内へ注入される際、スラリ液の温度が上昇
する。従って、加圧して圧力晶析を開始する時点におい
て、スラリ液の固相濃度が低下し、そのため製品収率が
低下するという問題点がある。
Furthermore, the raw material liquid is often pre-cooled to form a slurry liquid containing seed crystals. Therefore, the temperature difference between the slurry liquid and the high-pressure container is relatively large, and the difference is usually a few degrees to a few degrees. Furthermore, it takes a long time to inject into the high-pressure container. Therefore, the temperature of the slurry increases when it is injected into the high pressure container. Therefore, there is a problem that the solid phase concentration of the slurry liquid decreases at the time when pressure is applied to start pressure crystallization, resulting in a decrease in product yield.

更に、高圧容器内に形成された製品を取り出すため、ピ
ストン及び高圧容器を上昇させ、蓋体から分離する必要
がある。そして、蓋体上の製品を取り出した後、次の注
入工程を実施するには、高圧容器を下降させて下蓋に装
着する必要がある。
Furthermore, in order to take out the product formed in the high-pressure container, it is necessary to raise the piston and the high-pressure container and separate it from the lid. After taking out the product on the lid, in order to carry out the next injection process, it is necessary to lower the high-pressure container and attach it to the lower lid.

これらの時間短縮が望まれている。It is desired to shorten these times.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものがもつ以上のような問題点を解
消し、原料のスラリ液の固相濃度が制服されず、収率を
向上し得、また、高圧容器内への原料の準備に要する時
間が短縮されると共に、製品取り出しのための高圧容器
の開放工程から、製品取り出し後の高圧容器の組立工程
に至る迄に要する時間が短縮され、そのためlサイクル
当たりの時間が短縮される圧力晶析装置および圧力晶析
方法を提供しようとするものである。
The present invention has been made with attention to these circumstances, and its purpose is to solve the above-mentioned problems of the conventional methods, and to prevent the solid phase concentration of the raw material slurry from being uniform and to achieve a uniform concentration. In addition, the time required to prepare raw materials in the high-pressure container can be improved, and the time required to prepare raw materials in the high-pressure container can be reduced, as well as the process from opening the high-pressure container to take out the product to the assembly process of the high-pressure container after taking out the product. It is an object of the present invention to provide a pressure crystallizer and a pressure crystallization method that require less time and therefore less time per cycle.

(課題を解決するための手段) 上記の目的を達成するために、本発明に係る圧力晶析装
置および圧力晶析方法は次のような構成としている。即
ち、本発明に係る圧力晶析装置は、耐圧性筒体と該筒体
の一端に配された着脱自在な蓋体と該筒体の他端側に配
された該筒体内加圧機構とで構成された高圧容器を有し
、該高圧容器の内面側に、底付の筒形状を有し且つ少な
くとも筒部にフィルタを有するフィルタ付容器が、着脱
自在に設けられていることを特徴とする圧力晶析装置で
ある。また、本発明に係る圧力晶析方法は、特定成分を
含む2種以上の成分からなる混合物を、底付の筒形状を
有し且つ少なくとも筒部にフィルタを有するフィルタ付
容器に入れ、該フィルタ付容器を高圧容器内に配置し、
該高圧容器内にて該混合物を加圧して固液共存状態と成
し、続いて液相分を該高圧容器外に排出して該フィルタ
付容器内に特定成分の固体状製品を形成させ、該フィル
タ付容器を高圧容器の外に取り出した後、固体状製品を
該フィルタ付容器から取り外して得ることを特徴とする
圧力晶析方法である。
(Means for Solving the Problems) In order to achieve the above object, a pressure crystallization apparatus and a pressure crystallization method according to the present invention have the following configuration. That is, the pressure crystallizer according to the present invention includes a pressure-resistant cylinder, a removable lid disposed at one end of the cylinder, and an internal pressure mechanism disposed at the other end of the cylinder. A filter-equipped container having a cylindrical shape with a bottom and having a filter in at least the cylindrical portion is removably provided on the inner surface of the high-pressure container. This is a pressure crystallizer. Further, in the pressure crystallization method according to the present invention, a mixture of two or more components including a specific component is placed in a filter-equipped container having a cylindrical shape with a bottom and a filter at least in the cylindrical portion, and the filter Place the attached container inside the high pressure container,
Pressurizing the mixture in the high-pressure container to form a solid-liquid coexistence state, then discharging the liquid phase out of the high-pressure container to form a solid product of a specific component in the filter-equipped container, This is a pressure crystallization method characterized in that the solid product is obtained by removing the filter-equipped container from the filter-equipped container after the filter-equipped container is taken out of the high-pressure container.

(作 用) 以上説明したように、本発明に係る圧力晶析装置は、高
圧容器の内面側に、底付の筒形状を有し且つ少なくとも
筒部にフィルタを有するフィルタ付容器を着脱自在に設
けるようにしている。故に、このフィルタ付容器は必要
に応して高圧容器に対して出入れが可能である。また、
フィルタは、高圧に加圧された時に液体を透過させる機
能を有し、且つ大気圧下では液体を透過しないものにで
きる。従って、このフィルタ付容器は、大気圧下では液
体が洩れない容器になり得、−刃高圧下ではフィルタ機
能を有し得る。
(Function) As explained above, the pressure crystallizer according to the present invention has a cylindrical shape with a bottom attached to the inner surface of the high-pressure container, and a filter-equipped container having at least a filter in the cylindrical portion can be detachably attached. I am trying to set it up. Therefore, this filter-equipped container can be taken in and out of the high-pressure container as needed. Also,
The filter has the function of allowing liquid to pass through when it is pressurized to a high pressure, and can be made so that it does not allow liquid to pass through under atmospheric pressure. Therefore, this container with a filter can be a container that does not leak liquid under atmospheric pressure, and can have a filter function under high pressure.

本発明に係る圧力晶析方法は、上記の如き機能を有する
フィルタ付容器に混合物を入れ、該フィルタ付容器を高
圧容器内に配置するようにしている。この操作により、
高圧容器内への原料の$備が行われることになる。これ
は、ポンプを使用せずに行い得るので、原料のスラリ液
の同相濃度が制限されない。また、配管および弁を使用
せずに行い得るので、高圧容器内への原料の準備に要す
る時間が極めて短くなる。
In the pressure crystallization method according to the present invention, a mixture is placed in a filter-equipped container having the above-mentioned functions, and the filter-equipped container is placed in a high-pressure container. With this operation,
Raw materials will be deposited into the high-pressure container. This can be done without the use of a pump, so the in-phase concentration of the raw slurry is not limited. Furthermore, since it can be carried out without using piping or valves, the time required to prepare the raw material into the high-pressure container is extremely shortened.

また、前記高圧容器内での原料の準備後、該高圧容器内
にて該混合物を加圧して固液共存状態と成し、続いて液
相分を該高圧容器外に排出するようにしている。このと
き、フィルタ付容器は少な(とも筒部にフィルタを有す
るものであるので、液体だけがそのフィルタを透過する
。従って、固液分離され、その結果該フィルタ付容器内
に特定成分の固体状製品を形成させられる。
Further, after the raw materials are prepared in the high-pressure container, the mixture is pressurized in the high-pressure container to form a solid-liquid coexistence state, and then the liquid phase is discharged out of the high-pressure container. . At this time, the filter-equipped container has a filter in its cylindrical portion, so only the liquid passes through the filter. Therefore, solid-liquid separation occurs, and as a result, the solid state of the specific component is contained in the filter-equipped container. Can be formed into products.

前記固体状製品形成後、該製品が入ったフィルタ付容器
を高圧容器の外に取り出した後、固体状製品を該フィル
タ付容器から取り外して得るようにしている。
After the solid product is formed, the filter-equipped container containing the product is taken out of the high-pressure container, and then the solid product is obtained by removing it from the filter-equipped container.

一方、上記フィルタ付容器の取り出しの工程迄の工程操
作に並行して、別のフィルタ付容器に混合物を入れる操
作を行うことは簡単にできる事である。このようにすれ
ば、前記フィルタ付言、器からの固体状製品の取り外し
が完了するまで待つ事なく、フィルタ付容器の取り出し
の直後に、別のフィルタ付容器を高圧容器内に配置し、
高圧容器内への原料の準備を行い得る。従って、製品取
り出しのための高圧容器の開放工程から、製品取り出し
後の高圧容器の組立工程に至る迄に要する時間が短縮さ
れるようになる。
On the other hand, it is easy to carry out the operation of putting the mixture into another filter-equipped container in parallel with the process operations up to the step of removing the filter-equipped container. In this way, immediately after removing the filter-equipped container, another filter-equipped container is placed in the high-pressure container without waiting until the removal of the solid product from the container is completed.
Preparation of raw materials into high pressure vessels may be performed. Therefore, the time required from the process of opening the high-pressure container to take out the product to the process of assembling the high-pressure container after taking out the product can be shortened.

尚、フィルタ付容器に関し、その底部に固体状製品の押
し出し手段を設ける事が望ましい、そのようにすると、
フィルタ付容器からの固体状製品の取り外しがより簡単
にし得るようになるからである0例えば、第1図に示す
ようにフィルタ付容器08)の底部に押し出し治具O!
を設ければよい。
Regarding containers with filters, it is desirable to provide means for extruding solid products at the bottom.
For example, as shown in FIG. 1, the extrusion jig O!
All you have to do is set it up.

また、フィルタは少なくとも筒部にフィルタを有するも
のであり、必要に応じて底部もフィルタとしてもよい、
また、フィルタ付容器は、一体型でもよく、第2図に示
すように、底部(22)を分離可能であるようにしても
よい。
Further, the filter has a filter in at least the cylindrical part, and the bottom part may also be a filter if necessary.
Further, the filter-equipped container may be of an integrated type, or the bottom portion (22) may be separable as shown in FIG.

また、フィルタが薄く、その強度が低い場合は、フィル
タ付容器の周囲に液流路を有する保護体を設けるとよい
、そのような保護体を有するフィルタ付容器の例を、第
3図および第4図に示す。
In addition, if the filter is thin and its strength is low, it is recommended to provide a protector with a liquid flow path around the container with a filter. Examples of containers with a filter having such a protector are shown in Figure 3 and FIG. Shown in Figure 4.

第3図に示すものは、多数のスリットを有する保護体1
2mが設けられたフィルタ付容器であり、加圧圧搾時は
液体がフィルタを透過し、スリット(21)を通過して
排出され得る。また、第4図は、シール用パツキンを有
する保護体が設けられたフィルタ付容器の要部を示すも
のである。このシール用パツキン(23)は、保護体に
設けられた孔部(24)に嵌められており、第5図に示
す如く大気圧下では閉じ、加圧されるとその圧力によっ
て第6図に示す如く開く事ができるものである。このよ
うなシール用パツキンを有する保護体を用いると、フィ
ルタが極めて薄い場合でも、大気圧下では液体が洩れな
い容器になり得、高圧下ではフィルタ機能を有し得る。
What is shown in Fig. 3 is a protective body 1 having a large number of slits.
It is a container with a filter provided with a width of 2 m, and during pressurization, liquid can pass through the filter and be discharged through the slit (21). Moreover, FIG. 4 shows the main part of a container with a filter provided with a protector having a sealing gasket. This sealing gasket (23) is fitted into a hole (24) provided in the protector, and closes under atmospheric pressure as shown in Figure 5, and when pressurized, it closes as shown in Figure 6. It can be opened as shown. By using a protector having such a sealing gasket, even if the filter is extremely thin, it can become a container that does not leak liquid under atmospheric pressure, and can have a filter function under high pressure.

(実施例) 本発明に係る実施例を、図を参照しながら説明する。(Example) Embodiments according to the present invention will be described with reference to the drawings.

スJflLfLL 第7図に、本発明の実施例に係る圧力晶析装置を示す。SuJflLfLL FIG. 7 shows a pressure crystallizer according to an embodiment of the present invention.

この圧力晶析装置は、晶析空容量が1.51のパイロッ
トプラントである。この図に示すように、耐圧性筒体(
1)と該筒体の一端に配された着脱自在な蓋体(2)と
該筒体の他端側に配された該筒体内加圧機構とで構成さ
れた高圧容器を有し、該高圧容器の内面側に、庭付の筒
形状を有し且つ筒部にフィルタを有するフィルタ付容器
Omが、着脱自在に設けられている。このフィルタ付容
器は、第1図に示したものと同様、底部に押し出し治具
0ωを設けたものである。
This pressure crystallizer is a pilot plant with a crystallization capacity of 1.51. As shown in this figure, a pressure-resistant cylinder (
1), a removable lid (2) disposed at one end of the cylinder, and an internal pressure mechanism disposed at the other end of the cylinder; A container Om with a filter, which has a cylindrical shape with a garden and has a filter in the cylindrical portion, is detachably provided on the inner surface of the high-pressure container. This filter-equipped container is equipped with an extrusion jig 0ω at the bottom, similar to the one shown in FIG.

上記圧力晶析装置を用いて、P−クレゾールの成分を8
02. ea−クレゾールの成分を20χ含む圧力晶析
分離用の原料液(異性体混合物)について、P−クレゾ
ールを目的製品とする圧力晶析分離を、下記のようにし
て行った。
Using the above pressure crystallizer, the components of P-cresol were
02. A raw material solution (isomer mixture) for pressure crystallization separation containing 20x of ea-cresol component was subjected to pressure crystallization separation using P-cresol as the target product in the following manner.

先ず、前記原料液を、予冷槽にて15°Cに予冷却した
。予冷却後のスラリ濃度は、18.3%であった0次に
、この原料液(スラリ)をフィルタ付容器側に入れ、該
フィルタ付容器を高圧容器内に配置した0次いで、耐圧
性筒体(1)を下降させて下蓋(2)に装着した。この
操作によって、高圧容器内に原料(4)が準備されるこ
とになる。尚、この原料準備時間は従来のそれに比較し
、30χ短縮された。
First, the raw material liquid was pre-cooled to 15°C in a pre-cooling tank. The slurry concentration after pre-cooling was 18.3%. Next, this raw material liquid (slurry) was put into a container with a filter, and the container with a filter was placed in a high-pressure container. The body (1) was lowered and attached to the lower lid (2). By this operation, the raw material (4) is prepared in the high pressure container. The raw material preparation time was reduced by 30x compared to the conventional method.

上記装着後、ピストンにより該混合物を1500気圧ま
で加圧し、続いて液体排出管路(9)の弁を開き、この
圧力を保持したままピストン(5)の下降を続けて、加
圧圧搾し、液相分を該高圧容器外に排出した。ピストン
(5)の下降を更に続け、−個の大きな塊状固体製品を
成形した。その後ピストン(5)の下降を停止し、同ピ
ストン(5)の上昇を開始すると共に耐圧性筒体(1)
も上昇させた。この結果、フィルタ付容器a8)内に製
品が形成されていた。
After the above installation, the mixture is pressurized to 1500 atmospheres by the piston, then the valve of the liquid discharge pipe (9) is opened, and the piston (5) continues to descend while maintaining this pressure to compress the mixture under pressure, The liquid phase was discharged out of the high pressure vessel. The lowering of the piston (5) was continued to form - large chunks of solid product. After that, the piston (5) stops descending, and the piston (5) starts rising, and the pressure-resistant cylinder (1)
It also increased. As a result, a product was formed in the filter-equipped container a8).

次いで、フィルタ付容器O印を高圧容器の外に取り出し
た。一方、この取り出しが完了する迄に、予冷却された
原料液(スラリ)が注入された別のフィルタ付容器を別
途準備しておいた。
Next, the filter-equipped container marked O was taken out of the high-pressure container. On the other hand, before this removal was completed, another container with a filter was separately prepared into which pre-cooled raw material liquid (slurry) was poured.

前記フィルタ付容器θ印の取り出し後、固体状製品を該
フィルタ付容器0111から取り外して得ると共に、別
途準備された別のフィルタ付容器を蓋体(2)に乗せ、
耐圧性筒体(1)を下降させて下蓋に装着した。装着後
、ピストン(5)による加圧を開始し、1回目と同様の
操作を行った。尚、製品取り出しのための高圧容器の開
放工程から、製品取り出し後の高圧容器の組立工程に至
る迄に要する時間は、従来のそれに比較し、10%短縮
された。
After taking out the filter-equipped container 0111, the solid product is removed from the filter-equipped container 0111, and another separately prepared filter-equipped container is placed on the lid (2),
The pressure-resistant cylinder (1) was lowered and attached to the lower lid. After installation, pressurization using the piston (5) was started, and the same operation as the first time was performed. The time required from the process of opening the high-pressure container to take out the product to the process of assembling the high-pressure container after taking out the product was reduced by 10% compared to the conventional method.

以上の工程を繰り返すことによって製品を生産した。そ
の結果、1サイクル当たりの時間が、従来のそれに比較
し15%短縮された。P−クレゾールの製品収率は、3
8%であった。
The product was produced by repeating the above steps. As a result, the time per cycle was reduced by 15% compared to the conventional method. The product yield of P-cresol is 3
It was 8%.

実m 実施例1と同様の組成を有するクレゾール原料液につい
て、この原料液を予冷槽にて5°Cに予冷却した。予冷
却後のスラリ濃度は40%であった、このスラリについ
て、実施例1と同様の圧力晶析装置を用い、同様の工程
を繰り返して行い、製品を生産した。
Actual Cresol raw material liquid having the same composition as in Example 1 was pre-cooled to 5°C in a pre-cooling tank. The slurry concentration after pre-cooling was 40%. Using the same pressure crystallizer as in Example 1, the same steps were repeated to produce a product.

その結果、P−クレゾールの製品収率は、43%であっ
た。実施例1の場合に比較して極めて高いが、これはス
ラリ濃度が高いためである。
As a result, the product yield of P-cresol was 43%. This is extremely high compared to the case of Example 1, but this is because the slurry concentration is high.

また、従来の装置および方法は、スラリ濃度が25%以
上の場合は、スラリを高圧容器内に送給できないので、
圧力晶析を行えず、そのため収率が制限されていた。こ
れに対し、実施例2では、スラリ濃度が40%の場合で
も、何ら支障なく圧力晶析を行え、そのため収率が大幅
に向上する事ができた。
In addition, the conventional apparatus and method cannot feed the slurry into the high-pressure container when the slurry concentration is 25% or more.
Pressure crystallization could not be performed, which limited the yield. On the other hand, in Example 2, even when the slurry concentration was 40%, pressure crystallization could be performed without any problem, and therefore the yield could be significantly improved.

尚、lサイクル当たりの時間は、実施例1の場合と同様
であった。
Note that the time per cycle was the same as in Example 1.

(発明の効果) 本発明に係る圧力晶析装置および圧力晶析方法によれば
、原料のスラリ液の固相濃度が制限されず、そのため収
率を向上し得、また、高圧容器内への原料の準備に要す
る時間が短縮されると共に、製品取り出しのための高圧
容器の開放工程から、製品取り出し後の高圧容器の組立
工程に至る迄に要する時間が短縮され、そのため1サイ
クル当たりの時間が短縮されるようになる。
(Effects of the Invention) According to the pressure crystallizer and pressure crystallization method according to the present invention, the solid phase concentration of the slurry liquid of the raw material is not limited, and therefore the yield can be improved. In addition to reducing the time required to prepare raw materials, the time required from opening the high-pressure container to take out the product to assembling the high-pressure container after removing the product is also shortened, resulting in a reduction in time per cycle. It will be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は押し出し治具を設けたフィルタ付容器の側断面
図、第2図は底部が分離可能であるフィルタ付容器の側
断面図、第3図は多数のスリットを存する保護体を設け
たフィルタ付容器の側断面図、第4図はシール用パツキ
ンを有する保護体が設けられたフィルタ付容器の要部を
示す側断面図、第5図は閉じた状態のシール用パツキン
を示す図、第6図は開いた状態のシール用パツキンを示
す図、第7図は実施例に係る圧力晶析装置を示す図、第
8図は従来の圧力晶析法のプロセスフローを示す概要図
、第9図は従来の圧力晶析装置の側断面図である。 (1)−耐圧性筒体 (2)−蓋体 (3)−油圧ユニ
ット(4)−晶析室     (5)−ピストン(6)
−排液タンク   (7)−予備晶析缶(8)−原料供
給ポンプ (9)−液排出用配管q■−凍圧機構   
 Qi)面0〇−弁09−液注入用配管  圓−原料タ
ンクθつ一オーバーフロー管 07)〜筒形状のフィル
タ08)−フィルタ付容器 Og)−押し出し治具Qト
ー多数のスリットを有する保護体 (21L−スリット   (22)−底部(23)−−
シール用パツキン (24)−孔部特許出願人 株式会
社 神戸製鋼所 代 理 人  弁理士 金気 章− 第1図 第3図 第2図 第4図 第5図 第6図 ○ ■ 第8図 第7図 第9図
Figure 1 is a side sectional view of a container with a filter equipped with an extrusion jig, Figure 2 is a sectional side view of a container with a filter whose bottom can be separated, and Figure 3 is a side sectional view of a container with a filter provided with a protector having many slits. A side sectional view of a container with a filter, FIG. 4 is a side sectional view showing the main part of the container with a filter provided with a protector having a sealing gasket, and FIG. 5 is a view showing the sealing gasket in a closed state. FIG. 6 is a diagram showing the sealing gasket in an open state, FIG. 7 is a diagram showing the pressure crystallizer according to the embodiment, FIG. 8 is a schematic diagram showing the process flow of the conventional pressure crystallization method, and FIG. FIG. 9 is a side sectional view of a conventional pressure crystallizer. (1) - Pressure-resistant cylinder (2) - Lid (3) - Hydraulic unit (4) - Crystallization chamber (5) - Piston (6)
- Drainage tank (7) - Pre-crystallizer (8) - Raw material supply pump (9) - Liquid discharge piping q - Freezing pressure mechanism
Qi) Surface 0 - Valve 09 - Liquid injection pipe Round - Raw material tank θ Overflow pipe 07) - Cylindrical filter 08) - Container with filter Og) - Extrusion jig QTo Protective body with many slits (21L-Slit (22)-Bottom (23)--
Seal packing (24) - Hole Patent applicant Kobe Steel Co., Ltd. Agent Patent attorney Akira Kaneki - Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 6 ○ ■ Figure 8 Figure 7 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)耐圧性筒体と該筒体の一端に配された着脱自在な
蓋体と該筒体の他端側に配された該筒体内加圧機構とで
構成された高圧容器を有し、該高圧容器の内面側に、底
付の筒形状を有し且つ少なくとも筒部にフィルタを有す
るフィルタ付容器が、着脱自在に設けられていることを
特徴とする圧力晶析装置。
(1) It has a high-pressure container composed of a pressure-resistant cylinder, a removable lid placed at one end of the cylinder, and an internal pressure mechanism placed at the other end of the cylinder. A pressure crystallizer, characterized in that a filter-equipped container having a cylindrical shape with a bottom and having a filter in at least the cylindrical portion is removably provided on the inner surface of the high-pressure container.
(2)特定成分を含む2種以上の成分からなる混合物を
、底付の筒形状を有し且つ少なくとも筒部にフィルタを
有するフィルタ付容器に入れ、該フィルタ付容器を高圧
容器内に配置し、該高圧容器内にて該混合物を加圧して
固液共存状態と成し、続いて液相分を該高圧容器外に排
出して該フィルタ付容器内に特定成分の固体状製品を形
成させ、該フィルタ付容器を高圧容器の外に取り出した
後、固体状製品を該フィルタ付容器から取り外して得る
ことを特徴とする圧力晶析方法。
(2) A mixture consisting of two or more components including a specific component is placed in a filter-equipped container having a cylindrical shape with a bottom and a filter at least in the cylindrical portion, and the filter-equipped container is placed in a high-pressure container. , pressurize the mixture in the high-pressure container to form a solid-liquid coexistence state, and then discharge the liquid phase out of the high-pressure container to form a solid product of a specific component in the filter-equipped container. . A pressure crystallization method characterized in that the solid product is obtained by removing the filter-equipped container from the filter-equipped container after the filter-equipped container is taken out of the high-pressure container.
JP23799288A 1988-09-22 1988-09-22 Apparatus and method for pressure crystallization Pending JPH0286803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23799288A JPH0286803A (en) 1988-09-22 1988-09-22 Apparatus and method for pressure crystallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23799288A JPH0286803A (en) 1988-09-22 1988-09-22 Apparatus and method for pressure crystallization

Publications (1)

Publication Number Publication Date
JPH0286803A true JPH0286803A (en) 1990-03-27

Family

ID=17023516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23799288A Pending JPH0286803A (en) 1988-09-22 1988-09-22 Apparatus and method for pressure crystallization

Country Status (1)

Country Link
JP (1) JPH0286803A (en)

Similar Documents

Publication Publication Date Title
EP0256760B1 (en) Method for dry fractionation of fatty material
JPH0286803A (en) Apparatus and method for pressure crystallization
CN104878224B (en) Device and method for preparing high-purity gallium
EP0475836B1 (en) Process for separating 2,7-dimethylnaphthalene under pressure
JPS5810121B2 (en) Substance separation and purification equipment
JPH02126903A (en) Pressure crystallization method
JPH02126901A (en) Method and device for pressure crystallization
JPH02157003A (en) Method for purifying substances by pressure crystallization process
JPH0417682B2 (en)
JP2839728B2 (en) Pressure crystallization apparatus and pressure crystallization method
JPH0221902A (en) Method for crystallization under pressure
JPH02198601A (en) Method for pressure crystallization
JPH026801A (en) Pressure crystallization method
JPH0463103A (en) Pressure crystallizer
JPH0418882B2 (en)
JP2515872B2 (en) Pressure crystallizer
JPH02139002A (en) Pressure crystallization device
JPH04145902A (en) Pressure crystallizer
JP2849149B2 (en) Pressure crystallization equipment
JPH0412162B2 (en)
JPS63182003A (en) Pressure crystallization system for raw material of high concentration and pressure crystallization method
JPH06104163B2 (en) Pressure crystallization method and pressure crystallization apparatus
JPS63218205A (en) Pressure crystallization method
JPH02214505A (en) Pressure crystallizer
JPS56152712A (en) Continuous pressure-supplying method for raw liquid of pressure filter